lua/lopcodes.h
Roberto Ierusalimschy b43300c14f change in 'LUAI_DDEC' to allow variables to be static in 'onelua'
+ change in 'LUAMOD_API' as opening functions do not need to be global
2018-06-18 09:51:05 -03:00

369 lines
12 KiB
C

/*
** $Id: lopcodes.h,v 1.192 2018/06/08 19:07:27 roberto Exp roberto $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/
#ifndef lopcodes_h
#define lopcodes_h
#include "llimits.h"
/*===========================================================================
We assume that instructions are unsigned 32-bit integers.
All instructions have an opcode in the first 7 bits.
Instructions can have the following formats:
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
iABC C(8) | B(8) |k| A(8) | Op(7) |
iABx Bx(17) | A(8) | Op(7) |
iAsB sBx (signed)(17) | A(8) | Op(7) |
iAx Ax(25) | Op(7) |
isJ sJ(24) |m| Op(7) |
A signed argument is represented in excess K: the represented value is
the written unsigned value minus K, where K is half the maximum for the
corresponding unsigned argument.
===========================================================================*/
enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */
/*
** size and position of opcode arguments.
*/
#define SIZE_C 8
#define SIZE_B 8
#define SIZE_Bx (SIZE_C + SIZE_B + 1)
#define SIZE_A 8
#define SIZE_Ax (SIZE_Bx + SIZE_A)
#define SIZE_sJ (SIZE_Bx + SIZE_A - 1)
#define SIZE_OP 7
#define POS_OP 0
#define POS_A (POS_OP + SIZE_OP)
#define POS_k (POS_A + SIZE_A)
#define POS_B (POS_k + 1)
#define POS_C (POS_B + SIZE_B)
#define POS_Bx POS_k
#define POS_Ax POS_A
#define POS_m POS_A
#define POS_sJ (POS_A + 1)
/*
** limits for opcode arguments.
** we use (signed) int to manipulate most arguments,
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
*/
#if SIZE_Bx < LUAI_BITSINT-1
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
#else
#define MAXARG_Bx MAX_INT
#endif
#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
#if SIZE_Ax < LUAI_BITSINT-1
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
#else
#define MAXARG_Ax MAX_INT
#endif
#if SIZE_sJ < LUAI_BITSINT-1
#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
#else
#define MAXARG_sJ MAX_INT
#endif
#define OFFSET_sJ (MAXARG_sJ >> 1)
#define MAXARG_A ((1<<SIZE_A)-1)
#define MAXARG_B ((1<<SIZE_B)-1)
#define MAXARG_C ((1<<SIZE_C)-1)
#define OFFSET_sC (MAXARG_C >> 1)
#define MAXARG_Cx ((1<<(SIZE_C + 1))-1)
/* creates a mask with 'n' 1 bits at position 'p' */
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
/* creates a mask with 'n' 0 bits at position 'p' */
#define MASK0(n,p) (~MASK1(n,p))
/*
** the following macros help to manipulate instructions
*/
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
#define GETARG_sB(i) (GETARG_B(i) - OFFSET_sC)
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
#define GETARG_sC(i) (GETARG_C(i) - OFFSET_sC)
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
#define TESTARG_k(i) (cast_int(((i) & (1u << POS_k))))
#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
#define GETARG_sBx(i) \
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
#define GETARG_sJ(i) \
check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
#define SETARG_sJ(i,j) \
setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
#define GETARG_m(i) check_exp(checkopm(i, isJ), getarg(i, POS_m, 1))
#define SETARG_m(i,m) setarg(i, m, POS_m, 1)
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, b)<<POS_B) \
| (cast(Instruction, c)<<POS_C) \
| (cast(Instruction, k)<<POS_k))
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, bc)<<POS_Bx))
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_Ax))
#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
| (cast(Instruction, j) << POS_sJ) \
| (cast(Instruction, k) << POS_k))
#if !defined(MAXINDEXRK) /* (for debugging only) */
#define MAXINDEXRK MAXARG_B
#endif
/*
** invalid register that fits in 8 bits
*/
#define NO_REG MAXARG_A
/*
** R(x) - register
** K(x) - constant (in constant table)
** RK(x) == if k(i) then K(x) else R(x)
*/
/*
** grep "ORDER OP" if you change these enums
*/
typedef enum {
/*----------------------------------------------------------------------
name args description
------------------------------------------------------------------------*/
OP_MOVE,/* A B R(A) := R(B) */
OP_LOADI,/* A sBx R(A) := sBx */
OP_LOADF,/* A sBx R(A) := (lua_Number)sBx */
OP_LOADK,/* A Bx R(A) := K(Bx) */
OP_LOADKX,/* A R(A) := K(extra arg) */
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
OP_GETTABUP,/* A B C R(A) := UpValue[B][K(C):string] */
OP_GETTABLE,/* A B C R(A) := R(B)[R(C)] */
OP_GETI,/* A B C R(A) := R(B)[C] */
OP_GETFIELD,/* A B C R(A) := R(B)[K(C):string] */
