mirror of
https://github.com/lua/lua
synced 2024-11-24 13:49:39 +03:00
0acd55898d
No warnings for standard numerical types. Still pending alternative numerical types.
430 lines
14 KiB
C
430 lines
14 KiB
C
/*
|
|
** $Id: lopcodes.h $
|
|
** Opcodes for Lua virtual machine
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#ifndef lopcodes_h
|
|
#define lopcodes_h
|
|
|
|
#include "llimits.h"
|
|
#include "lobject.h"
|
|
|
|
|
|
/*===========================================================================
|
|
We assume that instructions are unsigned 32-bit integers.
|
|
All instructions have an opcode in the first 7 bits.
|
|
Instructions can have the following formats:
|
|
|
|
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
|
|
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
|
iABC C(8) | B(8) |k| A(8) | Op(7) |
|
|
ivABC vC(10) | vB(6) |k| A(8) | Op(7) |
|
|
iABx Bx(17) | A(8) | Op(7) |
|
|
iAsBx sBx (signed)(17) | A(8) | Op(7) |
|
|
iAx Ax(25) | Op(7) |
|
|
isJ sJ (signed)(25) | Op(7) |
|
|
|
|
('v' stands for "variant", 's' for "signed", 'x' for "extended".)
|
|
A signed argument is represented in excess K: The represented value is
|
|
the written unsigned value minus K, where K is half (rounded down) the
|
|
maximum value for the corresponding unsigned argument.
|
|
===========================================================================*/
|
|
|
|
|
|
/* basic instruction formats */
|
|
enum OpMode {iABC, ivABC, iABx, iAsBx, iAx, isJ};
|
|
|
|
|
|
/*
|
|
** size and position of opcode arguments.
|
|
*/
|
|
#define SIZE_C 8
|
|
#define SIZE_vC 10
|
|
#define SIZE_B 8
|
|
#define SIZE_vB 6
|
|
#define SIZE_Bx (SIZE_C + SIZE_B + 1)
|
|
#define SIZE_A 8
|
|
#define SIZE_Ax (SIZE_Bx + SIZE_A)
|
|
#define SIZE_sJ (SIZE_Bx + SIZE_A)
|
|
|
|
#define SIZE_OP 7
|
|
|
|
#define POS_OP 0
|
|
|
|
#define POS_A (POS_OP + SIZE_OP)
|
|
#define POS_k (POS_A + SIZE_A)
|
|
#define POS_B (POS_k + 1)
|
|
#define POS_vB (POS_k + 1)
|
|
#define POS_C (POS_B + SIZE_B)
|
|
#define POS_vC (POS_vB + SIZE_vB)
