mirror of
https://github.com/limine-bootloader/limine
synced 2024-12-05 14:42:16 +03:00
763 lines
22 KiB
C
763 lines
22 KiB
C
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <mm/pmm.h>
|
|
#include <sys/e820.h>
|
|
#include <lib/acpi.h>
|
|
#include <lib/misc.h>
|
|
#include <lib/libc.h>
|
|
#include <lib/print.h>
|
|
#if defined (UEFI)
|
|
# include <efi.h>
|
|
#endif
|
|
|
|
#define PAGE_SIZE 4096
|
|
|
|
#if defined (BIOS)
|
|
extern symbol bss_end;
|
|
#endif
|
|
|
|
bool allocations_disallowed = true;
|
|
static void sanitise_entries(struct memmap_entry *, size_t *, bool);
|
|
|
|
void *conv_mem_alloc(size_t count) {
|
|
static uint64_t base = 4096;
|
|
|
|
if (allocations_disallowed)
|
|
panic(false, "Memory allocations disallowed");
|
|
|
|
count = ALIGN_UP(count, 4096);
|
|
|
|
for (;;) {
|
|
if (base + count > 0x100000)
|
|
panic(false, "Conventional memory allocation failed");
|
|
|
|
if (memmap_alloc_range(base, count, MEMMAP_BOOTLOADER_RECLAIMABLE, MEMMAP_USABLE, false, false, false)) {
|
|
void *ret = (void *)(uintptr_t)base;
|
|
// Zero out allocated space
|
|
memset(ret, 0, count);
|
|
base += count;
|
|
|
|
sanitise_entries(memmap, &memmap_entries, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
base += 4096;
|
|
}
|
|
}
|
|
|
|
#if defined (BIOS)
|
|
#define memmap_max_entries ((size_t)512)
|
|
|
|
struct memmap_entry memmap[memmap_max_entries];
|
|
size_t memmap_entries = 0;
|
|
#endif
|
|
|
|
#if defined (UEFI)
|
|
static size_t memmap_max_entries;
|
|
|
|
struct memmap_entry *memmap;
|
|
size_t memmap_entries = 0;
|
|
|
|
struct memmap_entry *untouched_memmap;
|
|
size_t untouched_memmap_entries = 0;
|
|
#endif
|
|
|
|
static const char *memmap_type(uint32_t type) {
|
|
switch (type) {
|
|
case MEMMAP_USABLE:
|
|
return "Usable RAM";
|
|
case MEMMAP_RESERVED:
|
|
return "Reserved";
|
|
case MEMMAP_ACPI_RECLAIMABLE:
|
|
return "ACPI reclaimable";
|
|
case MEMMAP_ACPI_NVS:
|
|
return "ACPI NVS";
|
|
case MEMMAP_BAD_MEMORY:
|
|
return "Bad memory";
|
|
case MEMMAP_FRAMEBUFFER:
|
|
return "Framebuffer";
|
|
case MEMMAP_BOOTLOADER_RECLAIMABLE:
|
|
return "Bootloader reclaimable";
|
|
case MEMMAP_KERNEL_AND_MODULES:
|
|
return "Kernel/Modules";
|
|
case MEMMAP_EFI_RECLAIMABLE:
|
|
return "EFI reclaimable";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
void print_memmap(struct memmap_entry *mm, size_t size) {
|
|
for (size_t i = 0; i < size; i++) {
|
|
print("[%X -> %X] : %X <%s (%x)>\n",
|
|
mm[i].base,
|
|
mm[i].base + mm[i].length,
|
|
mm[i].length,
|
|
memmap_type(mm[i].type), mm[i].type);
|
|
}
|
|
}
|
|
|
|
static bool align_entry(uint64_t *base, uint64_t *length) {
|
|
if (*length < PAGE_SIZE)
|
|
return false;
|
|
|
|
uint64_t orig_base = *base;
|
|
|
|
*base = ALIGN_UP(*base, PAGE_SIZE);
|
|
|
|
*length -= (*base - orig_base);
|
|
*length = ALIGN_DOWN(*length, PAGE_SIZE);
|
|
|
|
if (!length)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool sanitiser_keep_first_page = false;
|
|
|
|
static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_entries) {
|
|
size_t count = *_count;
|
|
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (m[i].type != MEMMAP_USABLE)
|
|
continue;
