mirror of
https://github.com/limine-bootloader/limine
synced 2024-12-13 01:57:10 +03:00
299 lines
10 KiB
C
299 lines
10 KiB
C
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <mm/vmm.h>
|
|
#include <mm/pmm.h>
|
|
#include <lib/misc.h>
|
|
#include <lib/print.h>
|
|
#include <sys/cpu.h>
|
|
|
|
#define PT_SIZE ((uint64_t)0x1000)
|
|
|
|
typedef uint64_t pt_entry_t;
|
|
|
|
static pt_entry_t *get_next_level(pagemap_t pagemap, pt_entry_t *current_level,
|
|
uint64_t virt, enum page_size desired_sz,
|
|
size_t level_idx, size_t entry);
|
|
|
|
#if defined (__x86_64__) || defined (__i386__)
|
|
|
|
#define PT_FLAG_VALID ((uint64_t)1 << 0)
|
|
#define PT_FLAG_WRITE ((uint64_t)1 << 1)
|
|
#define PT_FLAG_USER ((uint64_t)1 << 2)
|
|
#define PT_FLAG_LARGE ((uint64_t)1 << 7)
|
|
#define PT_FLAG_NX ((uint64_t)1 << 63)
|
|
#define PT_PADDR_MASK ((uint64_t)0x0000FFFFFFFFF000)
|
|
|
|
#define PT_TABLE_FLAGS (PT_FLAG_VALID | PT_FLAG_WRITE | PT_FLAG_USER)
|
|
#define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_LARGE)) == PT_FLAG_VALID)
|
|
#define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_LARGE)) == (PT_FLAG_VALID | PT_FLAG_LARGE))
|
|
#define PT_TO_VMM_FLAGS(x) ((x) & (PT_FLAG_WRITE | PT_FLAG_NX))
|
|
|
|
pagemap_t new_pagemap(int lv) {
|
|
pagemap_t pagemap;
|
|
pagemap.levels = lv;
|
|
pagemap.top_level = ext_mem_alloc(PT_SIZE);
|
|
return pagemap;
|
|
}
|
|
|
|
static bool is_1gib_page_supported(void) {
|
|
// Cache the cpuid result :^)
|
|
static bool CACHE_INIT = false;
|
|
static bool CACHE = false;
|
|
|
|
if (!CACHE_INIT) {
|
|
// Check if 1GiB pages are supported:
|
|
uint32_t eax, ebx, ecx, edx;
|
|
|
|
CACHE = cpuid(0x80000001, 0, &eax, &ebx, &ecx, &edx) && ((edx & 1 << 26) == 1 << 26);
|
|
CACHE_INIT = true;
|
|
|
|
printv("paging: 1GiB pages are %s!\n", CACHE ? "supported" : "not supported");
|
|
}
|
|
|
|
return CACHE;
|
|
}
|
|
|
|
void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size pg_size) {
|
|
// Calculate the indices in the various tables using the virtual address
|
|
size_t pml5_entry = (virt_addr & ((uint64_t)0x1ff << 48)) >> 48;
|
|
size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39;
|
|
size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30;
|
|
size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21;
|
|
size_t pml1_entry = (virt_addr & ((uint64_t)0x1ff << 12)) >> 12;
|
|
|
|
pt_entry_t *pml5, *pml4, *pml3, *pml2, *pml1;
|
|
|
|
flags |= PT_FLAG_VALID; // Always present
|
|
|
|
// Paging levels
|
|
switch (pagemap.levels) {
|
|
case 5:
|
|
pml5 = pagemap.top_level;
|
|
goto level5;
|
|
case 4:
|
|
pml4 = pagemap.top_level;
|
|
goto level4;
|
|
default:
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
level5:
|
|
pml4 = get_next_level(pagemap, pml5, virt_addr, pg_size, 4, pml5_entry);
|
|
level4:
|
|
pml3 = get_next_level(pagemap, pml4, virt_addr, pg_size, 3, pml4_entry);
|
|
|
|
if (pg_size == Size1GiB) {
|
|
// Check if 1GiB pages are avaliable.
|
|
if (is_1gib_page_supported()) {
|
|
pml3[pml3_entry] = (pt_entry_t)(phys_addr | flags | PT_FLAG_LARGE);
|
|
} else {
|
|
// If 1GiB pages are not supported then emulate it by splitting them into
|
|
// 2MiB pages.
