/* ** $Id: lcode.c,v 1.69 2001/06/05 18:17:01 roberto Exp roberto $ ** Code generator for Lua ** See Copyright Notice in lua.h */ #include #define LUA_PRIVATE #include "lua.h" #include "lcode.h" #include "ldebug.h" #include "ldo.h" #include "llex.h" #include "lmem.h" #include "lobject.h" #include "lopcodes.h" #include "lparser.h" #define hasjumps(e) ((e)->t != (e)->f) #define getcode(fs,e) ((fs)->f->code[(e)->u.i.info]) void luaK_error (LexState *ls, const l_char *msg) { luaX_error(ls, msg, ls->t.token); } /* ** Returns the the previous instruction, for optimizations. ** If there is a jump target between this and the current instruction, ** returns a dummy instruction to avoid wrong optimizations. */ static Instruction previous_instruction (FuncState *fs) { if (fs->pc > fs->lasttarget) /* no jumps to current position? */ return fs->f->code[fs->pc-1]; /* returns previous instruction */ else return (Instruction)(-1);/* no optimizations after an invalid instruction */ } void luaK_nil (FuncState *fs, int from, int n) { Instruction previous = previous_instruction(fs); if (GET_OPCODE(previous) == OP_LOADNIL) { int pfrom = GETARG_A(previous); int pto = GETARG_B(previous); if (pfrom <= from && from <= pto+1) { /* can connect both? */ if (from+n-1 > pto) SETARG_B(fs->f->code[fs->pc-1], from+n-1); return; } } luaK_codeABC(fs, OP_LOADNIL, from, from+n-1, 0); /* else no optimization */ } int luaK_jump (FuncState *fs) { int j = luaK_codeAsBc(fs, OP_JMP, 0, NO_JUMP); if (j == fs->lasttarget) { /* possible jumps to this jump? */ luaK_concat(fs, &j, fs->jlt); /* keep them on hold */ fs->jlt = NO_JUMP; } return j; } static int luaK_condjump (FuncState *fs, OpCode op, int B, int C) { luaK_codeABC(fs, op, NO_REG, B, C); return luaK_codeAsBc(fs, OP_CJMP, 0, NO_JUMP); } static void luaK_fixjump (FuncState *fs, int pc, int dest) { Instruction *jmp = &fs->f->code[pc]; if (dest == NO_JUMP) SETARG_sBc(*jmp, NO_JUMP); /* point to itself to represent end of list */ else { /* jump is relative to position following jump instruction */ int offset = dest-(pc+1); if (abs(offset) > MAXARG_sBc) luaK_error(fs->ls, l_s("control structure too long")); SETARG_sBc(*jmp, offset); } } /* ** prep-for instructions (OP_FORPREP & OP_TFORPREP) have a negated jump, ** as they simulate the real jump... */ void luaK_fixfor (FuncState *fs, int pc, int dest) { Instruction *jmp = &fs->f->code[pc]; int offset = dest-(pc+1); SETARG_sBc(*jmp, -offset); } /* ** returns current `pc' and marks it as a jump target (to avoid wrong ** optimizations with consecutive instructions not in the same basic block). ** discharge list of jumps to last target. */ int luaK_getlabel (FuncState *fs) { if (fs->pc != fs->lasttarget) { int lasttarget = fs->lasttarget; fs->lasttarget = fs->pc; luaK_patchlist(fs, fs->jlt, lasttarget); /* discharge old list `jlt' */ fs->jlt = NO_JUMP; /* nobody jumps to this new label (yet) */ } return fs->pc; } static int luaK_getjump (FuncState *fs, int pc) { int offset = GETARG_sBc(fs->f->code[pc]); if (offset == NO_JUMP) /* point to itself represents end of list */ return NO_JUMP; /* end of list */ else return (pc+1)+offset; /* turn offset into absolute position */ } static Instruction *getjumpcontrol (FuncState *fs, int pc) { Instruction *pi = &fs->f->code[pc]; OpCode op = GET_OPCODE(*pi); if (op == OP_CJMP) return pi-1; else { lua_assert(op == OP_JMP || op == OP_FORLOOP || op == OP_TFORLOOP); return pi; } } static int need_value (FuncState *fs, int list, OpCode op) { /* check whether list has any jump different from `op' */ for (; list != NO_JUMP; list = luaK_getjump(fs, list)) if (GET_OPCODE(*getjumpcontrol(fs, list)) != op) return 1; return 0; /* not found */ } static void luaK_patchlistaux (FuncState *fs, int list, int ttarget, int treg, int ftarget, int freg, int dtarget) { while (list != NO_JUMP) { int next = luaK_getjump(fs, list); Instruction *i = getjumpcontrol(fs, list); switch (GET_OPCODE(*i)) { case OP_TESTT: { SETARG_A(*i, treg); luaK_fixjump(fs, list, ttarget); break; } case OP_TESTF: { SETARG_A(*i, freg); luaK_fixjump(fs, list, ftarget); break; } default: { luaK_fixjump(fs, list, dtarget); /* jump to default target */ break; } } list = next; } } void luaK_patchlist (FuncState *fs, int list, int target) { if (target == fs->lasttarget) /* same target that list `jlt'? */ luaK_concat(fs, &fs->jlt, list); /* delay fixing */ else luaK_patchlistaux(fs, list, target, NO_REG, target, NO_REG, target); } void luaK_concat (FuncState *fs, int *l1, int l2) { if (*l1 == NO_JUMP) *l1 = l2; else { int list = *l1; int next; while ((next = luaK_getjump(fs, list)) != NO_JUMP) /* find last element */ list = next; luaK_fixjump(fs, list, l2); } } void luaK_reserveregs (FuncState *fs, int n) { fs->freereg += n; if (fs->freereg > fs->f->maxstacksize) { if (fs->freereg >= MAXSTACK) luaK_error(fs->ls, l_s("function or expression too complex")); fs->f->maxstacksize = (short)fs->freereg; } } static void freereg (FuncState *fs, int reg) { if (reg >= fs->nactloc && reg < MAXSTACK) { fs->freereg--; lua_assert(reg == fs->freereg); } } static void freeexp (FuncState *fs, expdesc *e) { if (e->k == VNONRELOC) freereg(fs, e->u.i.info); } static int addk (FuncState *fs, TObject *k) { Proto *f = fs->f; luaM_growvector(fs->L, f->k, fs->nk, f->sizek, TObject, MAXARG_Bc, l_s("constant table overflow")); setobj(&f->k[fs->nk], k); return fs->nk++; } int luaK_stringk (FuncState *fs, TString *s) { Proto *f = fs->f; int c = s->constindex; if (c >= fs->nk || ttype(&f->k[c]) != LUA_TSTRING || tsvalue(&f->k[c]) != s) { TObject o; setsvalue(&o, s); c = addk(fs, &o); s->constindex = c; /* hint for next time */ } return c; } static int number_constant (FuncState *fs, lua_Number r) { /* check whether `r' has appeared within the last LOOKBACKNUMS entries */ TObject o; Proto *f = fs->f; int c = fs->nk; int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS; while (--c >= lim) { if (ttype(&f->k[c]) == LUA_TNUMBER && nvalue(&f->k[c]) == r) return c; } /* not found; create a new entry */ setnvalue(&o, r); return addk(fs, &o); } void luaK_setcallreturns (FuncState *fs, expdesc *e, int nresults) { if (e->k == VCALL) { /* expression is an open function call? */ SETARG_C(getcode(fs, e), nresults); /* set number of results */ if (nresults == 1) { /* `regular' expression? */ e->k = VNONRELOC; e->u.i.info = GETARG_A(getcode(fs, e)); } } } static void dischargevars (FuncState *fs, expdesc *e) { switch (e->k) { case VLOCAL: { e->k = VNONRELOC; break; } case VGLOBAL: { e->u.i.info = luaK_codeABc(fs, OP_GETGLOBAL, 0, e->u.i.info); e->k = VRELOCABLE; break; } case VINDEXED: { freereg(fs, e->u.i.aux); freereg(fs, e->u.i.info); e->u.i.