OP_SETTABUP,/* A B C UpValue[A][K(B):string] := RK(C) */
OP_SETTABLE,/* A B C R(A)[R(B)] := RK(C) */
OP_SETI,/* A B C R(A)[B] := RK(C) */
OP_SETFIELD,/* A B C R(A)[K(B):string] := RK(C) */
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C):string] */
OP_ADDI,/* A B sC R(A) := R(B) + C */
OP_SUBI,/* A B sC R(A) := R(B) - C */
OP_MULI,/* A B sC R(A) := R(B) * C */
OP_MODI,/* A B sC R(A) := R(B) % C */
OP_POWI,/* A B sC R(A) := R(B) ^ C */
OP_DIVI,/* A B sC R(A) := R(B) / C */
OP_IDIVI,/* A B sC R(A) := R(B) // C */
OP_BANDK,/* A B C R(A) := R(B) & K(C):integer */
OP_BORK,/* A B C R(A) := R(B) | K(C):integer */
OP_BXORK,/* A B C R(A) := R(B) ~ K(C):integer */
OP_SHRI,/* A B C R(A) := R(B) >> C */
OP_SHLI,/* A B C R(A) := C << R(B) */
OP_ADD,/* A B C R(A) := R(B) + R(C) */
OP_SUB,/* A B C R(A) := R(B) - R(C) */
OP_MUL,/* A B C R(A) := R(B) * R(C) */
OP_MOD,/* A B C R(A) := R(B) % R(C) */
OP_POW,/* A B C R(A) := R(B) ^ R(C) */
OP_DIV,/* A B C R(A) := R(B) / R(C) */
OP_IDIV,/* A B C R(A) := R(B) // R(C) */
OP_BAND,/* A B C R(A) := R(B) & R(C) */
OP_BOR,/* A B C R(A) := R(B) | R(C) */
OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */
OP_SHL,/* A B C R(A) := R(B) << R(C) */
OP_SHR,/* A B C R(A) := R(B) >> R(C) */
OP_UNM,/* A B R(A) := -R(B) */
OP_BNOT,/* A B R(A) := ~R(B) */
OP_NOT,/* A B R(A) := not R(B) */
OP_LEN,/* A B R(A) := length of R(B) */
OP_CONCAT,/* A B R(A) := R(A).. ... ..R(A + B - 1) */
OP_CLOSE,/* A close all upvalues >= R(A) */
OP_JMP,/* k sJ pc += sJ (k is used in code generation) */
OP_EQ,/* A B if ((R(A) == R(B)) ~= k) then pc++ */
OP_LT,/* A B if ((R(A) < R(B)) ~= k) then pc++ */
OP_LE,/* A B if ((R(A) <= R(B)) ~= k) then pc++ */
OP_EQK,/* A B if ((R(A) == K(B)) ~= k) then pc++ */
OP_EQI,/* A sB if ((R(A) == sB) ~= k) then pc++ */
OP_LTI,/* A sB if ((R(A) < sB) ~= k) then pc++ */
OP_LEI,/* A sB if ((R(A) <= sB) ~= k) then pc++ */
OP_GTI,/* A sB if ((R(A) > sB) ~= k) then pc++ */
OP_GEI,/* A sB if ((R(A) >= sB) ~= k) then pc++ */
OP_TEST,/* A if (not R(A) == k) then pc++ */
OP_TESTSET,/* A B if (not R(B) == k) then R(A) := R(B) else pc++ */
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
OP_RETURN,/* A B C return R(A), ... ,R(A+B-2) (see note) */
OP_RETURN0,/* return */
OP_RETURN1,/* A return R(A) */
OP_FORLOOP1,/* A Bx R(A)++;
if R(A) <= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
OP_FORPREP1,/* A Bx R(A)--; pc+=Bx */
OP_FORLOOP,/* A Bx R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
OP_FORPREP,/* A Bx R(A)-=R(A+2); pc+=Bx */
OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
OP_TFORLOOP,/* A Bx if R(A+1) ~= nil then { R(A)=R(A+1); pc -= Bx } */
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
OP_VARARG,/* A C R(A), R(A+1), ..., R(A+C-2) = vararg */
OP_PREPVARARG,/*A (adjust vararg parameters) */
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
} OpCode;
#define NUM_OPCODES (cast_int(OP_EXTRAARG) + 1)
/*===========================================================================
Notes:
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN*,
OP_SETLIST) may use 'top'.
(*) In OP_VARARG, if (C == 0) then use actual number of varargs and
set top (like in OP_CALL with C == 0).
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
(*) In OP_SETLIST, if (B == 0) then real B = 'top'; if (C == 0) then
next 'instruction' is EXTRAARG(real C).
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
(*) For comparisons, k specifies what condition the test should accept
(true or false).
(*) All 'skips' (pc++) assume that next instruction is a jump.
(*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
function either builds upvalues, which may need to be closed, or is
vararg, which must be corrected before returning. When 'k' is true,
C > 0 means the function is vararg and (C - 1) is its number of
fixed parameters.
===========================================================================*/
/*
** masks for instruction properties. The format is:
** bits 0-2: op mode
** bit 3: instruction set register A
** bit 4: operator is a test (next instruction must be a jump)
** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
*/
LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
/* "out top" (set top for next instruction) */
#define isOT(i) \
((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
GET_OPCODE(i) == OP_TAILCALL)
/* "in top" (uses top from previous instruction) */
#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
#define opmode(ot,it,t,a,m) (((ot)<<6) | ((it)<<5) | ((t)<<4) | ((a)<<3) | (m))
LUAI_DDEC(const char *const luaP_opnames[NUM_OPCODES+1];) /* opcode names */
/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH 50
#endif