mirror of
https://github.com/lua/lua
synced 2025-01-19 15:49:17 +03:00
e8c779736f
The mechanism of "caching the last closure created for a prototype to try to reuse it the next time a closure for that prototype is created" was removed. There are several reasons: - It is hard to find a natural example where this cache has a measurable impact on performance. - Programmers already perceive closure creation as something slow, so they tend to avoid it inside hot paths. (Any case where the cache could reuse a closure can be rewritten predefining the closure in some variable and using that variable.) - The implementation was somewhat complex, due to a bad interaction with the generational collector. (Typically, new closures are new, while prototypes are old. So, the cache breaks the invariant that old objects should not point to new ones.)
1545 lines
47 KiB
C
1545 lines
47 KiB
C
/*
|
|
** $Id: lgc.c $
|
|
** Garbage Collector
|
|
** See Copyright Notice in lua.h
|
|
*/
|
|
|
|
#define lgc_c
|
|
#define LUA_CORE
|
|
|
|
#include "lprefix.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
|
|
#include "lua.h"
|
|
|
|
#include "ldebug.h"
|
|
#include "ldo.h"
|
|
#include "lfunc.h"
|
|
#include "lgc.h"
|
|
#include "lmem.h"
|
|
#include "lobject.h"
|
|
#include "lstate.h"
|
|
#include "lstring.h"
|
|
#include "ltable.h"
|
|
#include "ltm.h"
|
|
|
|
|
|
/*
|
|
** Maximum number of elements to sweep in each single step.
|
|
** (Large enough to dissipate fixed overheads but small enough
|
|
** to allow small steps for the collector.)
|
|
*/
|
|
#define GCSWEEPMAX 100
|
|
|
|
/*
|
|
** Maximum number of finalizers to call in each single step.
|
|
*/
|
|
#define GCFINMAX 10
|
|
|
|
|
|
/*
|
|
** Cost of calling one finalizer.
|
|
*/
|
|
#define GCFINALIZECOST 50
|
|
|
|
|
|
/*
|
|
** The equivalent, in bytes, of one unit of "work" (visiting a slot,
|
|
** sweeping an object, etc.)
|
|
*/
|
|
#define WORK2MEM sizeof(TValue)
|
|
|
|
|
|
/*
|
|
** macro to adjust 'pause': 'pause' is actually used like
|
|
** 'pause / PAUSEADJ' (value chosen by tests)
|
|
*/
|
|
#define PAUSEADJ 100
|
|
|
|
|
|
/* mask to erase all color bits (plus gen. related stuff) */
|
|
#define maskcolors (~(bitmask(BLACKBIT) | WHITEBITS | AGEBITS))
|
|
|
|
|
|
/* macro to erase all color bits then sets only the current white bit */
|
|
#define makewhite(g,x) \
|
|
(x->marked = cast_byte((x->marked & maskcolors) | luaC_white(g)))
|
|
|
|
#define white2gray(x) resetbits(x->marked, WHITEBITS)
|
|
#define black2gray(x) resetbit(x->marked, BLACKBIT)
|
|
|
|
|
|
#define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
|
|
|
|
#define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
|
|
|
|
|
|
#define checkconsistency(obj) \
|
|
lua_longassert(!iscollectable(obj) || righttt(obj))
|
|
|
|
/*
|
|
** Protected access to objects in values
|
|
*/
|
|
#define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
|
|
|
|
|
|
#define markvalue(g,o) { checkconsistency(o); \
|
|
if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
|
|
|
|
#define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
|
|
|
|
#define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
|
|
|
|
/*
|
|
** mark an object that can be NULL (either because it is really optional,
|
|
** or it was stripped as debug info, or inside an uncompleted structure)
|
|
*/
|
|
#define markobjectN(g,t) { if (t) markobject(g,t); }
|
|
|
|
static void reallymarkobject (global_State *g, GCObject *o);
|
|
static lu_mem atomic (lua_State *L);
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Generic functions
|
|
** =======================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** one after last element in a hash array
|
|
*/
|
|
#define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
|
|
|
|
|
|
static GCObject **getgclist (GCObject *o) {
|
|
switch (o->tt) {
|
|
case LUA_TTABLE: return &gco2t(o)->gclist;
|
|
case LUA_TLCL: return &gco2lcl(o)->gclist;
|
|
case LUA_TCCL: return &gco2ccl(o)->gclist;
|
|
case LUA_TTHREAD: return &gco2th(o)->gclist;
|
|
case LUA_TPROTO: return &gco2p(o)->gclist;
|
|
case LUA_TUSERDATA: {
|
|
Udata *u = gco2u(o);
|
|
lua_assert(u->nuvalue > 0);
|
|
return &u->gclist;
|
|
}
|
|
default: lua_assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Link a collectable object 'o' with a known type into list pointed by 'p'.
|
|
*/
|
|
#define linkgclist(o,p) ((o)->gclist = (p), (p) = obj2gco(o))
|
|
|
|
|
|
/*
|
|
** Link a generic collectable object 'o' into list pointed by 'p'.
|
|
*/
|
|
#define linkobjgclist(o,p) (*getgclist(o) = (p), (p) = obj2gco(o))
|
|
|
|
|
|
|
|
/*
|
|
** Clear keys for empty entries in tables. If entry is empty
|
|
** and its key is not marked, mark its entry as dead. This allows the
|
|
** collection of the key, but keeps its entry in the table (its removal
|
|
** could break a chain). The main feature of a dead key is that it must
|
|
** be different from any other value, to do not disturb searches.
|
|
** Other places never manipulate dead keys, because its associated empty
|
|
** value is enough to signal that the entry is logically empty.
|
|
*/
|
|
static void clearkey (Node *n) {
|
|
lua_assert(isempty(gval(n)));
|
|
if (keyiswhite(n))
|
|
setdeadkey(n); /* unused and unmarked key; remove it */
|
|
}
|
|
|
|
|
|
/*
|
|
** tells whether a key or value can be cleared from a weak
|
|
** table. Non-collectable objects are never removed from weak
|
|
** tables. Strings behave as 'values', so are never removed too. for
|
|
** other objects: if really collected, cannot keep them; for objects
|
|
** being finalized, keep them in keys, but not in values
|
|
*/
|
|
static int iscleared (global_State *g, const GCObject *o) {
|
|
if (o == NULL) return 0; /* non-collectable value */
|
|
else if (novariant(o->tt) == LUA_TSTRING) {
|
|
markobject(g, o); /* strings are 'values', so are never weak */
|
|
return 0;
|
|
}
|
|
else return iswhite(o);
