limine/common/sys/lapic.c
Kacper Słomiński e1f6ac8860
Initial AArch64 port (#205)
* Initial aarch64 port

* Enable chainload on aarch64

No changes necessary since it's all UEFI anyway.

* Add specification for Limine protocol for aarch64

* PROTOCOL: Specify state of information in DT /chosen node

* common: Add spinup code for aarch64

* common: Port elf and term to aarch64

* common: Port vmm to aarch64

Also prepare to drop VMM_FLAG_PRESENT on x86.

* protos: Port limine boot protocol to aarch64

Also drop VMM_FLAG_PRESENT since we never unmap pages anyway.

* test: Add DTB request

* PROTOCOL: Port SMP request to aarch64

* cpu: Add cache maintenance functions for aarch64

* protos/limine, sys: Port SMP to aarch64

Also move common asm macros into a header file.

* test: Start up APs

* vmm: Unify get_next_level and implement large page splitting

* protos/limine: Map framebuffer using correct caching mode on AArch64

* CI: Fix GCC build for aarch64

* entry, menu: Replace uses of naked attribute with separate asm file

GCC does not understand the naked attribute on aarch64, and didn't
understand it for x86 in older versions.
2022-08-18 17:32:54 +02:00

182 lines
4.2 KiB
C

#if defined (__x86_64__) || defined (__i386__)
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#include <sys/lapic.h>
#include <sys/cpu.h>
#include <lib/blib.h>
#include <lib/acpi.h>
#include <mm/pmm.h>
struct madt {
struct sdt header;
uint32_t local_controller_addr;
uint32_t flags;
char madt_entries_begin[];
} __attribute__((packed));
struct madt_io_apic {
uint8_t type;
uint8_t length;
uint8_t apic_id;
uint8_t reserved;
uint32_t address;
uint32_t gsib;
} __attribute__((packed));
struct dmar {
struct sdt header;
uint8_t host_address_width;
uint8_t flags;
uint8_t reserved[10];
symbol remapping_structures;
} __attribute__((packed));
bool lapic_check(void) {
uint32_t eax, ebx, ecx, edx;
if (!cpuid(1, 0, &eax, &ebx, &ecx, &edx))
return false;
if (!(edx & (1 << 9)))
return false;
return true;
}
uint32_t lapic_read(uint32_t reg) {
size_t lapic_mmio_base = (size_t)(rdmsr(0x1b) & 0xfffff000);
return mmind(lapic_mmio_base + reg);
}
void lapic_write(uint32_t reg, uint32_t data) {
size_t lapic_mmio_base = (size_t)(rdmsr(0x1b) & 0xfffff000);
mmoutd(lapic_mmio_base + reg, data);
}
bool x2apic_check(void) {
uint32_t eax, ebx, ecx, edx;
if (!cpuid(1, 0, &eax, &ebx, &ecx, &edx))
return false;
if (!(ecx & (1 << 21)))
return false;
// According to the Intel VT-d spec, we're required
// to check if bit 0 and 1 of the flags field of the
// DMAR ACPI table are set, and if they are, we should
// not report x2APIC capabilities.
struct dmar *dmar = acpi_get_table("DMAR", 0);
if (!dmar)
return true;
if ((dmar->flags & (1 << 0)) && (dmar->flags & (1 << 1)))
return false;
return true;
}
static bool x2apic_mode = false;
bool x2apic_enable(void) {
if (!x2apic_check())
return false;
uint64_t ia32_apic_base = rdmsr(0x1b);
ia32_apic_base |= (1 << 10);
wrmsr(0x1b, ia32_apic_base);
x2apic_mode = true;
return true;
}
void lapic_eoi(void) {
if (!x2apic_mode) {
lapic_write(0xb0, 0);
} else {
x2apic_write(0xb0, 0);
}
}
uint64_t x2apic_read(uint32_t reg) {
return rdmsr(0x800 + (reg >> 4));
}
void x2apic_write(uint32_t reg, uint64_t data) {
wrmsr(0x800 + (reg >> 4), data);
}
static struct madt_io_apic **io_apics = NULL;
static size_t max_io_apics = 0;
void init_io_apics(void) {
static bool already_inited = false;
if (already_inited) {
return;
}
struct madt *madt = acpi_get_table("APIC", 0);
if (madt == NULL) {
goto out;
}
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length;
madt_ptr += *(madt_ptr + 1)) {
switch (*madt_ptr) {
case 1: {
max_io_apics++;
continue;
}
}
}
io_apics = ext_mem_alloc(max_io_apics * sizeof(struct madt_io_apic *));
max_io_apics = 0;
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length;
madt_ptr += *(madt_ptr + 1)) {
switch (*madt_ptr) {
case 1: {
io_apics[max_io_apics++] = (void *)madt_ptr;
continue;
}
}
}
out:
already_inited = true;
}
uint32_t io_apic_read(size_t io_apic, uint32_t reg) {
uintptr_t base = (uintptr_t)io_apics[io_apic]->address;
mmoutd(base, reg);
return mmind(base + 16);
}
void io_apic_write(size_t io_apic, uint32_t reg, uint32_t value) {
uintptr_t base = (uintptr_t)io_apics[io_apic]->address;
mmoutd(base, reg);
mmoutd(base + 16, value);
}
uint32_t io_apic_gsi_count(size_t io_apic) {
return ((io_apic_read(io_apic, 1) & 0xff0000) >> 16) + 1;
}
void io_apic_mask_all(void) {
for (size_t i = 0; i < max_io_apics; i++) {
uint32_t gsi_count = io_apic_gsi_count(i);
for (uint32_t j = 0; j < gsi_count; j++) {
uintptr_t ioredtbl = j * 2 + 16;
io_apic_write(i, ioredtbl, (1 << 16)); // mask
io_apic_write(i, ioredtbl + 1, 0);
}
}
}
#endif