lua/lopcodes.h
Roberto Ierusalimschy 4cd1f4aac0 Towards "to closed" local variables
Start of the implementation of "scoped variables" or "to be closed"
variables, local variables whose '__close' (or themselves) are called
when they go out of scope. This commit implements the syntax, the
opcode, and the creation of the corresponding upvalue, but it still
does not call the finalizations when the variable goes out of scope
(the most important part).

Currently, the syntax is 'local scoped name = exp', but that will
probably change.
2018-10-08 10:42:07 -03:00

367 lines
12 KiB
C

/*
** $Id: lopcodes.h $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/
#ifndef lopcodes_h
#define lopcodes_h
#include "llimits.h"
/*===========================================================================
We assume that instructions are unsigned 32-bit integers.
All instructions have an opcode in the first 7 bits.
Instructions can have the following formats:
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
iABC C(8) | B(8) |k| A(8) | Op(7) |
iABx Bx(17) | A(8) | Op(7) |
iAsB sBx (signed)(17) | A(8) | Op(7) |
iAx Ax(25) | Op(7) |
isJ sJ(24) |m| Op(7) |
A signed argument is represented in excess K: the represented value is
the written unsigned value minus K, where K is half the maximum for the
corresponding unsigned argument.
===========================================================================*/
enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */
/*
** size and position of opcode arguments.
*/
#define SIZE_C 8
#define SIZE_B 8
#define SIZE_Bx (SIZE_C + SIZE_B + 1)
#define SIZE_A 8
#define SIZE_Ax (SIZE_Bx + SIZE_A)
#define SIZE_sJ (SIZE_Bx + SIZE_A - 1)
#define SIZE_OP 7
#define POS_OP 0
#define POS_A (POS_OP + SIZE_OP)
#define POS_k (POS_A + SIZE_A)
#define POS_B (POS_k + 1)
#define POS_C (POS_B + SIZE_B)
#define POS_Bx POS_k
#define POS_Ax POS_A
#define POS_m POS_A
#define POS_sJ (POS_A + 1)
/*
** limits for opcode arguments.
** we use (signed) int to manipulate most arguments,
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
*/
#if SIZE_Bx < LUAI_BITSINT-1
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
#else
#define MAXARG_Bx MAX_INT
#endif
#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
#if SIZE_Ax < LUAI_BITSINT-1
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
#else
#define MAXARG_Ax MAX_INT
#endif
#if SIZE_sJ < LUAI_BITSINT-1
#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
#else
#define MAXARG_sJ MAX_INT
#endif
#define OFFSET_sJ (MAXARG_sJ >> 1)
#define MAXARG_A ((1<<SIZE_A)-1)
#define MAXARG_B ((1<<SIZE_B)-1)
#define MAXARG_C ((1<<SIZE_C)-1)
#define OFFSET_sC (MAXARG_C >> 1)
#define MAXARG_Cx ((1<<(SIZE_C + 1))-1)
/* creates a mask with 'n' 1 bits at position 'p' */
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
/* creates a mask with 'n' 0 bits at position 'p' */
#define MASK0(n,p) (~MASK1(n,p))
/*
** the following macros help to manipulate instructions
*/
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
#define GETARG_sB(i) (GETARG_B(i) - OFFSET_sC)
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
#define GETARG_sC(i) (GETARG_C(i) - OFFSET_sC)
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
#define TESTARG_k(i) (cast_int(((i) & (1u << POS_k))))
#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
#define GETARG_sBx(i) \
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
#define GETARG_sJ(i) \
check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
#define SETARG_sJ(i,j) \
setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
#define GETARG_m(i) check_exp(checkopm(i, isJ), getarg(i, POS_m, 1))
#define SETARG_m(i,m) setarg(i, m, POS_m, 1)
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, b)<<POS_B) \
| (cast(Instruction, c)<<POS_C) \
| (cast(Instruction, k)<<POS_k))
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, bc)<<POS_Bx))
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_Ax))
#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
| (cast(Instruction, j) << POS_sJ) \
| (cast(Instruction, k) << POS_k))
#if !defined(MAXINDEXRK) /* (for debugging only) */
#define MAXINDEXRK MAXARG_B
#endif
/*
** invalid register that fits in 8 bits
*/
#define NO_REG MAXARG_A
/*
** R(x) - register
** K(x) - constant (in constant table)
** RK(x) == if k(i) then K(x) else R(x)
*/
/*
** grep "ORDER OP" if you change these enums
*/
typedef enum {
/*----------------------------------------------------------------------
name args description
------------------------------------------------------------------------*/
OP_MOVE,/* A B R(A) := R(B) */
OP_LOADI,/* A sBx R(A) := sBx */
OP_LOADF,/* A sBx R(A) := (lua_Number)sBx */
OP_LOADK,/* A Bx R(A) := K(Bx) */
OP_LOADKX,/* A R(A) := K(extra arg) */
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