|
|
}
|
|
|
|
|
|
/*
|
|
** barrier that moves collector forward, that is, mark the white object
|
|
** 'v' being pointed by the black object 'o'. (If in sweep phase, clear
|
|
** the black object to white [sweep it] to avoid other barrier calls for
|
|
** this same object.) In the generational mode, 'v' must also become
|
|
** old, if 'o' is old; however, it cannot be changed directly to OLD,
|
|
** because it may still point to non-old objects. So, it is marked as
|
|
** OLD0. In the next cycle it will become OLD1, and in the next it
|
|
** will finally become OLD (regular old).
|
|
*/
|
|
void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
|
|
global_State *g = G(L);
|
|
lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
|
|
if (keepinvariant(g)) { /* must keep invariant? */
|
|
reallymarkobject(g, v); /* restore invariant */
|
|
if (isold(o)) {
|
|
lua_assert(!isold(v)); /* white object could not be old */
|
|
setage(v, G_OLD0); /* restore generational invariant */
|
|
}
|
|
}
|
|
else { /* sweep phase */
|
|
lua_assert(issweepphase(g));
|
|
makewhite(g, o); /* mark main obj. as white to avoid other barriers */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** barrier that moves collector backward, that is, mark the black object
|
|
** pointing to a white object as gray again.
|
|
*/
|
|
void luaC_barrierback_ (lua_State *L, GCObject *o) {
|
|
global_State *g = G(L);
|
|
lua_assert(isblack(o) && !isdead(g, o));
|
|
lua_assert(g->gckind != KGC_GEN || (isold(o) && getage(o) != G_TOUCHED1));
|
|
if (getage(o) != G_TOUCHED2) /* not already in gray list? */
|
|
linkobjgclist(o, g->grayagain); /* link it in 'grayagain' */
|
|
black2gray(o); /* make object gray (again) */
|
|
setage(o, G_TOUCHED1); /* touched in current cycle */
|
|
}
|
|
|
|
|
|
void luaC_fix (lua_State *L, GCObject *o) {
|
|
global_State *g = G(L);
|
|
lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
|
|
white2gray(o); /* they will be gray forever */
|
|
setage(o, G_OLD); /* and old forever */
|
|
g->allgc = o->next; /* remove object from 'allgc' list */
|
|
o->next = g->fixedgc; /* link it to 'fixedgc' list */
|
|
g->fixedgc = o;
|
|
}
|
|
|
|
|
|
/*
|
|
** create a new collectable object (with given type and size) and link
|
|
** it to 'allgc' list.
|
|
*/
|
|
GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
|
|
global_State *g = G(L);
|
|
GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz));
|
|
o->marked = luaC_white(g);
|
|
o->tt = tt;
|
|
o->next = g->allgc;
|
|
g->allgc = o;
|
|
return o;
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Mark functions
|
|
** =======================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** Mark an object. Userdata, strings, and closed upvalues are visited
|
|
** and turned black here. Other objects are marked gray and added
|
|
** to appropriate list to be visited (and turned black) later. (Open
|
|
** upvalues are already linked in 'headuv' list. They are kept gray
|
|
** to avoid barriers, as their values will be revisited by the thread.)
|
|
*/
|
|
static void reallymarkobject (global_State *g, GCObject *o) {
|
|
white2gray(o);
|
|
switch (o->tt) {
|
|
case LUA_TSHRSTR:
|
|
case LUA_TLNGSTR: {
|
|
gray2black(o);
|
|
break;
|
|
}
|
|
case LUA_TUPVAL:
|
|
case LUA_TUPVALTBC: {
|
|
UpVal *uv = gco2upv(o);
|
|
if (!upisopen(uv)) /* open upvalues are kept gray */
|
|
gray2black(o);
|
|
markvalue(g, uv->v); /* mark its content */
|
|
break;
|
|
}
|
|
case LUA_TUSERDATA: {
|
|
Udata *u = gco2u(o);
|
|
if (u->nuvalue == 0) { /* no user values? */
|
|
markobjectN(g, u->metatable); /* mark its metatable */
|
|
gray2black(o); /* nothing else to mark */
|
|
break;
|
|
}
|
|
/* else... */
|
|
} /* FALLTHROUGH */
|
|
case LUA_TLCL: case LUA_TCCL: case LUA_TTABLE:
|
|
case LUA_TTHREAD: case LUA_TPROTO: {
|
|
linkobjgclist(o, g->gray);
|
|
break;
|
|
}
|
|
default: lua_assert(0); break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** mark metamethods for basic types
|
|
*/
|
|
static void markmt (global_State *g) {
|
|
int i;
|
|
for (i=0; i < LUA_NUMTAGS; i++)
|
|
markobjectN(g, g->mt[i]);
|
|
}
|
|
|
|
|
|
/*
|
|
** mark all objects in list of being-finalized
|
|
*/
|
|
static lu_mem markbeingfnz (global_State *g) {
|
|
GCObject *o;
|
|
lu_mem count = 0;
|
|
for (o = g->tobefnz; o != NULL; o = o->next) {
|
|
count++;
|
|
markobject(g, o);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
/*
|
|
** Mark all values stored in marked open upvalues from non-marked threads.
|
|
** (Values from marked threads were already marked when traversing the
|
|
** thread.) Remove from the list threads that no longer have upvalues and
|
|
** not-marked threads.
|
|
*/
|
|
static int remarkupvals (global_State *g) {
|
|
lua_State *thread;
|
|
lua_State **p = &g->twups;
|
|
int work = 0;
|
|
while ((thread = *p) != NULL) {
|
|
work++;
|
|
lua_assert(!isblack(thread)); /* threads are never black */
|
|
if (isgray(thread) && thread->openupval != NULL)
|
|
p = &thread->twups; /* keep marked thread with upvalues in the list */
|
|
else { /* thread is not marked or without upvalues */
|
|
UpVal *uv;
|
|
*p = thread->twups; /* remove thread from the list */
|
|
thread->twups = thread; /* mark that it is out of list */
|
|
for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
|
|
work++;
|
|
if (!iswhite(uv)) /* upvalue already visited? */
|
|
markvalue(g, uv->v); /* mark its value */
|
|
}
|
|
}
|
|
}
|
|
return work;
|
|
}
|
|
|
|
|
|
/*
|
|
** mark root set and reset all gray lists, to start a new collection
|
|
*/
|
|
static void restartcollection (global_State *g) {
|
|
g->gray = g->grayagain = NULL;
|
|
g->weak = g->allweak = g->ephemeron = NULL;
|
|
markobject(g, g->mainthread);
|
|
markvalue(g, &g->l_registry);
|
|
markmt(g);
|
|
markbeingfnz(g); /* mark any finalizing object left from previous cycle */
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Traverse functions
|
|
** =======================================================
|
|
*/
|
|
|
|
/*
|
|
** Traverse a table with weak values and link it to proper list. During
|
|
** propagate phase, keep it in 'grayagain' list, to be revisited in the
|
|
** atomic phase. In the atomic phase, if table has any white value,
|
|
** put it in 'weak' list, to be cleared.
|
|
*/
|
|
static void traverseweakvalue (global_State *g, Table *h) {
|
|
Node *n, *limit = gnodelast(h);
|
|
/* if there is array part, assume it may have white values (it is not
|
|
worth traversing it now just to check) */
|
|
int hasclears = (h->alimit > 0);
|
|
for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
|
|
if (isempty(gval(n))) /* entry is empty? */
|
|
clearkey(n); /* clear its key */
|
|
else {
|
|
lua_assert(!keyisnil(n));
|
|
markkey(g, n);
|
|
if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
|
|
hasclears = 1; /* table will have to be cleared */
|
|
}
|
|
}
|
|
if (g->gcstate == GCSatomic && hasclears)
