mirror of
https://github.com/lua/lua
synced 2024-12-28 21:29:44 +03:00
84e32ad2eb
Added opcodes for all seven arithmetic operators with K operands (that is, operands that are numbers in the array of constants of the function). They cover the cases of constant float operands (e.g., 'x + .0.0', 'x^0.5') and large integer operands (e.g., 'x % 10000').
375 lines
12 KiB
C
375 lines
12 KiB
C
/*
|
|
** $Id: lopcodes.h $
|
|
** Opcodes for Lua virtual machine
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#ifndef lopcodes_h
|
|
#define lopcodes_h
|
|
|
|
#include "llimits.h"
|
|
|
|
|
|
/*===========================================================================
|
|
We assume that instructions are unsigned 32-bit integers.
|
|
All instructions have an opcode in the first 7 bits.
|
|
Instructions can have the following formats:
|
|
|
|
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
|
|
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
|
iABC C(8) | B(8) |k| A(8) | Op(7) |
|
|
iABx Bx(17) | A(8) | Op(7) |
|
|
iAsB sBx (signed)(17) | A(8) | Op(7) |
|
|
iAx Ax(25) | Op(7) |
|
|
isJ sJ(25) | Op(7) |
|
|
|
|
A signed argument is represented in excess K: the represented value is
|
|
the written unsigned value minus K, where K is half the maximum for the
|
|
corresponding unsigned argument.
|
|
===========================================================================*/
|
|
|
|
|
|
enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */
|
|
|
|
|
|
/*
|
|
** size and position of opcode arguments.
|
|
*/
|
|
#define SIZE_C 8
|
|
#define SIZE_B 8
|
|
#define SIZE_Bx (SIZE_C + SIZE_B + 1)
|
|
#define SIZE_A 8
|
|
#define SIZE_Ax (SIZE_Bx + SIZE_A)
|
|
#define SIZE_sJ (SIZE_Bx + SIZE_A)
|
|
|
|
#define SIZE_OP 7
|
|
|
|
#define POS_OP 0
|
|
|
|
#define POS_A (POS_OP + SIZE_OP)
|
|
#define POS_k (POS_A + SIZE_A)
|
|
#define POS_B (POS_k + 1)
|
|
#define POS_C (POS_B + SIZE_B)
|
|
|
|
#define POS_Bx POS_k
|
|
|
|
#define POS_Ax POS_A
|
|
|
|
#define POS_sJ POS_A
|
|
|
|
/*
|
|
** limits for opcode arguments.
|
|
** we use (signed) int to manipulate most arguments,
|
|
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
|
|
*/
|
|
#if SIZE_Bx < LUAI_BITSINT-1
|
|
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
|
|
#else
|
|
#define MAXARG_Bx MAX_INT
|
|
#endif
|
|
|
|
#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
|
|
|
|
|
|
#if SIZE_Ax < LUAI_BITSINT-1
|
|
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
|
|
#else
|
|
#define MAXARG_Ax MAX_INT
|
|
#endif
|
|
|
|
#if SIZE_sJ < LUAI_BITSINT-1
|
|
#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
|
|
#else
|
|
#define MAXARG_sJ MAX_INT
|
|
#endif
|
|
|
|
#define OFFSET_sJ (MAXARG_sJ >> 1)
|
|
|
|
|
|
#define MAXARG_A ((1<<SIZE_A)-1)
|
|
#define MAXARG_B ((1<<SIZE_B)-1)
|
|
#define MAXARG_C ((1<<SIZE_C)-1)
|
|
#define OFFSET_sC (MAXARG_C >> 1)
|
|
#define MAXARG_Cx ((1<<(SIZE_C + 1))-1)
|
|
|
|
|
|
/* creates a mask with 'n' 1 bits at position 'p' */
|
|
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
|
|
|
|
/* creates a mask with 'n' 0 bits at position 'p' */
|
|
#define MASK0(n,p) (~MASK1(n,p))
|
|
|
|
/*
|
|
** the following macros help to manipulate instructions
|
|
*/
|
|
|
|
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
|
|
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
|
|
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
|
|
|
|
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
|
|
|
|
|
|
#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
|
|
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
|
|
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
|
|
|
|
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
|
|
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
|
|
|
|
#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
|
|
#define GETARG_sB(i) (GETARG_B(i) - OFFSET_sC)
|
|
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
|
|
|
|
#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
|
|
#define GETARG_sC(i) (GETARG_C(i) - OFFSET_sC)
|
|
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
|
|
|
|
#define TESTARG_k(i) (cast_int(((i) & (1u << POS_k))))
|
|
#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
|
|
#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
|
|
|
|
