mirror of
https://github.com/lua/lua
synced 2024-11-22 12:51:30 +03:00
63d68bd657
Plus other comments and small details.
257 lines
8.9 KiB
C
257 lines
8.9 KiB
C
/*
|
|
** $Id: lgc.h $
|
|
** Garbage Collector
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#ifndef lgc_h
|
|
#define lgc_h
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
|
|
#include "lobject.h"
|
|
#include "lstate.h"
|
|
|
|
/*
|
|
** Collectable objects may have one of three colors: white, which means
|
|
** the object is not marked; gray, which means the object is marked, but
|
|
** its references may be not marked; and black, which means that the
|
|
** object and all its references are marked. The main invariant of the
|
|
** garbage collector, while marking objects, is that a black object can
|
|
** never point to a white one. Moreover, any gray object must be in a
|
|
** "gray list" (gray, grayagain, weak, allweak, ephemeron) so that it
|
|
** can be visited again before finishing the collection cycle. (Open
|
|
** upvalues are an exception to this rule.) These lists have no meaning
|
|
** when the invariant is not being enforced (e.g., sweep phase).
|
|
*/
|
|
|
|
|
|
/*
|
|
** Possible states of the Garbage Collector
|
|
*/
|
|
#define GCSpropagate 0
|
|
#define GCSenteratomic 1
|
|
#define GCSatomic 2
|
|
#define GCSswpallgc 3
|
|
#define GCSswpfinobj 4
|
|
#define GCSswptobefnz 5
|
|
#define GCSswpend 6
|
|
#define GCScallfin 7
|
|
#define GCSpause 8
|
|
|
|
|
|
#define issweepphase(g) \
|
|
(GCSswpallgc <= (g)->gcstate && (g)->gcstate <= GCSswpend)
|
|
|
|
|
|
/*
|
|
** macro to tell when main invariant (white objects cannot point to black
|
|
** ones) must be kept. During a collection, the sweep
|
|
** phase may break the invariant, as objects turned white may point to
|
|
** still-black objects. The invariant is restored when sweep ends and
|
|
** all objects are white again.
|
|
*/
|
|
|
|
#define keepinvariant(g) ((g)->gcstate <= GCSatomic)
|
|
|
|
|
|
/*
|
|
** some useful bit tricks
|
|
*/
|
|
#define resetbits(x,m) ((x) &= cast_byte(~(m)))
|
|
#define setbits(x,m) ((x) |= (m))
|
|
#define testbits(x,m) ((x) & (m))
|
|
#define bitmask(b) (1<<(b))
|
|
#define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2))
|
|
#define l_setbit(x,b) setbits(x, bitmask(b))
|
|
#define resetbit(x,b) resetbits(x, bitmask(b))
|
|
#define testbit(x,b) testbits(x, bitmask(b))