|
|
for (uint64_t i = 0; i < 0x40000000; i += 0x200000) {
|
|
map_page(pagemap, virt_addr + i, phys_addr + i, flags, Size2MiB);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
pml2 = get_next_level(pagemap, pml3, virt_addr, pg_size, 2, pml3_entry);
|
|
|
|
if (pg_size == Size2MiB) {
|
|
pml2[pml2_entry] = (pt_entry_t)(phys_addr | flags | PT_FLAG_LARGE);
|
|
return;
|
|
}
|
|
|
|
pml1 = get_next_level(pagemap, pml2, virt_addr, pg_size, 1, pml2_entry);
|
|
|
|
pml1[pml1_entry] = (pt_entry_t)(phys_addr | flags);
|
|
}
|
|
|
|
#elif defined (__aarch64__)
|
|
|
|
// Here we operate under the assumption that 4K pages are supported by the CPU.
|
|
// This appears to be guaranteed by UEFI, as section 2.3.6 "AArch64 Platforms"
|
|
// states that the primary processor core configuration includes 4K translation
|
|
// granules (TCR_EL1.TG0 = 0).
|
|
// Support for 4K pages also implies 2M, 1G and 512G blocks.
|
|
|
|
// Sanity check that 4K pages are supported.
|
|
void vmm_assert_4k_pages(void) {
|
|
uint64_t aa64mmfr0;
|
|
asm volatile ("mrs %0, id_aa64mmfr0_el1" : "=r"(aa64mmfr0));
|
|
|
|
if (((aa64mmfr0 >> 28) & 0b1111) == 0b1111) {
|
|
panic(false, "vmm: CPU does not support 4K pages, please make a bug report about this.");
|
|
}
|
|
}
|
|
|
|
#define PT_FLAG_VALID ((uint64_t)1 << 0)
|
|
#define PT_FLAG_TABLE ((uint64_t)1 << 1)
|
|
#define PT_FLAG_4K_PAGE ((uint64_t)1 << 1)
|
|
#define PT_FLAG_BLOCK ((uint64_t)0 << 1)
|
|
#define PT_FLAG_USER ((uint64_t)1 << 6)
|
|
#define PT_FLAG_READONLY ((uint64_t)1 << 7)
|
|
#define PT_FLAG_INNER_SH ((uint64_t)3 << 8)
|
|
#define PT_FLAG_ACCESS ((uint64_t)1 << 10)
|
|
#define PT_FLAG_XN ((uint64_t)1 << 54)
|
|
#define PT_FLAG_WB ((uint64_t)0 << 2)
|
|
#define PT_FLAG_FB ((uint64_t)1 << 2)
|
|
#define PT_PADDR_MASK ((uint64_t)0x0000FFFFFFFFF000)
|
|
|
|
#define PT_TABLE_FLAGS (PT_FLAG_VALID | PT_FLAG_TABLE)
|
|
|
|
#define PT_IS_TABLE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_TABLE)) == (PT_FLAG_VALID | PT_FLAG_TABLE))
|
|
#define PT_IS_LARGE(x) (((x) & (PT_FLAG_VALID | PT_FLAG_TABLE)) == PT_FLAG_VALID)
|
|
#define PT_TO_VMM_FLAGS(x) (pt_to_vmm_flags_internal(x))
|
|
|
|
static uint64_t pt_to_vmm_flags_internal(pt_entry_t entry) {
|
|
uint64_t flags = 0;
|
|
|
|
if (!(entry & PT_FLAG_READONLY))
|
|
flags |= VMM_FLAG_WRITE;
|
|
if (entry & PT_FLAG_XN)
|
|
flags |= VMM_FLAG_NOEXEC;
|
|
if (entry & PT_FLAG_FB)
|
|
flags |= VMM_FLAG_FB;
|
|
|
|
return flags;
|
|
}
|
|
|
|
pagemap_t new_pagemap(int lv) {
|
|
pagemap_t pagemap;
|
|
pagemap.levels = lv;
|
|
pagemap.top_level[0] = ext_mem_alloc(PT_SIZE);
|
|
pagemap.top_level[1] = ext_mem_alloc(PT_SIZE);
|
|
return pagemap;
|
|
}
|
|
|
|
void map_page(pagemap_t pagemap, uint64_t virt_addr, uint64_t phys_addr, uint64_t flags, enum page_size pg_size) {
|
|
// Calculate the indices in the various tables using the virtual address
|
|
size_t pml5_entry = (virt_addr & ((uint64_t)0xf << 48)) >> 48;
|
|
size_t pml4_entry = (virt_addr & ((uint64_t)0x1ff << 39)) >> 39;
|
|
size_t pml3_entry = (virt_addr & ((uint64_t)0x1ff << 30)) >> 30;
|
|
size_t pml2_entry = (virt_addr & ((uint64_t)0x1ff << 21)) >> 21;
|
|
size_t pml1_entry = (virt_addr & ((uint64_t)0x1ff << 12)) >> 12;
|
|
|
|
pt_entry_t *pml5, *pml4, *pml3, *pml2, *pml1;
|
|
|
|
bool is_higher_half = virt_addr & ((uint64_t)1 << 63);
|
|
|
|