|
|
|
|
#define POS_Bx POS_k
|
|
|
|
#define POS_Ax POS_A
|
|
|
|
#define POS_sJ POS_A
|
|
|
|
|
|
/*
|
|
** limits for opcode arguments.
|
|
** we use (signed) 'int' to manipulate most arguments,
|
|
** so they must fit in ints.
|
|
*/
|
|
|
|
/*
|
|
** Check whether type 'int' has at least 'b' + 1 bits.
|
|
** 'b' < 32; +1 for the sign bit.
|
|
*/
|
|
#define L_INTHASBITS(b) ((UINT_MAX >> (b)) >= 1)
|
|
|
|
|
|
#if L_INTHASBITS(SIZE_Bx)
|
|
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
|
|
#else
|
|
#define MAXARG_Bx INT_MAX
|
|
#endif
|
|
|
|
#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
|
|
|
|
|
|
#if L_INTHASBITS(SIZE_Ax)
|
|
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
|
|
#else
|
|
#define MAXARG_Ax INT_MAX
|
|
#endif
|
|
|
|
#if L_INTHASBITS(SIZE_sJ)
|
|
#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
|
|
#else
|
|
#define MAXARG_sJ INT_MAX
|
|
#endif
|
|
|
|
#define OFFSET_sJ (MAXARG_sJ >> 1)
|
|
|
|
|
|
#define MAXARG_A ((1<<SIZE_A)-1)
|
|
#define MAXARG_B ((1<<SIZE_B)-1)
|
|
#define MAXARG_vB ((1<<SIZE_vB)-1)
|
|
#define MAXARG_C ((1<<SIZE_C)-1)
|
|
#define MAXARG_vC ((1<<SIZE_vC)-1)
|
|
#define OFFSET_sC (MAXARG_C >> 1)
|
|
|
|
#define int2sC(i) ((i) + OFFSET_sC)
|
|
#define sC2int(i) ((i) - OFFSET_sC)
|
|
|
|
|
|
/* creates a mask with 'n' 1 bits at position 'p' */
|
|
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
|
|
|
|
/* creates a mask with 'n' 0 bits at position 'p' */
|
|
#define MASK0(n,p) (~MASK1(n,p))
|
|
|
|
/*
|
|
** the following macros help to manipulate instructions
|
|
*/
|
|
|
|
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
|
|
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
|
|
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
|
|
|
|
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
|
|
|
|
|
|
#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
|
|
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
|
|
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
|
|
|
|
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
|
|
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
|
|
|
|
#define GETARG_B(i) \
|
|
check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
|
|
#define GETARG_vB(i) \
|
|
check_exp(checkopm(i, ivABC), getarg(i, POS_vB, SIZE_vB))
|
|
#define GETARG_sB(i) sC2int(GETARG_B(i))
|
|
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
|
|
#define SETARG_vB(i,v) setarg(i, v, POS_vB, SIZE_vB)
|
|
|
|
#define GETARG_C(i) \
|
|
check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
|
|
#define GETARG_vC(i) \
|
|
check_exp(checkopm(i, ivABC), getarg(i, POS_vC, SIZE_vC))
|
|
#define GETARG_sC(i) sC2int(GETARG_C(i))
|
|
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
|
|
#define SETARG_vC(i,v) setarg(i, v, POS_vC, SIZE_vC)
|
|
|
|
#define TESTARG_k(i) (cast_int(((i) & (1u << POS_k))))
|
|
#define GETARG_k(i) getarg(i, POS_k, 1)
|
|
#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
|
|
|
|
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
|
|
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
|
|
|
|
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
|
|
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
|
|
|
|
#define GETARG_sBx(i) \
|
|
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
|
|
#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
|
|
|
|
#define GETARG_sJ(i) \
|
|
check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
|
|
#define SETARG_sJ(i,j) \
|
|
setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
|
|
|
|
|
|
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_A) \
|
|
| (cast(Instruction, b)<<POS_B) \
|
|
| (cast(Instruction, c)<<POS_C) \
|
|
| (cast(Instruction, k)<<POS_k))
|
|
|
|
#define CREATE_vABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_A) \
|
|
| (cast(Instruction, b)<<POS_vB) \
|
|
| (cast(Instruction, c)<<POS_vC) \
|
|
| (cast(Instruction, k)<<POS_k))
|
|
|
|
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_A) \
|
|
| (cast(Instruction, bc)<<POS_Bx))
|
|
|
|
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
|
|
| (cast(Instruction, a)<<POS_Ax))
|
|
|
|
#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
|
|
| (cast(Instruction, j) << POS_sJ) \
|
|
| (cast(Instruction, k) << POS_k))
|
|
|
|
|
|
#if !defined(MAXINDEXRK) /* (for debugging only) */
|
|
#define MAXINDEXRK MAXARG_B
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Maximum size for the stack of a Lua function. It must fit in 8 bits.