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
|
|
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
|
|
|
|
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
|
|
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
|
|
|
|
#define GETARG_sBx(i) \
|
|
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
|
|
#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
|
|
|
|
#define GETARG_sJ(i) \
|
|
check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
|
|
#define SETARG_sJ(i,j) \
|
|
setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
|
|
|
|
|
|
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_A) \
|
|
| (cast(Instruction, b)<<POS_B) \
|
|
| (cast(Instruction, c)<<POS_C) \
|
|
| (cast(Instruction, k)<<POS_k))
|
|
|
|
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_A) \
|
|
| (cast(Instruction, bc)<<POS_Bx))
|
|
|
|
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_Ax))
|
|
|
|
#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
|
|
| (cast(Instruction, j) << POS_sJ) \
|
|
| (cast(Instruction, k) << POS_k))
|
|
|
|
|
|
#if !defined(MAXINDEXRK) /* (for debugging only) */
|
|
#define MAXINDEXRK MAXARG_B
|
|
#endif
|
|
|
|
|
|
/*
|
|
** invalid register that fits in 8 bits
|
|
*/
|
|
#define NO_REG MAXARG_A
|
|
|
|
|
|
/*
|
|
** R(x) - register
|
|
** K(x) - constant (in constant table)
|
|
** RK(x) == if k(i) then K(x) else R(x)
|
|
*/
|
|
|
|
|
|
/*
|
|
** grep "ORDER OP" if you change these enums
|
|
*/
|
|
|
|
typedef enum {
|
|
/*----------------------------------------------------------------------
|
|
name args description
|
|
------------------------------------------------------------------------*/
|
|
OP_MOVE,/* A B R(A) := R(B) */
|
|
OP_LOADI,/* A sBx R(A) := sBx */
|
|
OP_LOADF,/* A sBx R(A) := (lua_Number)sBx */
|
|
OP_LOADK,/* A Bx R(A) := K(Bx) */
|
|
OP_LOADKX,/* A R(A) := K(extra arg) */
|
|
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
|
|
OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
|
|
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
|
|
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
|
|
|
|
OP_GETTABUP,/* A B C R(A) := UpValue[B][K(C):string] */
|
|
OP_GETTABLE,/* A B C R(A) := R(B)[R(C)] */
|
|
OP_GETI,/* A B C R(A) := R(B)[C] */
|
|
OP_GETFIELD,/* A B C R(A) := R(B)[K(C):string] */
|
|
|
|
OP_SETTABUP,/* A B C UpValue[A][K(B):string] := RK(C) */
|
|
OP_SETTABLE,/* A B C R(A)[R(B)] := RK(C) */
|
|
OP_SETI,/* A B C R(A)[B] := RK(C) */
|
|
OP_SETFIELD,/* A B C R(A)[K(B):string] := RK(C) */
|
|
|
|
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
|
|
|
|
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C):string] */
|
|
|
|
OP_ADDI,/* A B sC R(A) := R(B) + C */
|
|
OP_SUBI,/* A B sC R(A) := R(B) - C */
|
|
OP_MULI,/* A B sC R(A) := R(B) * C */
|
|
OP_MODI,/* A B sC R(A) := R(B) % C */
|
|
OP_POWI,/* A B sC R(A) := R(B) ^ C */
|
|
OP_DIVI,/* A B sC R(A) := R(B) / C */
|
|
OP_IDIVI,/* A B sC R(A) := R(B) // C */
|
|
|
|
OP_ADDK,/* A B C R(A) := R(B) + K(C) */
|
|
OP_SUBK,/* A B C R(A) := R(B) - K(C) */
|
|
OP_MULK,/* A B C R(A) := R(B) * K(C) */
|
|
OP_MODK,/* A B C R(A) := R(B) % K(C) */
|
|
OP_POWK,/* A B C R(A) := R(B) ^ K(C) */
|
|
OP_DIVK,/* A B C R(A) := R(B) / K(C) */
|
|
OP_IDIVK,/* A B C R(A) := R(B) // K(C) */
|
|
|
|
OP_BANDK,/* A B C R(A) := R(B) & K(C):integer */
|
|
OP_BORK,/* A B C R(A) := R(B) | K(C):integer */
|
|
OP_BXORK,/* A B C R(A) := R(B) ~ K(C):integer */
|
|
|
|
OP_SHRI,/* A B C R(A) := R(B) >> C */
|
|
OP_SHLI,/* A B C R(A) := C << R(B) */
|
|
|
|
OP_ADD,/* A B C R(A) := R(B) + R(C) */
|
|
OP_SUB,/* A B C R(A) := R(B) - R(C) */
|
|
OP_MUL,/* A B C R(A) := R(B) * R(C) */
|
|
OP_MOD,/* A B C R(A) := R(B) % R(C) */
|
|
OP_POW,/* A B C R(A) := R(B) ^ R(C) */
|
|
OP_DIV,/* A B C R(A) := R(B) / R(C) */
|
|
OP_IDIV,/* A B C R(A) := R(B) // R(C) */
|
|
|
|
OP_BAND,/* A B C R(A) := R(B) & R(C) */
|
|
OP_BOR,/* A B C R(A) := R(B) | R(C) */
|
|
OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */
|
|
OP_SHL,/* A B C R(A) := R(B) << R(C) */
|
|
OP_SHR,/* A B C R(A) := R(B) >> R(C) */
|
|
|
|
OP_UNM,/* A B R(A) := -R(B) */
|
|
OP_BNOT,/* A B R(A) := ~R(B) */
|
|
OP_NOT,/* A B R(A) := not R(B) */
|
|
OP_LEN,/* A B R(A) := length of R(B) */
|
|
|
|
OP_CONCAT,/* A B R(A) := R(A).. ... ..R(A + B - 1) */
|
|
|
|