|
|
|
|
|
|
/*
|
|
** Layout for bit use in 'marked' field. First three bits are
|
|
** used for object "age" in generational mode. Last bit is used
|
|
** by tests.
|
|
*/
|
|
#define WHITE0BIT 3 /* object is white (type 0) */
|
|
#define WHITE1BIT 4 /* object is white (type 1) */
|
|
#define BLACKBIT 5 /* object is black */
|
|
#define FINALIZEDBIT 6 /* object has been marked for finalization */
|
|
|
|
#define TESTBIT 7
|
|
|
|
|
|
|
|
#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
|
|
|
|
|
|
#define iswhite(x) testbits((x)->marked, WHITEBITS)
|
|
#define isblack(x) testbit((x)->marked, BLACKBIT)
|
|
#define isgray(x) /* neither white nor black */ \
|
|
(!testbits((x)->marked, WHITEBITS | bitmask(BLACKBIT)))
|
|
|
|
#define tofinalize(x) testbit((x)->marked, FINALIZEDBIT)
|
|
|
|
#define otherwhite(g) ((g)->currentwhite ^ WHITEBITS)
|
|
#define isdeadm(ow,m) ((m) & (ow))
|
|
#define isdead(g,v) isdeadm(otherwhite(g), (v)->marked)
|
|
|
|
#define changewhite(x) ((x)->marked ^= WHITEBITS)
|
|
#define nw2black(x) \
|
|
check_exp(!iswhite(x), l_setbit((x)->marked, BLACKBIT))
|
|
|
|
#define luaC_white(g) cast_byte((g)->currentwhite & WHITEBITS)
|
|
|
|
|
|
/* object age in generational mode */
|
|
#define G_NEW 0 /* created in current cycle */
|
|
#define G_SURVIVAL 1 /* created in previous cycle */
|
|
#define G_OLD0 2 /* marked old by frw. barrier in this cycle */
|
|
#define G_OLD1 3 /* first full cycle as old */
|
|
#define G_OLD 4 /* really old object (not to be visited) */
|
|
#define G_TOUCHED1 5 /* old object touched this cycle */
|
|
#define G_TOUCHED2 6 /* old object touched in previous cycle */
|
|
|
|
#define AGEBITS 7 /* all age bits (111) */
|
|
|
|
#define getage(o) ((o)->marked & AGEBITS)
|
|
#define setage(o,a) ((o)->marked = cast_byte(((o)->marked & (~AGEBITS)) | a))
|
|
#define isold(o) (getage(o) > G_SURVIVAL)
|
|
|
|
#define changeage(o,f,t) \
|
|
check_exp(getage(o) == (f), (o)->marked ^= ((f)^(t)))
|
|
|
|
/*
|
|
** In generational mode, objects are created 'new'. After surviving one
|
|
** cycle, they become 'survival'. Both 'new' and 'survival' can point
|
|
** to any other object, as they are traversed at the end of the cycle.
|
|
** We call them both 'young' objects.
|
|
** If a survival object survives another cycle, it becomes 'old1'.
|
|
** 'old1' objects can still point to survival objects (but not to
|
|
** new objects), so they still must be traversed. After another cycle
|
|
** (that, being old, 'old1' objects will "survive" no matter what)
|
|
** finally the 'old1' object becomes really 'old', and then they
|
|
** are no more traversed.
|
|
**
|
|
** To keep its invariants, the generational mode uses the same barriers
|
|
** also used by the incremental mode. If a young object is caught in a
|
|
** foward barrier, it cannot become old immediately, because it can
|
|
** still point to other young objects. Instead, it becomes 'old0',
|
|
** which in the next cycle becomes 'old1'. So, 'old0' objects is
|
|
** old but can point to new and survival objects; 'old1' is old
|
|
** but cannot point to new objects; and 'old' cannot point to any
|
|
** young object.
|
|
**
|
|
** If any old object ('old0', 'old1', 'old') is caught in a back
|
|
** barrier, it becomes 'touched1' and goes into a gray list, to be
|
|
** visited at the end of the cycle. There it evolves to 'touched2',
|
|
** which can point to survivals but not to new objects. In yet another
|
|
** cycle then it becomes 'old' again.
|
|
**
|
|
** The generational mode must also control the colors of objects,
|
|
** because of the barriers. While the mutator is running, young objects
|
|
** are kept white. 'old', 'old1', and 'touched2' objects are kept black,
|
|
** as they cannot point to new objects; exceptions are threads and open
|
|
** upvalues, which age to 'old1' and 'old' but are kept gray. 'old0'
|
|
** objects may be gray or black, as in the incremental mode. 'touched1'
|
|
** objects are kept gray, as they must be visited again at the end of
|
|
** the cycle.
|
|
*/
|
|
|
|
|
|
/* Default Values for GC parameters */
|
|
|
|
/* generational */
|
|
|
|
#define LUAI_GENMAJORMUL 100 /* major multiplier */
|
|
#define LUAI_GENMINORMUL 20 /* minor multiplier */
|
|
|
|
/* incremental */
|
|
|
|
/* wait memory to double before starting new cycle */
|
|
#define LUAI_GCPAUSE 200
|
|
|
|
#define LUAI_GCMUL 300 /* step multiplier */
|
|
|
|
/* how many objects to allocate before next GC step (log2) */
|
|
#define LUAI_GCSTEPSIZE 8 /* 256 objects */
|
|
|
|
|
|
/*
|
|
** Control when GC is running:
|
|
*/
|
|
#define GCSTPUSR 1 /* bit true when GC stopped by user */
|
|
#define GCSTPGC 2 /* bit true when GC stopped by itself */
|
|
#define GCSTPCLS 4 /* bit true when closing Lua state */
|
|
#define gcrunning(g) ((g)->gcstp == 0)