|
|
** The highest valid register is one less than this value.
|
|
*/
|
|
#define MAX_FSTACK MAXARG_A
|
|
|
|
/*
|
|
** Invalid register (one more than last valid register).
|
|
*/
|
|
#define NO_REG MAX_FSTACK
|
|
|
|
|
|
|
|
/*
|
|
** R[x] - register
|
|
** K[x] - constant (in constant table)
|
|
** RK(x) == if k(i) then K[x] else R[x]
|
|
*/
|
|
|
|
|
|
/*
|
|
** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*)
|
|
** has extra descriptions in the notes after the enumeration.
|
|
*/
|
|
|
|
typedef enum {
|
|
/*----------------------------------------------------------------------
|
|
name args description
|
|
------------------------------------------------------------------------*/
|
|
OP_MOVE,/* A B R[A] := R[B] */
|
|
OP_LOADI,/* A sBx R[A] := sBx */
|
|
OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */
|
|
OP_LOADK,/* A Bx R[A] := K[Bx] */
|
|
OP_LOADKX,/* A R[A] := K[extra arg] */
|
|
OP_LOADFALSE,/* A R[A] := false */
|
|
OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */
|
|
OP_LOADTRUE,/* A R[A] := true */
|
|
OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */
|
|
OP_GETUPVAL,/* A B R[A] := UpValue[B] */
|
|
OP_SETUPVAL,/* A B UpValue[B] := R[A] */
|
|
|
|
OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:shortstring] */
|
|
OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */
|
|
OP_GETI,/* A B C R[A] := R[B][C] */
|
|
OP_GETFIELD,/* A B C R[A] := R[B][K[C]:shortstring] */
|
|
|
|
OP_SETTABUP,/* A B C UpValue[A][K[B]:shortstring] := RK(C) */
|
|
OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */
|
|
OP_SETI,/* A B C R[A][B] := RK(C) */
|
|
OP_SETFIELD,/* A B C R[A][K[B]:shortstring] := RK(C) */
|
|
|
|
OP_NEWTABLE,/* A B C k R[A] := {} */
|
|
|
|
OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */
|
|
|
|
OP_ADDI,/* A B sC R[A] := R[B] + sC */
|
|
|
|
OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */
|
|
OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */
|
|
OP_MULK,/* A B C R[A] := R[B] * K[C]:number */
|
|
OP_MODK,/* A B C R[A] := R[B] % K[C]:number */
|
|
OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */
|
|
OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */
|
|
OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */
|
|
|
|
OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */
|
|
OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */
|
|
OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */
|
|
|
|
OP_SHRI,/* A B sC R[A] := R[B] >> sC */
|
|
OP_SHLI,/* A B sC R[A] := sC << R[B] */
|
|
|
|
OP_ADD,/* A B C R[A] := R[B] + R[C] */
|
|
OP_SUB,/* A B C R[A] := R[B] - R[C] */
|
|
OP_MUL,/* A B C R[A] := R[B] * R[C] */
|
|
OP_MOD,/* A B C R[A] := R[B] % R[C] */
|
|
OP_POW,/* A B C R[A] := R[B] ^ R[C] */
|
|
OP_DIV,/* A B C R[A] := R[B] / R[C] */
|
|
OP_IDIV,/* A B C R[A] := R[B] // R[C] */
|
|
|
|
OP_BAND,/* A B C R[A] := R[B] & R[C] */
|
|
OP_BOR,/* A B C R[A] := R[B] | R[C] */
|
|
OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */
|
|
OP_SHL,/* A B C R[A] := R[B] << R[C] */
|
|
OP_SHR,/* A B C R[A] := R[B] >> R[C] */
|
|
|
|
OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */
|
|
OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */
|
|
OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */
|
|
|
|
OP_UNM,/* A B R[A] := -R[B] */
|
|
OP_BNOT,/* A B R[A] := ~R[B] */
|
|
OP_NOT,/* A B R[A] := not R[B] */
|
|
OP_LEN,/* A B R[A] := #R[B] (length operator) */
|
|
|
|
OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */
|
|
|
|
OP_CLOSE,/* A close all upvalues >= R[A] */
|
|
OP_TBC,/* A mark variable A "to be closed" */
|
|
OP_JMP,/* sJ pc += sJ */
|
|
OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */
|
|
OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */
|
|
OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */
|
|
|
|
OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */
|
|
OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */
|
|
OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */
|
|
OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */
|
|
OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */
|
|
OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */
|
|
|
|
OP_TEST,/* A k if (not R[A] == k) then pc++ */