|
|
linkgclist(h, g->weak); /* has to be cleared later */
|
|
else
|
|
linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
|
|
}
|
|
|
|
|
|
/*
|
|
** Traverse an ephemeron table and link it to proper list. Returns true
|
|
** iff any object was marked during this traversal (which implies that
|
|
** convergence has to continue). During propagation phase, keep table
|
|
** in 'grayagain' list, to be visited again in the atomic phase. In
|
|
** the atomic phase, if table has any white->white entry, it has to
|
|
** be revisited during ephemeron convergence (as that key may turn
|
|
** black). Otherwise, if it has any white key, table has to be cleared
|
|
** (in the atomic phase). In generational mode, it (like all visited
|
|
** tables) must be kept in some gray list for post-processing.
|
|
*/
|
|
static int traverseephemeron (global_State *g, Table *h) {
|
|
int marked = 0; /* true if an object is marked in this traversal */
|
|
int hasclears = 0; /* true if table has white keys */
|
|
int hasww = 0; /* true if table has entry "white-key -> white-value" */
|
|
Node *n, *limit = gnodelast(h);
|
|
unsigned int i;
|
|
unsigned int asize = luaH_realasize(h);
|
|
/* traverse array part */
|
|
for (i = 0; i < asize; i++) {
|
|
if (valiswhite(&h->array[i])) {
|
|
marked = 1;
|
|
reallymarkobject(g, gcvalue(&h->array[i]));
|
|
}
|
|
}
|
|
/* traverse hash part */
|
|
for (n = gnode(h, 0); n < limit; n++) {
|
|
if (isempty(gval(n))) /* entry is empty? */
|
|
clearkey(n); /* clear its key */
|
|
else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
|
|
hasclears = 1; /* table must be cleared */
|
|
if (valiswhite(gval(n))) /* value not marked yet? */
|
|
hasww = 1; /* white-white entry */
|
|
}
|
|
else if (valiswhite(gval(n))) { /* value not marked yet? */
|
|
marked = 1;
|
|
reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
|
|
}
|
|
}
|
|
/* link table into proper list */
|
|
if (g->gcstate == GCSpropagate)
|
|
linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
|
|
else if (hasww) /* table has white->white entries? */
|
|
linkgclist(h, g->ephemeron); /* have to propagate again */
|
|
else if (hasclears) /* table has white keys? */
|
|
linkgclist(h, g->allweak); /* may have to clean white keys */
|
|
else if (g->gckind == KGC_GEN)
|
|
linkgclist(h, g->grayagain); /* keep it in some list */
|
|
else
|
|
gray2black(h);
|
|
return marked;
|
|
}
|
|
|
|
|
|
static void traversestrongtable (global_State *g, Table *h) {
|
|
Node *n, *limit = gnodelast(h);
|
|
unsigned int i;
|
|
unsigned int asize = luaH_realasize(h);
|
|
for (i = 0; i < asize; i++) /* traverse array part */
|
|
markvalue(g, &h->array[i]);
|
|
for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
|
|
if (isempty(gval(n))) /* entry is empty? */
|
|
clearkey(n); /* clear its key */
|
|
else {
|
|
lua_assert(!keyisnil(n));
|
|
markkey(g, n);
|
|
markvalue(g, gval(n));
|
|
}
|
|
}
|
|
if (g->gckind == KGC_GEN) {
|
|
linkgclist(h, g->grayagain); /* keep it in some gray list */
|
|
black2gray(h);
|
|
}
|
|
}
|
|
|
|
|
|
static lu_mem traversetable (global_State *g, Table *h) {
|
|
const char *weakkey, *weakvalue;
|
|
const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
|
|
markobjectN(g, h->metatable);
|
|
if (mode && ttisstring(mode) && /* is there a weak mode? */
|
|
((weakkey = strchr(svalue(mode), 'k')),
|
|
(weakvalue = strchr(svalue(mode), 'v')),
|
|
(weakkey || weakvalue))) { /* is really weak? */
|
|
black2gray(h); /* keep table gray */
|
|
if (!weakkey) /* strong keys? */
|
|
traverseweakvalue(g, h);
|
|
else if (!weakvalue) /* strong values? */
|
|
traverseephemeron(g, h);
|
|
else /* all weak */
|
|
linkgclist(h, g->allweak); /* nothing to traverse now */
|
|
}
|
|
else /* not weak */
|
|
traversestrongtable(g, h);
|
|
return 1 + h->alimit + 2 * allocsizenode(h);
|
|
}
|
|
|
|
|
|
static int traverseudata (global_State *g, Udata *u) {
|
|
int i;
|
|
markobjectN(g, u->metatable); /* mark its metatable */
|
|
for (i = 0; i < u->nuvalue; i++)
|
|
markvalue(g, &u->uv[i].uv);
|
|
if (g->gckind == KGC_GEN) {
|
|
linkgclist(u, g->grayagain); /* keep it in some gray list */
|
|
black2gray(u);
|
|
}
|
|
return 1 + u->nuvalue;
|
|
}
|
|
|
|
|
|
/*
|
|
** Traverse a prototype. (While a prototype is being build, its
|
|
** arrays can be larger than needed; the extra slots are filled with
|
|
** NULL, so the use of 'markobjectN')
|
|
*/
|
|
static int traverseproto (global_State *g, Proto *f) {
|
|
int i;
|
|
markobjectN(g, f->source);
|
|
for (i = 0; i < f->sizek; i++) /* mark literals */
|
|
markvalue(g, &f->k[i]);
|
|
for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
|
|
markobjectN(g, f->upvalues[i].name);
|
|
for (i = 0; i < f->sizep; i++) /* mark nested protos */
|
|
markobjectN(g, f->p[i]);
|
|
for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
|
|
markobjectN(g, f->locvars[i].varname);
|
|
return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
|
|
}
|
|
|
|
|
|
static int traverseCclosure (global_State *g, CClosure *cl) {
|
|
int i;
|
|
for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
|
|
markvalue(g, &cl->upvalue[i]);
|
|
return 1 + cl->nupvalues;
|
|
}
|
|
|
|
/*
|
|
** Traverse a Lua closure, marking its prototype and its upvalues.
|
|
** (Both can be NULL while closure is being created.)
|
|
*/
|
|
static int traverseLclosure (global_State *g, LClosure *cl) {
|
|
int i;
|
|
markobjectN(g, cl->p); /* mark its prototype */
|
|
for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
|
|
UpVal *uv = cl->upvals[i];
|
|
markobjectN(g, uv); /* mark upvalue */
|
|
}
|
|
return 1 + cl->nupvalues;