OP_CLOSE,/* A close all upvalues >= R(A) */
|
|
OP_TBC,/* A mark variable A "to be closed" */
|
|
OP_JMP,/* k sJ pc += sJ (k is used in code generation) */
|
|
OP_EQ,/* A B if ((R(A) == R(B)) ~= k) then pc++ */
|
|
OP_LT,/* A B if ((R(A) < R(B)) ~= k) then pc++ */
|
|
OP_LE,/* A B if ((R(A) <= R(B)) ~= k) then pc++ */
|
|
|
|
OP_EQK,/* A B if ((R(A) == K(B)) ~= k) then pc++ */
|
|
OP_EQI,/* A sB if ((R(A) == sB) ~= k) then pc++ */
|
|
OP_LTI,/* A sB if ((R(A) < sB) ~= k) then pc++ */
|
|
OP_LEI,/* A sB if ((R(A) <= sB) ~= k) then pc++ */
|
|
OP_GTI,/* A sB if ((R(A) > sB) ~= k) then pc++ */
|
|
OP_GEI,/* A sB if ((R(A) >= sB) ~= k) then pc++ */
|
|
|
|
OP_TEST,/* A if (not R(A) == k) then pc++ */
|
|
OP_TESTSET,/* A B if (not R(B) == k) then R(A) := R(B) else pc++ */
|
|
|
|
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
|
|
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
|
|
|
|
OP_RETURN,/* A B C return R(A), ... ,R(A+B-2) (see note) */
|
|
OP_RETURN0,/* return */
|
|
OP_RETURN1,/* A return R(A) */
|
|
|
|
OP_FORLOOP1,/* A Bx R(A)++;
|
|
if R(A) <= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
|
|
OP_FORPREP1,/* A Bx R(A)--; pc+=Bx */
|
|
|
|
OP_FORLOOP,/* A Bx R(A)+=R(A+2);
|
|
if R(A) <?= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
|
|
OP_FORPREP,/* A Bx R(A)-=R(A+2); pc+=Bx */
|
|
|
|
OP_TFORPREP,/* A Bx create upvalue for R(A + 3); pc+=Bx */
|
|
OP_TFORCALL,/* A C R(A+4), ... ,R(A+3+C) := R(A)(R(A+1), R(A+2)); */
|
|
OP_TFORLOOP,/* A Bx if R(A+2) ~= nil then { R(A)=R(A+2); pc -= Bx } */
|
|
|
|
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
|
|
|
|
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
|
|
|
|
OP_VARARG,/* A C R(A), R(A+1), ..., R(A+C-2) = vararg */
|
|
|
|
OP_PREPVARARG,/*A (adjust vararg parameters) */
|
|
|
|
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
|
|
} OpCode;
|
|
|
|
|
|
#define NUM_OPCODES (cast_int(OP_EXTRAARG) + 1)
|
|
|
|
|
|
|
|
/*===========================================================================
|
|
Notes:
|
|
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
|
|
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN*,
|
|
OP_SETLIST) may use 'top'.
|
|
|
|
(*) In OP_VARARG, if (C == 0) then use actual number of varargs and
|
|
set top (like in OP_CALL with C == 0).
|
|
|
|
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
|
|
|
|
(*) In OP_SETLIST, if (B == 0) then real B = 'top'; if (C == 0) then
|
|
next 'instruction' is EXTRAARG(real C).
|
|
|
|
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
|
|
|
|
(*) For comparisons, k specifies what condition the test should accept
|
|
(true or false).
|
|
|
|
(*) All 'skips' (pc++) assume that next instruction is a jump.
|
|
|
|
(*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
|
|
function either builds upvalues, which may need to be closed, or is
|
|
vararg, which must be corrected before returning. When 'k' is true,
|
|
C > 0 means the function is vararg and (C - 1) is its number of
|
|
fixed parameters.
|
|
|
|
===========================================================================*/
|
|
|
|
|
|
/*
|
|
** masks for instruction properties. The format is:
|
|
** bits 0-2: op mode
|
|
** bit 3: instruction set register A
|
|
** bit 4: operator is a test (next instruction must be a jump)
|
|
** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
|
|
** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
|
|
*/
|
|
|
|
LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
|
|
|
|
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
|
|
#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
|
|
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
|
|
#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
|
|
#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
|
|
|
|
/* "out top" (set top for next instruction) */
|
|
#define isOT(i) \
|
|
((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
|
|
GET_OPCODE(i) == OP_TAILCALL)
|
|
|
|
/* "in top" (uses top from previous instruction) */
|
|
#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
|
|
|
|
#define opmode(ot,it,t,a,m) (((ot)<<6) | ((it)<<5) | ((t)<<4) | ((a)<<3) | (m))
|
|
|
|
|
|
/* number of list items to accumulate before a SETLIST instruction */
|
|
#define LFIELDS_PER_FLUSH 50
|
|
|
|
|
|
#endif
|