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.i.info, e->u.i.aux); e->k = VRELOCABLE; break; } case VCALL: { luaK_setcallreturns(fs, e, 1); break; } default: break; /* there is one value available (somewhere) */ } } static int code_label (FuncState *fs, OpCode op, int A, int sBc) { luaK_getlabel(fs); /* those instructions may be jump targets */ return luaK_codeAsBc(fs, op, A, sBc); } static void dischargejumps (FuncState *fs, expdesc *e, int reg) { if (hasjumps(e)) { int final; /* position after whole expression */ int p_nil = NO_JUMP; /* position of an eventual PUSHNIL */ int p_1 = NO_JUMP; /* position of an eventual PUSHINT */ if (need_value(fs, e->f, OP_TESTF) || need_value(fs, e->t, OP_TESTT)) { /* expression needs values */ if (e->k != VJMP) code_label(fs, OP_JMP, 0, 2); /* to jump over both pushes */ p_nil = code_label(fs, OP_NILJMP, reg, 0); p_1 = code_label(fs, OP_LOADINT, reg, 1); } final = luaK_getlabel(fs); luaK_patchlistaux(fs, e->f, p_nil, NO_REG, final, reg, p_nil); luaK_patchlistaux(fs, e->t, final, reg, p_1, NO_REG, p_1); } e->f = e->t = NO_JUMP; } static void discharge2reg (FuncState *fs, expdesc *e, int reg) { dischargevars(fs, e); switch (e->k) { case VNIL: { luaK_nil(fs, reg, 1); break; } case VNUMBER: { lua_Number f = e->u.n; int i = (int)f; if ((lua_Number)i == f && -MAXARG_sBc <= i && i <= MAXARG_sBc) luaK_codeAsBc(fs, OP_LOADINT, reg, i); /* f has a small int value */ else luaK_codeABc(fs, OP_LOADK, reg, number_constant(fs, f)); break; } case VK: { luaK_codeABc(fs, OP_LOADK, reg, e->u.i.info); break; } case VRELOCABLE: { Instruction *pc = &getcode(fs, e); SETARG_A(*pc, reg); break; } default: return; } e->u.i.info = reg; e->k = VNONRELOC; } static void discharge2anyreg (FuncState *fs, expdesc *e) { if (e->k != VNONRELOC) { luaK_reserveregs(fs, 1); discharge2reg(fs, e, fs->freereg-1); } } static void luaK_exp2reg (FuncState *fs, expdesc *e, int reg) { discharge2reg(fs, e, reg); switch (e->k) { case VVOID: { return; /* nothing to do... */ } case VNONRELOC: { if (reg != e->u.i.info) luaK_codeABC(fs, OP_MOVE, reg, e->u.i.info, 0); break; } case VJMP: { luaK_concat(fs, &e->t, e->u.i.info); /* put this jump in `t' list */ break; } default: { lua_assert(0); /* cannot happen */ break; } } dischargejumps(fs, e, reg); e->u.i.info = reg; e->k = VNONRELOC; } void luaK_exp2nextreg (FuncState *fs, expdesc *e) { int reg; dischargevars(fs, e); freeexp(fs, e); reg = fs->freereg; luaK_reserveregs(fs, 1); luaK_exp2reg(fs, e, reg); } int luaK_exp2anyreg (FuncState *fs, expdesc *e) { dischargevars(fs, e); if (e->k == VNONRELOC) { if (!hasjumps(e)) return e->u.i.info; /* exp is already in a register */ if (e->u.i.info >= fs->nactloc) { /* reg. is not a local? */ dischargejumps(fs, e, e->u.i.info); /* put value on it */ return e->u.i.info; } } luaK_exp2nextreg(fs, e); /* default */ return e->u.i.info; } void luaK_exp2val (FuncState *fs, expdesc *e) { if (hasjumps(e)) luaK_exp2anyreg(fs, e); else dischargevars(fs, e); } int luaK_exp2RK (FuncState *fs, expdesc *e) { luaK_exp2val(fs, e); if (e->k == VNUMBER && fs->nk + MAXSTACK <= MAXARG_C) { e->u.i.info = number_constant(fs, e->u.n); e->k = VK; } else if (!(e->k == VK && e->u.i.info + MAXSTACK <= MAXARG_C)) luaK_exp2anyreg(fs, e); /* not a constant in the right range */ return (e->k == VK) ? e->u.i.info+MAXSTACK : e->u.i.info; } void luaK_storevar (FuncState *fs, expdesc *var, expdesc *exp) { switch (var->k) { case VLOCAL: { freeexp(fs, exp); luaK_exp2reg(fs, exp, var->u.i.info); break; } case VGLOBAL: { int e = luaK_exp2anyreg(fs, exp); freereg(fs, e); luaK_codeABc(fs, OP_SETGLOBAL, e, var->u.i.info); break; } case VINDEXED: { int e = luaK_exp2anyreg(fs, exp); freereg(fs, e); luaK_codeABC(fs, OP_SETTABLE, e, var->u.i.info, var->u.i.aux); break; } default: { lua_assert(0); /* invalid var kind to store */ break; } } } void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { luaK_exp2anyreg(fs, e); freeexp(fs, e); luaK_reserveregs(fs, 2); luaK_codeABC(fs, OP_SELF, fs->freereg-2, e->u.i.info, luaK_exp2RK(fs, key)); e->u.i.info = fs->freereg-2; e->k = VNONRELOC; } static OpCode invertoperator (OpCode op) { switch (op) { case OP_TESTNE: return OP_TESTEQ; case OP_TESTEQ: return OP_TESTNE; case OP_TESTLT: return OP_TESTGE; case OP_TESTLE: return OP_TESTGT; case OP_TESTGT: return OP_TESTLE; case OP_TESTGE: return OP_TESTLT; case OP_TESTT: return OP_TESTF; case OP_TESTF: return OP_TESTT; default: lua_assert(0); return op; /* invalid jump instruction */ } } static void invertjump (FuncState *fs, expdesc *e) { Instruction *pc = getjumpcontrol(fs, e->u.i.info); *pc = SET_OPCODE(*pc, invertoperator(GET_OPCODE(*pc))); } static int jumponcond (FuncState *fs, expdesc *e, OpCode op) { if (e->k == VRELOCABLE) { Instruction ie = getcode(fs, e); if (GET_OPCODE(ie) == OP_NOT) { op = invertoperator(op); fs->pc--; /* remove previous OP_NOT */ return luaK_condjump(fs, op, GETARG_B(ie), 0); } /* else go through */ } discharge2anyreg(fs, e); freeexp(fs, e); return luaK_condjump(fs, op, e->u.i.info, 0); } void luaK_goiftrue (FuncState *fs, expdesc *e) { int pc; /* pc of last jump */ dischargevars(fs, e); switch (e->k) { case VK: case VNUMBER: { pc = NO_JUMP; /* always true; do nothing */ break; } case VNIL: { pc = luaK_codeAsBc(fs, OP_JMP, 0, NO_JUMP); /* always jump */ break; } case VJMP: { invertjump(fs, e); pc = e->u.i.info; break; } case VRELOCABLE: case VNONRELOC: { pc = jumponcond(fs, e, OP_TESTF); break; } default: { pc = 0; /* to avoid warnings */ lua_assert(0); /* cannot happen */ break; } } luaK_concat(fs, &e->f, pc); /* insert last jump in `f' list */ luaK_patchlist(fs, e->t, luaK_getlabel(fs)); e->t = NO_JUMP; } static void luaK_goiffalse (FuncState *fs, expdesc *e) { int pc; /* pc of last jump */ dischargevars(fs, e); switch (e->k) { case VNIL: { pc = NO_JUMP; /* always false; do nothing */ break; } case VJMP: { pc = e->u.i.info; break; } case VK: case VNUMBER: /* cannot optimize it (`or' must keep value) */ case VRELOCABLE: case VNONRELOC: { pc = jumponcond(fs, e, OP_TESTT); break; } default: { pc = 0; /* to avoid warnings */ lua_assert(0); /* cannot happen */ break; } } luaK_concat(fs, &e->t, pc); /* insert last jump in `t' list */ luaK_patchlist(fs, e->f, luaK_getlabel(fs)); e->f = NO_JUMP; } static void codenot (FuncState *fs, expdesc *e) { dischargevars(fs, e); switch (e->k) { case VNIL: { e->u.n = 1; e->k = VNUMBER; break; } case VK: case VNUMBER: { e->k = VNIL; break; } case VJMP: { invertjump(fs, e); break; } case VRELOCABLE: case VNONRELOC: { discharge2anyreg(fs, e); freeexp(fs, e); e->u.i.info = luaK_codeABC(fs, OP_NOT, 0, e->u.i.info, 0); e->k = VRELOCABLE; break; } default: { lua_assert(0); /* cannot happen */ break; } } /* interchange true and false lists */ { int temp = e->f; e->f = e->t; e->t = temp; } } void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { t->u.i.aux = luaK_exp2RK(fs, k); t->k = VINDEXED; } void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e) { if (op == OPR_MINUS) { luaK_exp2val(fs, e); if (e->k == VNUMBER) e->u.n = -e->u.n; else { luaK_exp2anyreg(fs, e); freeexp(fs, e); e->u.i.info = luaK_codeABC(fs, OP_UNM, 0, e->u.i.info, 0); e->k = VRELOCABLE; } } else /* op == NOT */ codenot(fs, e); } void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { switch (op) { case OPR_AND: { luaK_goiftrue(fs, v); break; } case OPR_OR: { luaK_goiffalse(fs, v); break; } case OPR_CONCAT: { luaK_exp2nextreg(fs, v); /* operand must be on the `stack' */ break; } case OPR_SUB: case OPR_DIV: case OPR_POW: { /* non-comutative operators */ luaK_exp2anyreg(fs, v); /* first operand must be a register */ break; } default: { luaK_exp2RK(fs, v); break; } } } /* opcode