|
|
}
|
|
|
|
|
|
/*
|
|
** Traverse a thread, marking the elements in the stack up to its top
|
|
** and cleaning the rest of the stack in the final traversal.
|
|
** That ensures that the entire stack have valid (non-dead) objects.
|
|
*/
|
|
static int traversethread (global_State *g, lua_State *th) {
|
|
UpVal *uv;
|
|
StkId o = th->stack;
|
|
if (o == NULL)
|
|
return 1; /* stack not completely built yet */
|
|
lua_assert(g->gcstate == GCSatomic ||
|
|
th->openupval == NULL || isintwups(th));
|
|
for (; o < th->top; o++) /* mark live elements in the stack */
|
|
markvalue(g, s2v(o));
|
|
for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) {
|
|
if (uv->tt == LUA_TUPVALTBC) /* to be closed? */
|
|
markobject(g, uv); /* cannot be collected */
|
|
}
|
|
if (g->gcstate == GCSatomic) { /* final traversal? */
|
|
StkId lim = th->stack + th->stacksize; /* real end of stack */
|
|
for (; o < lim; o++) /* clear not-marked stack slice */
|
|
setnilvalue(s2v(o));
|
|
/* 'remarkupvals' may have removed thread from 'twups' list */
|
|
if (!isintwups(th) && th->openupval != NULL) {
|
|
th->twups = g->twups; /* link it back to the list */
|
|
g->twups = th;
|
|
}
|
|
}
|
|
else if (!g->gcemergency)
|
|
luaD_shrinkstack(th); /* do not change stack in emergency cycle */
|
|
return 1 + th->stacksize;
|
|
}
|
|
|
|
|
|
/*
|
|
** traverse one gray object, turning it to black (except for threads,
|
|
** which are always gray).
|
|
*/
|
|
static lu_mem propagatemark (global_State *g) {
|
|
GCObject *o = g->gray;
|
|
gray2black(o);
|
|
g->gray = *getgclist(o); /* remove from 'gray' list */
|
|
switch (o->tt) {
|
|
case LUA_TTABLE: return traversetable(g, gco2t(o));
|
|
case LUA_TUSERDATA: return traverseudata(g, gco2u(o));
|
|
case LUA_TLCL: return traverseLclosure(g, gco2lcl(o));
|
|
case LUA_TCCL: return traverseCclosure(g, gco2ccl(o));
|
|
case LUA_TPROTO: return traverseproto(g, gco2p(o));
|
|
case LUA_TTHREAD: {
|
|
lua_State *th = gco2th(o);
|
|
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
|
|
black2gray(o);
|
|
return traversethread(g, th);
|
|
}
|
|
default: lua_assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
static lu_mem propagateall (global_State *g) {
|
|
lu_mem tot = 0;
|
|
while (g->gray)
|
|
tot += propagatemark(g);
|
|
return tot;
|
|
}
|
|
|
|
|
|
static void convergeephemerons (global_State *g) {
|
|
int changed;
|
|
do {
|
|
GCObject *w;
|
|
GCObject *next = g->ephemeron; /* get ephemeron list */
|
|
g->ephemeron = NULL; /* tables may return to this list when traversed */
|
|
changed = 0;
|
|
while ((w = next) != NULL) {
|
|
next = gco2t(w)->gclist;
|
|
if (traverseephemeron(g, gco2t(w))) { /* traverse marked some value? */
|
|
propagateall(g); /* propagate changes */
|
|
changed = 1; /* will have to revisit all ephemeron tables */
|
|
}
|
|
}
|
|
} while (changed);
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Sweep Functions
|
|
** =======================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** clear entries with unmarked keys from all weaktables in list 'l'
|
|
*/
|
|
static void clearbykeys (global_State *g, GCObject *l) {
|
|
for (; l; l = gco2t(l)->gclist) {
|
|
Table *h = gco2t(l);
|
|
Node *limit = gnodelast(h);
|
|
Node *n;
|
|
for (n = gnode(h, 0); n < limit; n++) {
|
|
if (iscleared(g, gckeyN(n))) /* unmarked key? */
|
|
setempty(gval(n)); /* remove entry */
|
|
if (isempty(gval(n))) /* is entry empty? */
|
|
clearkey(n); /* clear its key */
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** clear entries with unmarked values from all weaktables in list 'l' up
|
|
** to element 'f'
|
|
*/
|
|
static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
|
|
for (; l != f; l = gco2t(l)->gclist) {
|
|
Table *h = gco2t(l);
|
|
Node *n, *limit = gnodelast(h);
|
|
unsigned int i;
|
|
unsigned int asize = luaH_realasize(h);
|
|
for (i = 0; i < asize; i++) {
|
|
TValue *o = &h->array[i];
|
|
if (iscleared(g, gcvalueN(o))) /* value was collected? */
|
|
setempty(o); /* remove entry */
|
|
}
|
|
for (n = gnode(h, 0); n < limit; n++) {
|
|
if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
|
|
setempty(gval(n)); /* remove entry */
|
|
if (isempty(gval(n))) /* is entry empty? */
|
|
clearkey(n); /* clear its key */
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void freeupval (lua_State *L, UpVal *uv) {
|
|
if (upisopen(uv))
|
|
luaF_unlinkupval(uv);
|
|
luaM_free(L, uv);
|
|
}
|
|
|
|
|
|
static void freeobj (lua_State *L, GCObject *o) {
|
|
switch (o->tt) {
|
|
case LUA_TPROTO:
|
|
luaF_freeproto(L, gco2p(o));
|
|
break;
|
|
case LUA_TUPVAL:
|
|
case LUA_TUPVALTBC:
|
|
freeupval(L, gco2upv(o));
|
|
break;
|
|
case LUA_TLCL:
|
|
luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues));
|
|
break;
|
|
case LUA_TCCL:
|
|
luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues));
|
|
break;
|
|
case LUA_TTABLE:
|
|
luaH_free(L, gco2t(o));
|
|
break;
|
|
case LUA_TTHREAD:
|
|
luaE_freethread(L, gco2th(o));
|
|
break;
|
|
case LUA_TUSERDATA: {
|
|
Udata *u = gco2u(o);
|
|
luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
|
|
break;
|
|
}
|
|
case LUA_TSHRSTR:
|
|
luaS_remove(L, gco2ts(o)); /* remove it from hash table */
|
|
luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen));
|
|
break;
|
|
case LUA_TLNGSTR:
|
|
luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen));
|
|
break;
|
|
default: lua_assert(0);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** sweep at most 'countin' elements from a list of GCObjects erasing dead
|
|
** objects, where a dead object is one marked with the old (non current)
|
|
** white; change all non-dead objects back to white, preparing for next
|
|
** collection cycle. Return where to continue the traversal or NULL if
|
|
** list is finished. ('*countout' gets the number of elements traversed.)
|
|
*/
|
|
static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
|
|
int *countout) {
|
|
global_State *g = G(L);
|
|
int ow = otherwhite(g);
|
|
int i;
|
|
int white = luaC_white(g); /* current white */
|
|
for (i = 0; *p != NULL && i < countin; i++) {
|
|
GCObject *curr = *p;
|
|
int marked = curr->marked;
|
|
if (isdeadm(ow, marked)) { /* is 'curr' dead? */
|
|
*p = curr->next; /* remove 'curr' from list */
|
|
freeobj(L, curr); /* erase 'curr' */
|
|
}
|
|
else { /* change mark to 'white' */
|
|
curr->marked = cast_byte((marked & maskcolors) | white);
|
|
p = &curr->next; /* go to next element */
|
|
}
|
|
}
|
|
if (countout)
|
|
*countout = i; /* number of elements traversed */
|
|
return (*p == NULL) ? NULL : p;
|
|
}
|
|
|
|
|
|
/*
|
|
** sweep a list until a live object (or end of list)
|
|
*/
|
|
static GCObject **sweeptolive (lua_State *L, GCObject **p) {
|
|
GCObject **old = p;
|
|
do {
|
|
p = sweeplist(L, p, 1, NULL);
|
|
} while (p == old);
|
|
return p;