uint64_t real_flags = PT_FLAG_VALID | PT_FLAG_INNER_SH | PT_FLAG_ACCESS | PT_FLAG_WB;
|
|
if (!(flags & VMM_FLAG_WRITE))
|
|
real_flags |= PT_FLAG_READONLY;
|
|
if (flags & VMM_FLAG_NOEXEC)
|
|
real_flags |= PT_FLAG_XN;
|
|
if (flags & VMM_FLAG_FB)
|
|
real_flags |= PT_FLAG_FB;
|
|
|
|
// Paging levels
|
|
switch (pagemap.levels) {
|
|
case 5:
|
|
pml5 = pagemap.top_level[is_higher_half];
|
|
goto level5;
|
|
case 4:
|
|
pml4 = pagemap.top_level[is_higher_half];
|
|
goto level4;
|
|
default:
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
level5:
|
|
pml4 = get_next_level(pagemap, pml5, virt_addr, pg_size, 4, pml5_entry);
|
|
level4:
|
|
pml3 = get_next_level(pagemap, pml4, virt_addr, pg_size, 3, pml4_entry);
|
|
|
|
if (pg_size == Size1GiB) {
|
|
pml3[pml3_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_BLOCK);
|
|
return;
|
|
}
|
|
|
|
pml2 = get_next_level(pagemap, pml3, virt_addr, pg_size, 2, pml3_entry);
|
|
|
|
if (pg_size == Size2MiB) {
|
|
pml2[pml2_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_BLOCK);
|
|
return;
|
|
}
|
|
|
|
pml1 = get_next_level(pagemap, pml2, virt_addr, pg_size, 1, pml2_entry);
|
|
|
|
pml1[pml1_entry] = (pt_entry_t)(phys_addr | real_flags | PT_FLAG_4K_PAGE);
|
|
}
|
|
|
|
#else
|
|
#error Unknown architecture
|
|
#endif
|
|
|
|
static pt_entry_t *get_next_level(pagemap_t pagemap, pt_entry_t *current_level,
|
|
uint64_t virt, enum page_size desired_sz,
|
|
size_t level_idx, size_t entry) {
|
|
pt_entry_t *ret;
|
|
|
|
if (PT_IS_TABLE(current_level[entry])) {
|
|
ret = (pt_entry_t *)(size_t)(current_level[entry] & PT_PADDR_MASK);
|
|
} else {
|
|
if (PT_IS_LARGE(current_level[entry])) {
|
|
// We are replacing an existing large page with a smaller page.
|
|
// Split the previous mapping into mappings of the newly requested size
|
|
// before performing the requested map operation.
|
|
|
|
uint64_t old_page_size, new_page_size;
|
|
switch (level_idx) {
|
|
case 2:
|
|
old_page_size = 0x40000000;
|
|
break;
|
|
|
|
case 1:
|
|
old_page_size = 0x200000;
|
|
break;
|
|
|
|
default:
|
|
panic(false, "Unexpected level in get_next_level");
|
|
}
|
|
|
|
switch (desired_sz) {
|
|
case Size1GiB:
|
|
new_page_size = 0x40000000;
|
|
break;
|
|
|
|
case Size2MiB:
|
|
new_page_size = 0x200000;
|
|
break;
|
|
|
|
case Size4KiB:
|
|
new_page_size = 0x1000;
|
|
break;
|
|
|
|
default:
|
|
panic(false, "Unexpected page size in get_next_level");
|
|
}
|
|
|
|
// Save all the information from the old entry at this level
|
|
uint64_t old_flags = PT_TO_VMM_FLAGS(current_level[entry]);
|
|
uint64_t old_phys = current_level[entry] & PT_PADDR_MASK;
|
|
uint64_t old_virt = virt & ~(old_page_size - 1);
|
|
|
|
if (old_phys & (old_page_size - 1))
|
|
panic(false, "Unexpected page table entry address in get_next_level");
|
|
|
|
// Allocate a table for the next level
|
|
ret = ext_mem_alloc(PT_SIZE);
|
|
current_level[entry] = (pt_entry_t)(size_t)ret | PT_TABLE_FLAGS;
|
|
|
|
// Recreate the old mapping with smaller pages
|
|
for (uint64_t i = 0; i < old_page_size; i += new_page_size) {
|
|
map_page(pagemap, old_virt + i, old_phys + i, old_flags, desired_sz);
|
|
}
|
|
} else {
|
|
// Allocate a table for the next level
|
|
ret = ext_mem_alloc(PT_SIZE);
|
|
current_level[entry] = (pt_entry_t)(size_t)ret | PT_TABLE_FLAGS;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|