for each binary operator */ static const OpCode codes[] = { /* ORDER OPR */ OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_POW, OP_CONCAT, OP_TESTNE, OP_TESTEQ, OP_TESTLT, OP_TESTLE, OP_TESTGT, OP_TESTGE }; /* `inverted' opcode for each binary operator */ /* ( -1 means operator has no inverse) */ static const OpCode invcodes[] = { /* ORDER OPR */ OP_ADD, (OpCode)-1, OP_MUL, (OpCode)-1, (OpCode)-1, (OpCode)-1, OP_TESTNE, OP_TESTEQ, OP_TESTGT, OP_TESTGE, OP_TESTLT, OP_TESTLE }; void luaK_posfix (FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2) { switch (op) { case OPR_AND: { lua_assert(e1->t == NO_JUMP); /* list must be closed */ dischargevars(fs, e2); luaK_concat(fs, &e1->f, e2->f); e1->k = e2->k; e1->u = e2->u; e1->t = e2->t; break; } case OPR_OR: { lua_assert(e1->f == NO_JUMP); /* list must be closed */ dischargevars(fs, e2); luaK_concat(fs, &e1->t, e2->t); e1->k = e2->k; e1->u = e2->u; e1->f = e2->f; break; } case OPR_CONCAT: { luaK_exp2val(fs, e2); if (e2->k == VRELOCABLE && GET_OPCODE(getcode(fs, e2)) == OP_CONCAT) { lua_assert(e1->u.i.info == GETARG_B(getcode(fs, e2))-1); freeexp(fs, e1); SETARG_B(getcode(fs, e2), e1->u.i.info); e1->k = e2->k; e1->u.i.info = e2->u.i.info; } else { luaK_exp2nextreg(fs, e2); freeexp(fs, e2); freeexp(fs, e1); e1->u.i.info = luaK_codeABC(fs, codes[op], 0, e1->u.i.info, e2->u.i.info); e1->k = VRELOCABLE; } break; } case OPR_EQ: case OPR_NE: { luaK_exp2val(fs, e2); if (e2->k == VNIL) { /* exp x= nil ? */ if (e1->k == VK) { /* constant x= nil ? */ if (op == OPR_EQ) /* constant == nil ? */ e1->k = VNIL; /* always false */ /* else always true (leave the constant itself) */ } else { OpCode opc = (op == OPR_EQ) ? OP_TESTF : OP_TESTT; e1->u.i.info = jumponcond(fs, e1, opc); e1->k = VJMP; } break; } /* else go through */ } default: { int o1, o2; OpCode opc; if (e1->k != VK) { /* not a constant operator? */ o1 = e1->u.i.info; o2 = luaK_exp2RK(fs, e2); /* maybe other operator is constant... */ opc = codes[op]; } else { /* invert operands */ o2 = luaK_exp2RK(fs, e1); /* constant must be 2nd operand */ o1 = luaK_exp2anyreg(fs, e2); /* other operator must be in register */ opc = invcodes[op]; /* use inverted operator */ } freeexp(fs, e2); freeexp(fs, e1); if (op < OPR_NE) { /* ORDER OPR */ e1->u.i.info = luaK_codeABC(fs, opc, 0, o1, o2); e1->k = VRELOCABLE; } else { /* jump */ e1->u.i.info = luaK_condjump(fs, opc, o1, o2); e1->k = VJMP; } } } } static void codelineinfo (FuncState *fs) { Proto *f = fs->f; LexState *ls = fs->ls; if (ls->lastline > fs->lastline) { if (ls->lastline > fs->lastline+1) { luaM_growvector(fs->L, f->lineinfo, fs->nlineinfo, f->sizelineinfo, int, MAX_INT, l_s("line info overflow")); f->lineinfo[fs->nlineinfo++] = -(ls->lastline - (fs->lastline+1)); } luaM_growvector(fs->L, f->lineinfo, fs->nlineinfo, f->sizelineinfo, int, MAX_INT, l_s("line info overflow")); f->lineinfo[fs->nlineinfo++] = fs->pc; fs->lastline = ls->lastline; } } static int luaK_code (FuncState *fs, Instruction i) { Proto *f; codelineinfo(fs); f = fs->f; /* put new instruction in code array */ luaM_growvector(fs->L, f->code, fs->pc, f->sizecode, Instruction, MAX_INT, l_s("code size overflow")); f->code[fs->pc] = i; /*printf("free: %d ", fs->freereg); printopcode(f, fs->pc);*/ return fs->pc++; } int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) { lua_assert(getOpMode(o) == iABC); return luaK_code(fs, CREATE_ABC(o, a, b, c)); } int luaK_codeABc (FuncState *fs, OpCode o, int a, int bc) { lua_assert(getOpMode(o) == iABc || getOpMode(o) == iAsBc); return luaK_code(fs, CREATE_ABc(o, a, bc)); }