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Finalization
|
|
** =======================================================
|
|
*/
|
|
|
|
/*
|
|
** If possible, shrink string table.
|
|
*/
|
|
static void checkSizes (lua_State *L, global_State *g) {
|
|
if (!g->gcemergency) {
|
|
l_mem olddebt = g->GCdebt;
|
|
if (g->strt.nuse < g->strt.size / 4) /* string table too big? */
|
|
luaS_resize(L, g->strt.size / 2);
|
|
g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Get the next udata to be finalized from the 'tobefnz' list, and
|
|
** link it back into the 'allgc' list.
|
|
*/
|
|
static GCObject *udata2finalize (global_State *g) {
|
|
GCObject *o = g->tobefnz; /* get first element */
|
|
lua_assert(tofinalize(o));
|
|
g->tobefnz = o->next; /* remove it from 'tobefnz' list */
|
|
o->next = g->allgc; /* return it to 'allgc' list */
|
|
g->allgc = o;
|
|
resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
|
|
if (issweepphase(g))
|
|
makewhite(g, o); /* "sweep" object */
|
|
return o;
|
|
}
|
|
|
|
|
|
static void dothecall (lua_State *L, void *ud) {
|
|
UNUSED(ud);
|
|
luaD_callnoyield(L, L->top - 2, 0);
|
|
}
|
|
|
|
|
|
static void GCTM (lua_State *L, int propagateerrors) {
|
|
global_State *g = G(L);
|
|
const TValue *tm;
|
|
TValue v;
|
|
lua_assert(!g->gcemergency);
|
|
setgcovalue(L, &v, udata2finalize(g));
|
|
tm = luaT_gettmbyobj(L, &v, TM_GC);
|
|
if (tm != NULL && ttisfunction(tm)) { /* is there a finalizer? */
|
|
int status;
|
|
lu_byte oldah = L->allowhook;
|
|
int running = g->gcrunning;
|
|
L->allowhook = 0; /* stop debug hooks during GC metamethod */
|
|
g->gcrunning = 0; /* avoid GC steps */
|
|
setobj2s(L, L->top, tm); /* push finalizer... */
|
|
setobj2s(L, L->top + 1, &v); /* ... and its argument */
|
|
L->top += 2; /* and (next line) call the finalizer */
|
|
L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
|
|
status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0);
|
|
L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
|
|
L->allowhook = oldah; /* restore hooks */
|
|
g->gcrunning = running; /* restore state */
|
|
if (status != LUA_OK && propagateerrors) { /* error while running __gc? */
|
|
if (status == LUA_ERRRUN) { /* is there an error object? */
|
|
const char *msg = (ttisstring(s2v(L->top - 1)))
|
|
? svalue(s2v(L->top - 1))
|
|
: "no message";
|
|
luaO_pushfstring(L, "error in __gc metamethod (%s)", msg);
|
|
status = LUA_ERRGCMM; /* error in __gc metamethod */
|
|
}
|
|
luaD_throw(L, status); /* re-throw error */
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Call a few finalizers
|
|
*/
|
|
static int runafewfinalizers (lua_State *L, int n) {
|
|
global_State *g = G(L);
|
|
int i;
|
|
for (i = 0; i < n && g->tobefnz; i++)
|
|
GCTM(L, 1); /* call one finalizer */
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
** call all pending finalizers
|
|
*/
|
|
static void callallpendingfinalizers (lua_State *L, int propagateerrors) {
|
|
global_State *g = G(L);
|
|
while (g->tobefnz)
|
|
GCTM(L, propagateerrors);
|
|
}
|
|
|
|
|
|
/*
|
|
** find last 'next' field in list 'p' list (to add elements in its end)
|
|
*/
|
|
static GCObject **findlast (GCObject **p) {
|
|
while (*p != NULL)
|
|
p = &(*p)->next;
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** Move all unreachable objects (or 'all' objects) that need
|
|
** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
|
|
** (Note that objects after 'finobjold' cannot be white, so they
|
|
** don't need to be traversed. In incremental mode, 'finobjold' is NULL,
|
|
** so the whole list is traversed.)
|
|
*/
|
|
static void separatetobefnz (global_State *g, int all) {
|
|
GCObject *curr;
|
|
GCObject **p = &g->finobj;
|
|
GCObject **lastnext = findlast(&g->tobefnz);
|
|
while ((curr = *p) != g->finobjold) { /* traverse all finalizable objects */
|
|
lua_assert(tofinalize(curr));
|
|
if (!(iswhite(curr) || all)) /* not being collected? */
|
|
p = &curr->next; /* don't bother with it */
|
|
else {
|
|
if (curr == g->finobjsur) /* removing 'finobjsur'? */
|
|
g->finobjsur = curr->next; /* correct it */
|
|
*p = curr->next; /* remove 'curr' from 'finobj' list */
|
|
curr->next = *lastnext; /* link at the end of 'tobefnz' list */
|
|
*lastnext = curr;
|
|
lastnext = &curr->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** if object 'o' has a finalizer, remove it from 'allgc' list (must
|
|
** search the list to find it) and link it in 'finobj' list.
|
|
*/
|
|
void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
|
|
global_State *g = G(L);
|
|
if (tofinalize(o) || /* obj. is already marked... */
|
|
gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */
|
|
return; /* nothing to be done */
|
|
else { /* move 'o' to 'finobj' list */
|
|
GCObject **p;
|
|
if (issweepphase(g)) {
|
|
makewhite(g, o); /* "sweep" object 'o' */
|
|
if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
|
|
g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
|
|
}
|
|
else { /* correct pointers into 'allgc' list, if needed */
|
|
if (o == g->survival)
|
|
g->survival = o->next;
|
|
if (o == g->old)
|
|
g->old = o->next;
|
|
if (o == g->reallyold)
|
|
g->reallyold = o->next;
|
|
}
|
|
/* search for pointer pointing to 'o' */
|
|
for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
|
|
*p = o->next; /* remove 'o' from 'allgc' list */
|
|
o->next = g->finobj; /* link it in 'finobj' list */
|
|
g->finobj = o;
|
|
l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
|
|
}
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Generational Collector
|
|
** =======================================================
|
|
*/
|
|
|
|
static void setpause (global_State *g);
|
|
|
|
|
|
/* mask to erase all color bits, not changing gen-related stuff */
|
|
#define maskgencolors (~(bitmask(BLACKBIT) | WHITEBITS))
