limine/common/sys/cpu_riscv.c

261 lines
7.1 KiB
C

#if defined(__riscv)
#include <lib/acpi.h>
#include <lib/misc.h>
#include <lib/print.h>
#include <sys/cpu.h>
#include <mm/pmm.h>
#include <stddef.h>
#include <stdint.h>
// ACPI RISC-V Hart Capabilities Table
struct rhct {
struct sdt header;
uint32_t flags;
uint64_t time_base_frequency;
uint32_t nodes_len;
uint32_t nodes_offset;
uint8_t nodes[];
} __attribute__((packed));
#define RHCT_ISA_STRING 0
#define RHCT_CMO 1
#define RHCT_MMU 2
#define RHCT_HART_INFO 65535
struct rhct_header {
uint16_t type; // node type
uint16_t size; // node size (bytes)
uint16_t revision; // node revision
} __attribute__((packed));
// One `struct rhct_hart_info` structure exists per hart in the system.
// The `offsets` array points to other entries in the RHCT associated with the
// hart.
struct rhct_hart_info {
struct rhct_header header;
uint16_t offsets_len;
uint32_t acpi_processor_uid;
uint32_t offsets[];
} __attribute__((packed));
struct rhct_isa_string {
struct rhct_header header;
uint16_t isa_string_len;
const char isa_string[];
} __attribute__((packed));
#define RISCV_MMU_TYPE_SV39 0
#define RISCV_MMU_TYPE_SV48 1
#define RISCV_MMU_TYPE_SV57 2
struct rhct_mmu {
struct rhct_header header;
uint8_t reserved0;
uint8_t mmu_type;
} __attribute__((packed));
size_t bsp_hartid;
struct riscv_hart *hart_list;
static struct riscv_hart *bsp_hart;
static struct riscv_hart *riscv_get_hart(size_t hartid) {
for (struct riscv_hart *hart = hart_list; hart != NULL; hart = hart->next) {
if (hart->hartid == hartid) {
return hart;
}
}
panic(false, "no `struct riscv_hart` for hartid %u", hartid);
}
static inline struct rhct_hart_info *rhct_get_hart_info(struct rhct *rhct, uint32_t acpi_uid) {
uint32_t offset = rhct->nodes_offset;
for (uint32_t i = 0; i < rhct->nodes_len; i++) {
struct rhct_hart_info *node = (void *)((uintptr_t)rhct + offset);
if (node->header.type == RHCT_HART_INFO && node->acpi_processor_uid == acpi_uid) {
return node;
}
offset += node->header.size;
}
return NULL;
}
void init_riscv(void) {
struct madt *madt = acpi_get_table("APIC", 0);
struct rhct *rhct = acpi_get_table("RHCT", 0);
if (madt == NULL || rhct == NULL) {
panic(false, "riscv: requires acpi");
}
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length; madt_ptr += *(madt_ptr + 1)) {
if (*madt_ptr != 0x18) {
continue;
}
struct madt_riscv_intc *intc = (struct madt_riscv_intc *)madt_ptr;
// Ignore harts we can't do anything with.
if (!(intc->flags & MADT_RISCV_INTC_ENABLED ||
intc->flags & MADT_RISCV_INTC_ONLINE_CAPABLE)) {
continue;
}
uint32_t acpi_uid = intc->acpi_processor_uid;
size_t hartid = intc->hartid;
struct rhct_hart_info *hart_info = rhct_get_hart_info(rhct, acpi_uid);
if (hart_info == NULL) {
panic(false, "riscv: missing rhct node for hartid %u", hartid);
}
const char *isa_string = NULL;
uint8_t mmu_type = 0;
uint8_t flags = 0;
for (uint32_t i = 0; i < hart_info->offsets_len; i++) {
const struct rhct_header *node = (void *)((uintptr_t)rhct + hart_info->offsets[i]);
switch (node->type) {
case RHCT_ISA_STRING:
isa_string = ((struct rhct_isa_string *)node)->isa_string;
break;
case RHCT_MMU:
mmu_type = ((struct rhct_mmu *)node)->mmu_type;
flags |= RISCV_HART_HAS_MMU;
break;
}
}
if (isa_string == NULL) {
print("riscv: missing isa string for hartid %u, skipping.\n", hartid);
continue;
}
if (strncmp("rv64", isa_string, 4) && strncmp("rv32", isa_string, 4)) {
print("riscv: skipping hartid %u with invalid isa string: %s", hartid, isa_string);
}
struct riscv_hart *hart = ext_mem_alloc(sizeof(struct riscv_hart));
if (hart == NULL) {
panic(false, "out of memory");
}
hart->hartid = hartid;
hart->acpi_uid = acpi_uid;
hart->isa_string = isa_string;
hart->mmu_type = mmu_type;
hart->flags = flags;
hart->next = hart_list;
hart_list = hart;
if (hart->hartid == bsp_hartid) {
bsp_hart = hart;
}
}
if (bsp_hart == NULL) {
panic(false, "riscv: missing `struct riscv_hart` for BSP");
}
if (strncasecmp(bsp_hart->isa_string, "rv64i", 5)) {
panic(false, "unsupported cpu: %s", bsp_hart->isa_string);
}
for (struct riscv_hart *hart = hart_list; hart != NULL; hart = hart->next) {
if (hart != bsp_hart && strcmp(bsp_hart->isa_string, hart->isa_string)) {
hart->flags |= RISCV_HART_COPROC;
}
}
}
struct isa_extension {
const char *name;
size_t name_len;
uint32_t ver_maj;
uint32_t ver_min;
};
// Parse the next sequence of digit characters into an integer.
static bool parse_number(const char **s, size_t *_n) {
size_t n = 0;
bool parsed = false;
while (isdigit(**s)) {
n *= 10;
n += *(*s)++ - '0';
parsed = true;
}
*_n = n;
return parsed;
}
// Parse the next extension from an ISA string.
static bool parse_extension(const char **s, struct isa_extension *ext) {
if (**s == '\0') {
return false;
}
const char *name = *s;
size_t name_len = 1;
if (**s == 's' || **s == 'S' || **s == 'x' || **s == 'X' || **s == 'z' || **s == 'Z') {
while (isalpha((*s)[name_len])) {
name_len++;
}
}
*s += name_len;
size_t maj = 0, min = 0;
if (parse_number(s, &maj)) {
if (**s == 'p') {
*s += 1;
parse_number(s, &min);
}
}
while (**s == '_') {
*s += 1;
}
if (ext) {
ext->name = name;
ext->name_len = name_len;
ext->ver_maj = maj;
ext->ver_min = min;
}
return true;
}
static bool extension_matches(const struct isa_extension *ext, const char *name) {
for (size_t i = 0; i < ext->name_len; i++) {
const char c1 = tolower(ext->name[i]);
const char c2 = tolower(*name++);
if (c2 == '\0' || c1 != c2) {
return false;
}
}
// Make sure `name` is not longer.
return *name == '\0';
}
bool riscv_check_isa_extension_for(size_t hartid, const char *name, size_t *maj, size_t *min) {
// Skip the `rv{32,64}` prefix so it's not parsed as extensions.
const char *isa_string = riscv_get_hart(hartid)->isa_string + 4;
struct isa_extension ext;
while (parse_extension(&isa_string, &ext)) {
if (!extension_matches(&ext, name)) {
continue;
}
if (maj) {
*maj = ext.ver_maj;
}
if (min) {
*min = ext.ver_min;
}
return true;
}
return false;
}
#endif