|
|
|
|
/*
|
|
** Macros to set and apply GC parameters. GC parameters are given in
|
|
** percentage points, but are stored as lu_byte. To reduce their
|
|
** values and avoid repeated divisions by 100, these macros store
|
|
** the original parameter multiplied by 2^n and divided by 100.
|
|
** To apply them, the value is divided by 2^n (a shift) and then
|
|
** multiplied by the stored parameter, yielding
|
|
** value / 2^n * (original parameter * 2^n / 100), or approximately
|
|
** (value * original parameter / 100).
|
|
**
|
|
** For most parameters, which are typically larger than 100%, 2^n is
|
|
** 16 (2^4), allowing maximum values up to ~1500%, with a granularity
|
|
** of ~6%. For the minor multiplier, which is typically smaller,
|
|
** 2^n is 64 (2^6) to allow more precision. In that case, the maximum
|
|
** value is ~400%, with a granularity of ~1.5%.
|
|
*/
|
|
#define gcparamshift(p) \
|
|
(offsetof(global_State, p) == offsetof(global_State, genminormul) ? 6 : 4)
|
|
|
|
#define setgcparam(g,p,v) \
|
|
(g->p = (cast_uint(v) << gcparamshift(p)) / 100u)
|
|
#define applygcparam(g,p,v) (((v) >> gcparamshift(p)) * g->p)
|
|
|
|
|
|
|
|
/*
|
|
** Does one step of collection when debt becomes zero. 'pre'/'pos'
|
|
** allows some adjustments to be done only when needed. macro
|
|
** 'condchangemem' is used only for heavy tests (forcing a full
|
|
** GC cycle on every opportunity)
|
|
*/
|
|
#define luaC_condGC(L,pre,pos) \
|
|
{ if (G(L)->GCdebt <= 0) { pre; luaC_step(L); pos;}; \
|
|
condchangemem(L,pre,pos); }
|
|
|
|
/* more often than not, 'pre'/'pos' are empty */
|
|
#define luaC_checkGC(L) luaC_condGC(L,(void)0,(void)0)
|
|
|
|
|
|
#define luaC_objbarrier(L,p,o) ( \
|
|
(isblack(p) && iswhite(o)) ? \
|
|
luaC_barrier_(L,obj2gco(p),obj2gco(o)) : cast_void(0))
|
|
|
|
#define luaC_barrier(L,p,v) ( \
|
|
iscollectable(v) ? luaC_objbarrier(L,p,gcvalue(v)) : cast_void(0))
|
|
|
|
#define luaC_objbarrierback(L,p,o) ( \
|
|
(isblack(p) && iswhite(o)) ? luaC_barrierback_(L,p) : cast_void(0))
|
|
|
|
#define luaC_barrierback(L,p,v) ( \
|
|
iscollectable(v) ? luaC_objbarrierback(L, p, gcvalue(v)) : cast_void(0))
|
|
|
|
LUAI_FUNC void luaC_fix (lua_State *L, GCObject *o);
|
|
LUAI_FUNC void luaC_freeallobjects (lua_State *L);
|
|
LUAI_FUNC void luaC_step (lua_State *L);
|
|
LUAI_FUNC void luaC_runtilstate (lua_State *L, int statesmask);
|
|
LUAI_FUNC void luaC_fullgc (lua_State *L, int isemergency);
|
|
LUAI_FUNC GCObject *luaC_newobj (lua_State *L, int tt, size_t sz);
|
|
LUAI_FUNC GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz,
|
|
size_t offset);
|
|
LUAI_FUNC void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v);
|
|
LUAI_FUNC void luaC_barrierback_ (lua_State *L, GCObject *o);
|
|
LUAI_FUNC void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt);
|
|
LUAI_FUNC void luaC_changemode (lua_State *L, int newmode);
|
|
|
|
|
|
#endif
|