|
|
|
|
|
|
/*
|
|
** Sweep a list of objects, deleting dead ones and turning
|
|
** the non dead to old (without changing their colors).
|
|
*/
|
|
static void sweep2old (lua_State *L, GCObject **p) {
|
|
GCObject *curr;
|
|
while ((curr = *p) != NULL) {
|
|
if (iswhite(curr)) { /* is 'curr' dead? */
|
|
lua_assert(isdead(G(L), curr));
|
|
*p = curr->next; /* remove 'curr' from list */
|
|
freeobj(L, curr); /* erase 'curr' */
|
|
}
|
|
else { /* all surviving objects become old */
|
|
setage(curr, G_OLD);
|
|
p = &curr->next; /* go to next element */
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Sweep for generational mode. Delete dead objects. (Because the
|
|
** collection is not incremental, there are no "new white" objects
|
|
** during the sweep. So, any white object must be dead.) For
|
|
** non-dead objects, advance their ages and clear the color of
|
|
** new objects. (Old objects keep their colors.)
|
|
*/
|
|
static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
|
|
GCObject *limit) {
|
|
static lu_byte nextage[] = {
|
|
G_SURVIVAL, /* from G_NEW */
|
|
G_OLD1, /* from G_SURVIVAL */
|
|
G_OLD1, /* from G_OLD0 */
|
|
G_OLD, /* from G_OLD1 */
|
|
G_OLD, /* from G_OLD (do not change) */
|
|
G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
|
|
G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
|
|
};
|
|
int white = luaC_white(g);
|
|
GCObject *curr;
|
|
while ((curr = *p) != limit) {
|
|
if (iswhite(curr)) { /* is 'curr' dead? */
|
|
lua_assert(!isold(curr) && isdead(g, curr));
|
|
*p = curr->next; /* remove 'curr' from list */
|
|
freeobj(L, curr); /* erase 'curr' */
|
|
}
|
|
else { /* correct mark and age */
|
|
if (getage(curr) == G_NEW)
|
|
curr->marked = cast_byte((curr->marked & maskgencolors) | white);
|
|
setage(curr, nextage[getage(curr)]);
|
|
p = &curr->next; /* go to next element */
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** Traverse a list making all its elements white and clearing their
|
|
** age.
|
|
*/
|
|
static void whitelist (global_State *g, GCObject *p) {
|
|
int white = luaC_white(g);
|
|
for (; p != NULL; p = p->next)
|
|
p->marked = cast_byte((p->marked & maskcolors) | white);
|
|
}
|
|
|
|
|
|
/*
|
|
** Correct a list of gray objects.
|
|
** Because this correction is done after sweeping, young objects might
|
|
** be turned white and still be in the list. They are only removed.
|
|
** For tables and userdata, advance 'touched1' to 'touched2'; 'touched2'
|
|
** objects become regular old and are removed from the list.
|
|
** For threads, just remove white ones from the list.
|
|
*/
|
|
static GCObject **correctgraylist (GCObject **p) {
|
|
GCObject *curr;
|
|
while ((curr = *p) != NULL) {
|
|
switch (curr->tt) {
|
|
case LUA_TTABLE: case LUA_TUSERDATA: {
|
|
GCObject **next = getgclist(curr);
|
|
if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
|
|
lua_assert(isgray(curr));
|
|
gray2black(curr); /* make it black, for next barrier */
|
|
changeage(curr, G_TOUCHED1, G_TOUCHED2);
|
|
p = next; /* go to next element */
|
|
}
|
|
else { /* not touched in this cycle */
|
|
if (!iswhite(curr)) { /* not white? */
|
|
lua_assert(isold(curr));
|
|
if (getage(curr) == G_TOUCHED2) /* advance from G_TOUCHED2... */
|
|
changeage(curr, G_TOUCHED2, G_OLD); /* ... to G_OLD */
|
|
gray2black(curr); /* make it black */
|
|
}
|
|
/* else, object is white: just remove it from this list */
|
|
*p = *next; /* remove 'curr' from gray list */
|
|
}
|
|
break;
|
|
}
|
|
case LUA_TTHREAD: {
|
|
lua_State *th = gco2th(curr);
|
|
lua_assert(!isblack(th));
|
|
if (iswhite(th)) /* new object? */
|
|
*p = th->gclist; /* remove from gray list */
|
|
else /* old threads remain gray */
|
|
p = &th->gclist; /* go to next element */
|
|
break;
|
|
}
|
|
default: lua_assert(0); /* nothing more could be gray here */
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
/*
|
|
** Correct all gray lists, coalescing them into 'grayagain'.
|
|
*/
|
|
static void correctgraylists (global_State *g) {
|
|
GCObject **list = correctgraylist(&g->grayagain);
|
|
*list = g->weak; g->weak = NULL;
|
|
list = correctgraylist(list);
|
|
*list = g->allweak; g->allweak = NULL;
|
|
list = correctgraylist(list);
|
|
*list = g->ephemeron; g->ephemeron = NULL;
|
|
correctgraylist(list);
|
|
}
|
|
|
|
|
|
/*
|
|
** Mark 'OLD1' objects when starting a new young collection.
|
|
** Gray objects are already in some gray list, and so will be visited
|
|
** in the atomic step.
|
|
*/
|
|
static void markold (global_State *g, GCObject *from, GCObject *to) {
|
|
GCObject *p;
|
|
for (p = from; p != to; p = p->next) {
|
|
if (getage(p) == G_OLD1) {
|
|
lua_assert(!iswhite(p));
|
|
if (isblack(p)) {
|
|
black2gray(p); /* should be '2white', but gray works too */
|
|
reallymarkobject(g, p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Finish a young-generation collection.
|
|
*/
|
|
static void finishgencycle (lua_State *L, global_State *g) {
|
|
correctgraylists(g);
|
|
checkSizes(L, g);
|
|
g->gcstate = GCSpropagate; /* skip restart */
|
|
if (!g->gcemergency)
|
|
callallpendingfinalizers(L, 1);
|
|
}
|
|
|
|
|
|
/*
|
|
** Does a young collection. First, mark 'OLD1' objects. (Only survival
|
|
** and "recent old" lists can contain 'OLD1' objects. New lists cannot
|
|
** contain 'OLD1' objects, at most 'OLD0' objects that were already
|
|
** visited when marked old.) Then does the atomic step. Then,
|
|
** sweep all lists and advance pointers. Finally, finish the collection.
|
|
*/
|
|
static void youngcollection (lua_State *L, global_State *g) {
|
|
GCObject **psurvival; /* to point to first non-dead survival object */
|
|
lua_assert(g->gcstate == GCSpropagate);
|
|
markold(g, g->survival, g->reallyold);
|
|
markold(g, g->finobj, g->finobjrold);
|
|
atomic(L);
|
|
|
|
/* sweep nursery and get a pointer to its last live element */
|
|
psurvival = sweepgen(L, g, &g->allgc, g->survival);
|
|
/* sweep 'survival' and 'old' */
|
|
sweepgen(L, g, psurvival, g->reallyold);
|
|
g->reallyold = g->old;
|
|
g->old = *psurvival; /* 'survival' survivals are old now */
|
|
g->survival = g->allgc; /* all news are survivals */
|
|
|
|
/* repeat for 'finobj' lists */
|
|
psurvival = sweepgen(L, g, &g->finobj, g->finobjsur);
|
|
/* sweep 'survival' and 'old' */
|
|
sweepgen(L, g, psurvival, g->finobjrold);
|
|
g->finobjrold = g->finobjold;
|
|
g->finobjold = *psurvival; /* 'survival' survivals are old now */
|
|
g->finobjsur = g->finobj; /* all news are survivals */
|
|
|
|
sweepgen(L, g, &g->tobefnz, NULL);
|
|
|
|
finishgencycle(L, g);