|
|
OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */
|
|
|
|
OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
|
|
OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */
|
|
|
|
OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */
|
|
OP_RETURN0,/* return */
|
|
OP_RETURN1,/* A return R[A] */
|
|
|
|
OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */
|
|
OP_FORPREP,/* A Bx <check values and prepare counters>;
|
|
if not to run then pc+=Bx+1; */
|
|
|
|
OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */
|
|
OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */
|
|
OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */
|
|
|
|
OP_SETLIST,/* A vB vC k R[A][vC+i] := R[A+i], 1 <= i <= vB */
|
|
|
|
OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */
|
|
|
|
OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */
|
|
|
|
OP_VARARGPREP,/*A (adjust vararg parameters) */
|
|
|
|
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
|
|
} OpCode;
|
|
|
|
|
|
#define NUM_OPCODES ((int)(OP_EXTRAARG) + 1)
|
|
|
|
|
|
|
|
/*===========================================================================
|
|
Notes:
|
|
|
|
(*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean
|
|
value, in a code equivalent to (not cond ? false : true). (It
|
|
produces false and skips the next instruction producing true.)
|
|
|
|
(*) Opcodes OP_MMBIN and variants follow each arithmetic and
|
|
bitwise opcode. If the operation succeeds, it skips this next
|
|
opcode. Otherwise, this opcode calls the corresponding metamethod.
|
|
|
|
(*) Opcode OP_TESTSET is used in short-circuit expressions that need
|
|
both to jump and to produce a value, such as (a = b or c).
|
|
|
|
(*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
|
|
'top' is set to last_result+1, so next open instruction (OP_CALL,
|
|
OP_RETURN*, OP_SETLIST) may use 'top'.
|
|
|
|
(*) In OP_VARARG, if (C == 0) then use actual number of varargs and
|
|
set top (like in OP_CALL with C == 0).
|
|
|
|
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
|
|
|
|
(*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
|
|
OP_EXTRAARG.
|
|
|
|
(*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
|
|
real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
|
|
bits of C).
|
|
|
|
(*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
|
|
power of 2) plus 1, or zero for size zero. If not k, the array size
|
|
is C. Otherwise, the array size is EXTRAARG _ C.
|
|
|
|
(*) For comparisons, k specifies what condition the test should accept
|
|
(true or false).
|
|
|
|
(*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
|
|
(the constant is the first operand).
|
|
|
|
(*) All 'skips' (pc++) assume that next instruction is a jump.
|
|
|
|
(*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
|
|
function builds upvalues, which may need to be closed. C > 0 means
|
|
the function is vararg, so that its 'func' must be corrected before
|
|
returning; in this case, (C - 1) is its number of fixed parameters.
|
|
|
|
(*) In comparisons with an immediate operand, C signals whether the
|
|
original operand was a float. (It must be corrected in case of
|
|
metamethods.)
|
|
|
|
===========================================================================*/
|
|
|
|
|
|
/*
|
|
** masks for instruction properties. The format is:
|
|
** bits 0-2: op mode
|
|
** bit 3: instruction set register A
|
|
** bit 4: operator is a test (next instruction must be a jump)
|
|
** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
|
|
** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
|
|
** bit 7: instruction is an MM instruction (call a metamethod)
|
|
*/
|
|
|
|
LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
|
|
|
|
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
|
|
#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
|
|
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
|
|
#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
|
|
#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
|
|
#define testMMMode(m) (luaP_opmodes[m] & (1 << 7))
|
|
|
|
|
|
LUAI_FUNC int luaP_isOT (Instruction i);
|
|
LUAI_FUNC int luaP_isIT (Instruction i);
|
|
|
|
|
|
#endif
|