OP_GETTABUP,/* A B C R(A) := UpValue[B][K(C):string] */
OP_GETTABLE,/* A B C R(A) := R(B)[R(C)] */
OP_GETI,/* A B C R(A) := R(B)[C] */
OP_GETFIELD,/* A B C R(A) := R(B)[K(C):string] */
OP_SETTABUP,/* A B C UpValue[A][K(B):string] := RK(C) */
OP_SETTABLE,/* A B C R(A)[R(B)] := RK(C) */
OP_SETI,/* A B C R(A)[B] := RK(C) */
OP_SETFIELD,/* A B C R(A)[K(B):string] := RK(C) */
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C):string] */
OP_ADDI,/* A B sC R(A) := R(B) + C */
OP_SUBI,/* A B sC R(A) := R(B) - C */
OP_MULI,/* A B sC R(A) := R(B) * C */
OP_MODI,/* A B sC R(A) := R(B) % C */
OP_POWI,/* A B sC R(A) := R(B) ^ C */
OP_DIVI,/* A B sC R(A) := R(B) / C */
OP_IDIVI,/* A B sC R(A) := R(B) // C */
OP_BANDK,/* A B C R(A) := R(B) & K(C):integer */
OP_BORK,/* A B C R(A) := R(B) | K(C):integer */
OP_BXORK,/* A B C R(A) := R(B) ~ K(C):integer */
OP_SHRI,/* A B C R(A) := R(B) >> C */
OP_SHLI,/* A B C R(A) := C << R(B) */
OP_ADD,/* A B C R(A) := R(B) + R(C) */
OP_SUB,/* A B C R(A) := R(B) - R(C) */
OP_MUL,/* A B C R(A) := R(B) * R(C) */
OP_MOD,/* A B C R(A) := R(B) % R(C) */
OP_POW,/* A B C R(A) := R(B) ^ R(C) */
OP_DIV,/* A B C R(A) := R(B) / R(C) */
OP_IDIV,/* A B C R(A) := R(B) // R(C) */
OP_BAND,/* A B C R(A) := R(B) & R(C) */
OP_BOR,/* A B C R(A) := R(B) | R(C) */
OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */
OP_SHL,/* A B C R(A) := R(B) << R(C) */
OP_SHR,/* A B C R(A) := R(B) >> R(C) */
OP_UNM,/* A B R(A) := -R(B) */
OP_BNOT,/* A B R(A) := ~R(B) */
OP_NOT,/* A B R(A) := not R(B) */
OP_LEN,/* A B R(A) := length of R(B) */
OP_CONCAT,/* A B R(A) := R(A).. ... ..R(A + B - 1) */
OP_CLOSE,/* A close all upvalues >= R(A) */
OP_TBC,/* A mark variable A "to be closed" */
OP_JMP,/* k sJ pc += sJ (k is used in code generation) */
OP_EQ,/* A B if ((R(A) == R(B)) ~= k) then pc++ */
OP_LT,/* A B if ((R(A) < R(B)) ~= k) then pc++ */
OP_LE,/* A B if ((R(A) <= R(B)) ~= k) then pc++ */
OP_EQK,/* A B if ((R(A) == K(B)) ~= k) then pc++ */
OP_EQI,/* A sB if ((R(A) == sB) ~= k) then pc++ */
OP_LTI,/* A sB if ((R(A) < sB) ~= k) then pc++ */
OP_LEI,/* A sB if ((R(A) <= sB) ~= k) then pc++ */
OP_GTI,/* A sB if ((R(A) > sB) ~= k) then pc++ */
OP_GEI,/* A sB if ((R(A) >= sB) ~= k) then pc++ */
OP_TEST,/* A if (not R(A) == k) then pc++ */
OP_TESTSET,/* A B if (not R(B) == k) then R(A) := R(B) else pc++ */
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
OP_RETURN,/* A B C return R(A), ... ,R(A+B-2) (see note) */
OP_RETURN0,/* return */
OP_RETURN1,/* A return R(A) */
OP_FORLOOP1,/* A Bx R(A)++;
if R(A) <= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
OP_FORPREP1,/* A Bx R(A)--; pc+=Bx */
OP_FORLOOP,/* A Bx R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */
OP_FORPREP,/* A Bx R(A)-=R(A+2); pc+=Bx */
OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
OP_TFORLOOP,/* A Bx if R(A+1) ~= nil then { R(A)=R(A+1); pc -= Bx } */
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
OP_VARARG,/* A C R(A), R(A+1), ..., R(A+C-2) = vararg */
OP_PREPVARARG,/*A (adjust vararg parameters) */
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
} OpCode;
#define NUM_OPCODES (cast_int(OP_EXTRAARG) + 1)
/*===========================================================================
Notes:
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN*,
OP_SETLIST) may use 'top'.
(*) In OP_VARARG, if (C == 0) then use actual number of varargs and
set top (like in OP_CALL with C == 0).
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
(*) In OP_SETLIST, if (B == 0) then real B = 'top'; if (C == 0) then
next 'instruction' is EXTRAARG(real C).
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
(*) For comparisons, k specifies what condition the test should accept
(true or false).
(*) All 'skips' (pc++) assume that next instruction is a jump.
(*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
function either builds upvalues, which may need to be closed, or is
vararg, which must be corrected before returning. When 'k' is true,
C > 0 means the function is vararg and (C - 1) is its number of
fixed parameters.
===========================================================================*/
/*
** masks for instruction properties. The format is:
** bits 0-2: op mode
** bit 3: instruction set register A
** bit 4: operator is a test (next instruction must be a jump)
** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
*/
LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
/* "out top" (set top for next instruction) */
#define isOT(i) \
((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
GET_OPCODE(i) == OP_TAILCALL)
/* "in top" (uses top from previous instruction) */
#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
#define opmode(ot,it,t,a,m) (((ot)<<6) | ((it)<<5) | ((t)<<4) | ((a)<<3) | (m))
/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH 50
#endif