|
|
}
|
|
|
|
|
|
/*
|
|
** Enter generational mode. Must go until the end of an atomic cycle
|
|
** to ensure that all threads are in the gray list. Then, turn all
|
|
** objects into old and finishes the collection.
|
|
*/
|
|
static void entergen (lua_State *L, global_State *g) {
|
|
luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
|
|
luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
|
|
atomic(L);
|
|
/* sweep all elements making them old */
|
|
sweep2old(L, &g->allgc);
|
|
/* everything alive now is old */
|
|
g->reallyold = g->old = g->survival = g->allgc;
|
|
|
|
/* repeat for 'finobj' lists */
|
|
sweep2old(L, &g->finobj);
|
|
g->finobjrold = g->finobjold = g->finobjsur = g->finobj;
|
|
|
|
sweep2old(L, &g->tobefnz);
|
|
|
|
g->gckind = KGC_GEN;
|
|
g->GCestimate = gettotalbytes(g); /* base for memory control */
|
|
finishgencycle(L, g);
|
|
}
|
|
|
|
|
|
/*
|
|
** Enter incremental mode. Turn all objects white, make all
|
|
** intermediate lists point to NULL (to avoid invalid pointers),
|
|
** and go to pause state.
|
|
*/
|
|
static void enterinc (global_State *g) {
|
|
whitelist(g, g->allgc);
|
|
g->reallyold = g->old = g->survival = NULL;
|
|
whitelist(g, g->finobj);
|
|
whitelist(g, g->tobefnz);
|
|
g->finobjrold = g->finobjold = g->finobjsur = NULL;
|
|
g->gcstate = GCSpause;
|
|
g->gckind = KGC_INC;
|
|
}
|
|
|
|
|
|
/*
|
|
** Change collector mode to 'newmode'.
|
|
*/
|
|
void luaC_changemode (lua_State *L, int newmode) {
|
|
global_State *g = G(L);
|
|
if (newmode != g->gckind) {
|
|
if (newmode == KGC_GEN) /* entering generational mode? */
|
|
entergen(L, g);
|
|
else
|
|
enterinc(g); /* entering incremental mode */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Does a full collection in generational mode.
|
|
*/
|
|
static void fullgen (lua_State *L, global_State *g) {
|
|
enterinc(g);
|
|
entergen(L, g);
|
|
}
|
|
|
|
|
|
/*
|
|
** Does a generational "step". If memory grows 'genmajormul'% larger
|
|
** than last major collection (kept in 'g->GCestimate'), does a major
|
|
** collection. Otherwise, does a minor collection and set debt to make
|
|
** another collection when memory grows 'genminormul'% larger.
|
|
** When it does a major collection, it then checks whether it could
|
|
** reclaim at least ?? memory. If not, it sets a long pause for the
|
|
** next collection. (Therefore, the next collection will be a major
|
|
** one, too.)
|
|
** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
|
|
** in that case, always do a minor collection.
|
|
*/
|
|
static void genstep (lua_State *L, global_State *g) {
|
|
lu_mem majorbase = g->GCestimate; /* memory after last major collection */
|
|
lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
|
|
lu_mem memnew = gettotalbytes(g);
|
|
if (g->GCdebt > 0 && memnew > majorbase + majorinc) {
|
|
fullgen(L, g);
|
|
memnew = gettotalbytes(g);
|
|
if (memnew < majorbase + (majorinc / 2)) {
|
|
/* collected at least half of memory growth since last major
|
|
collection; go back to minor collections */
|
|
luaE_setdebt(g, -(cast(l_mem, (memnew / 100)) * g->genminormul));
|
|
}
|
|
else {
|
|
/* memory seems to be growing; do a long wait for next (major)
|
|
collection */
|
|
setpause(g);
|
|
}
|
|
}
|
|
else {
|
|
youngcollection(L, g);
|
|
memnew = gettotalbytes(g);
|
|
luaE_setdebt(g, -(cast(l_mem, (memnew / 100)) * g->genminormul));
|
|
g->GCestimate = majorbase; /* preserve base value */
|
|
}
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** GC control
|
|
** =======================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** Set the "time" to wait before starting a new GC cycle; cycle will
|
|
** start when memory use hits the threshold of ('estimate' * pause /
|
|
** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
|
|
** because Lua cannot even start with less than PAUSEADJ bytes).
|
|
*/
|
|
static void setpause (global_State *g) {
|
|
l_mem threshold, debt;
|
|
int pause = getgcparam(g->gcpause);
|
|
l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
|
|
lua_assert(estimate > 0);
|
|
threshold = (pause < MAX_LMEM / estimate) /* overflow? */
|
|
? estimate * pause /* no overflow */
|
|
: MAX_LMEM; /* overflow; truncate to maximum */
|
|
debt = gettotalbytes(g) - threshold;
|
|
if (debt > 0) debt = 0;
|
|
luaE_setdebt(g, debt);
|
|
}
|
|
|
|
|
|
/*
|
|
** Enter first sweep phase.
|
|
** The call to 'sweeptolive' makes the pointer point to an object
|
|
** inside the list (instead of to the header), so that the real sweep do
|
|
** not need to skip objects created between "now" and the start of the
|
|
** real sweep.
|
|
*/
|
|
static void entersweep (lua_State *L) {
|
|
global_State *g = G(L);
|
|
g->gcstate = GCSswpallgc;
|
|
lua_assert(g->sweepgc == NULL);
|
|
g->sweepgc = sweeptolive(L, &g->allgc);
|
|
}
|
|
|
|
|
|
/*
|
|
** Delete all objects in list 'p' until (but not including) object
|
|
** 'limit'.
|
|
*/
|
|
static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
|
|
while (p != limit) {
|
|
GCObject *next = p->next;
|
|
freeobj(L, p);
|
|
p = next;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Call all finalizers of the objects in the given Lua state, and
|
|
** then free all objects, except for the main thread.
|
|
*/
|
|
void luaC_freeallobjects (lua_State *L) {
|
|
global_State *g = G(L);
|
|
luaC_changemode(L, KGC_INC);
|
|
separatetobefnz(g, 1); /* separate all objects with finalizers */
|
|
lua_assert(g->finobj == NULL);
|
|
callallpendingfinalizers(L, 0);
|
|
deletelist(L, g->allgc, obj2gco(g->mainthread));
|
|
deletelist(L, g->finobj, NULL);
|
|
deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
|
|
lua_assert(g->strt.nuse == 0);
|
|
}
|
|
|
|
|
|
static lu_mem atomic (lua_State *L) {
|
|
global_State *g = G(L);
|
|
lu_mem work = 0;
|
|
GCObject *origweak, *origall;
|
|
GCObject *grayagain = g->grayagain; /* save original list */
|
|
g->grayagain = NULL;
|
|
lua_assert(g->ephemeron == NULL && g->weak == NULL);
|
|
lua_assert(!iswhite(g->mainthread));
|
|
g->gcstate = GCSatomic;
|
|
markobject(g, L); /* mark running thread */
|
|
/* registry and global metatables may be changed by API */
|
|
markvalue(g, &g->l_registry);
|
|
markmt(g); /* mark global metatables */
|
|
/* remark occasional upvalues of (maybe) dead threads */
|
|
work += remarkupvals(g);
|
|
work += propagateall(g); /* propagate changes */
|
|
g->gray = grayagain;
|
|
work += propagateall(g); /* traverse 'grayagain' list */
|
|
convergeephemerons(g);
|
|
/* at this point, all strongly accessible objects are marked. */
|
|
/* Clear values from weak tables, before checking finalizers */
|
|
clearbyvalues(g, g->weak, NULL);
|
|
clearbyvalues(g, g->allweak, NULL);
|
|
origweak = g->weak; origall = g->allweak;
|
|
separatetobefnz(g, 0); /* separate objects to be finalized */
|
|
work += markbeingfnz(g); /* mark objects that will be finalized */
|
|
work += propagateall(g); /* remark, to propagate 'resurrection' */
|
|
convergeephemerons(g);
|
|
/* at this point, all resurrected objects are marked. */
|
|
/* remove dead objects from weak tables */
|
|
clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
|
|
clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
|
|
/* clear values from resurrected weak tables */
|
|
clearbyvalues(g, g->weak, origweak);
|
|
clearbyvalues(g, g->allweak, origall);
|
|
luaS_clearcache(g);
|
|
g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
|
|
lua_assert(g->gray == NULL);
|
|
return work; /* estimate of slots marked by 'atomic' */
|
|
}
|
|
|
|
|
|
static int sweepstep (lua_State *L, global_State *g,
|
|
int nextstate, GCObject **nextlist) {
|
|
if (g->sweepgc) {
|
|
l_mem olddebt = g->GCdebt;
|
|
int count;
|
|
g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
|
|
g->GCestimate += g->GCdebt - olddebt; /* update estimate */
|
|
return count;
|
|
}
|
|
else { /* enter next state */
|
|
g->gcstate = nextstate;
|
|
g->sweepgc = nextlist;
|
|
return 0; /* no work done */
|
|
}
|
|
}
|
|
|
|
|
|
static lu_mem singlestep (lua_State *L) {
|
|
global_State *g = G(L);
|
|
switch (g->gcstate) {
|
|
case GCSpause: {
|
|
restartcollection(g);
|
|
g->gcstate = GCSpropagate;
|
|
return 1;
|
|
}
|
|
case GCSpropagate: {
|
|
if (g->gray == NULL) { /* no more gray objects? */
|
|
g->gcstate = GCSenteratomic; /* finish propagate phase */
|
|
return 0;
|
|
}
|
|
else
|
|
return propagatemark(g); /* traverse one gray object */
|
|
}
|
|
case GCSenteratomic: {
|
|
lu_mem work = propagateall(g); /* make sure gray list is empty */
|
|
work += atomic(L); /* work is what was traversed by 'atomic' */
|
|
entersweep(L);
|
|
g->GCestimate = gettotalbytes(g); /* first estimate */;
|
|
return work;
|
|
}
|
|
case GCSswpallgc: { /* sweep "regular" objects */
|
|
return sweepstep(L, g, GCSswpfinobj, &g->finobj);
|
|
}
|
|
case GCSswpfinobj: { /* sweep objects with finalizers */
|
|
return sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
|
|
}
|
|
case GCSswptobefnz: { /* sweep objects to be finalized */
|
|
return sweepstep(L, g, GCSswpend, NULL);
|
|
}
|
|
case GCSswpend: { /* finish sweeps */
|
|
checkSizes(L, g);
|
|
g->gcstate = GCScallfin;
|
|
return 0;
|
|
}
|
|
case GCScallfin: { /* call remaining finalizers */
|
|
if (g->tobefnz && !g->gcemergency) {
|
|
int n = runafewfinalizers(L, GCFINMAX);
|
|
return n * GCFINALIZECOST;
|
|
}
|
|
else { /* emergency mode or no more finalizers */
|
|
g->gcstate = GCSpause; /* finish collection */
|
|
return 0;
|
|
}
|
|
}
|
|
default: lua_assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** advances the garbage collector until it reaches a state allowed
|
|
** by 'statemask'
|
|
*/
|
|
void luaC_runtilstate (lua_State *L, int statesmask) {
|
|
global_State *g = G(L);
|
|
while (!testbit(statesmask, g->gcstate))
|
|
singlestep(L);
|
|
}
|
|
|
|
|
|
/*
|
|
** Performs a basic incremental step. The debt and step size are
|
|
** converted from bytes to "units of work"; then the function loops
|
|
** running single steps until adding that many units of work or
|
|
** finishing a cycle (pause state). Finally, it sets the debt that
|
|
** controls when next step will be performed.
|
|
*/
|
|
static void incstep (lua_State *L, global_State *g) {
|
|
int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
|
|
l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
|
|
l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
|
|
? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
|
|
: MAX_LMEM; /* overflow; keep maximum value */
|
|
do { /* repeat until pause or enough "credit" (negative debt) */
|
|
lu_mem work = singlestep(L); /* perform one single step */
|
|
debt -= work;
|
|
} while (debt > -stepsize && g->gcstate != GCSpause);
|
|
if (g->gcstate == GCSpause)
|
|
setpause(g); /* pause until next cycle */
|
|
else {
|
|
debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
|
|
luaE_setdebt(g, debt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** performs a basic GC step if collector is running
|
|
*/
|
|
void luaC_step (lua_State *L) {
|
|
global_State *g = G(L);
|
|
if (g->gcrunning) { /* running? */
|
|
if (g->gckind == KGC_INC)
|
|
incstep(L, g);
|
|
else
|
|
genstep(L, g);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Perform a full collection in incremental mode.
|
|
** Before running the collection, check 'keepinvariant'; if it is true,
|
|
** there may be some objects marked as black, so the collector has
|
|
** to sweep all objects to turn them back to white (as white has not
|
|
** changed, nothing will be collected).
|
|
*/
|
|
static void fullinc (lua_State *L, global_State *g) {
|
|
if (keepinvariant(g)) /* black objects? */
|
|
entersweep(L); /* sweep everything to turn them back to white */
|
|
/* finish any pending sweep phase to start a new cycle */
|
|
luaC_runtilstate(L, bitmask(GCSpause));
|
|
luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
|
|
/* estimate must be correct after a full GC cycle */
|
|
lua_assert(g->GCestimate == gettotalbytes(g));
|
|
luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
|
|
setpause(g);
|
|
}
|
|
|
|
|
|
/*
|
|
** Performs a full GC cycle; if 'isemergency', set a flag to avoid
|
|
** some operations which could change the interpreter state in some
|
|
** unexpected ways (running finalizers and shrinking some structures).
|
|
*/
|
|
void luaC_fullgc (lua_State *L, int isemergency) {
|
|
global_State *g = G(L);
|
|
lua_assert(!g->gcemergency);
|
|
g->gcemergency = isemergency; /* set flag */
|
|
if (g->gckind == KGC_INC)
|
|
fullinc(L, g);
|
|
else
|
|
fullgen(L, g);
|
|
g->gcemergency = 0;
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|