|
|
|
|
// Check if the entry overlaps other entries
|
|
for (size_t j = 0; j < count; j++) {
|
|
if (j == i)
|
|
continue;
|
|
|
|
uint64_t base = m[i].base;
|
|
uint64_t length = m[i].length;
|
|
uint64_t top = base + length;
|
|
|
|
uint64_t res_base = m[j].base;
|
|
uint64_t res_length = m[j].length;
|
|
uint64_t res_top = res_base + res_length;
|
|
|
|
if ( (res_base >= base && res_base < top)
|
|
&& (res_top >= base && res_top < top) ) {
|
|
// TODO actually handle splitting off usable chunks
|
|
panic(false, "A non-usable memory map entry is inside a usable section.");
|
|
}
|
|
|
|
if (res_base >= base && res_base < top) {
|
|
top = res_base;
|
|
}
|
|
|
|
if (res_top >= base && res_top < top) {
|
|
base = res_top;
|
|
}
|
|
|
|
m[i].base = base;
|
|
m[i].length = top - base;
|
|
}
|
|
|
|
if (!m[i].length
|
|
|| (align_entries && !align_entry(&m[i].base, &m[i].length))) {
|
|
// Remove i from memmap
|
|
m[i] = m[count - 1];
|
|
count--; i--;
|
|
}
|
|
}
|
|
|
|
// Remove 0 length usable entries and usable entries below 0x1000
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (m[i].type != MEMMAP_USABLE)
|
|
continue;
|
|
|
|
if (!sanitiser_keep_first_page && m[i].base < 0x1000) {
|
|
if (m[i].base + m[i].length <= 0x1000) {
|
|
goto del_mm1;
|
|
}
|
|
|
|
m[i].length -= 0x1000 - m[i].base;
|
|
m[i].base = 0x1000;
|
|
}
|
|
|
|
if (m[i].length == 0) {
|
|
del_mm1:
|
|
// Remove i from memmap
|
|
m[i] = m[count - 1];
|
|
count--; i--;
|
|
}
|
|
}
|
|
|
|
// Sort the entries
|
|
for (size_t p = 0; p < count - 1; p++) {
|
|
uint64_t min = m[p].base;
|
|
size_t min_index = p;
|
|
for (size_t i = p; i < count; i++) {
|
|
if (m[i].base < min) {
|
|
min = m[i].base;
|
|
min_index = i;
|
|
}
|
|
}
|
|
struct memmap_entry min_e = m[min_index];
|
|
m[min_index] = m[p];
|
|
m[p] = min_e;
|
|
}
|
|
|
|
// Merge contiguous bootloader-reclaimable and usable entries
|
|
for (size_t i = 0; i < count - 1; i++) {
|
|
if (m[i].type != MEMMAP_BOOTLOADER_RECLAIMABLE
|
|
&& m[i].type != MEMMAP_USABLE)
|
|
continue;
|
|
|
|
if (m[i+1].type == m[i].type
|
|
&& m[i+1].base == m[i].base + m[i].length) {
|
|
m[i].length += m[i+1].length;
|
|
|
|
// Eradicate from memmap
|
|
for (size_t j = i + 2; j < count; j++) {
|
|
m[j - 1] = m[j];
|
|
}
|
|
count--;
|
|
i--;
|
|
}
|
|
}
|
|
|
|
*_count = count;
|
|
}
|
|
|
|
#if defined (UEFI)
|
|
static void pmm_reclaim_uefi_mem(struct memmap_entry *m, size_t *_count);
|
|
#endif
|
|
|
|
struct memmap_entry *get_memmap(size_t *entries) {
|
|
#if defined (UEFI)
|
|
if (efi_boot_services_exited == false) {
|
|
panic(true, "get_memmap called whilst in boot services");
|
|
}
|
|
|
|
pmm_reclaim_uefi_mem(memmap, &memmap_entries);
|
|
#endif
|
|
|
|
sanitise_entries(memmap, &memmap_entries, true);
|
|
|
|
*entries = memmap_entries;
|
|
|
|
allocations_disallowed = true;
|
|
|
|
return memmap;
|
|
}
|
|
|
|
#if defined (BIOS)
|
|
void init_memmap(void) {
|
|
for (size_t i = 0; i < e820_entries; i++) {
|
|
if (memmap_entries == memmap_max_entries) {
|
|
panic(false, "Memory map exhausted.");
|
|
}
|
|
|
|
memmap[memmap_entries] = e820_map[i];
|
|
|
|
uint64_t top = memmap[memmap_entries].base + memmap[memmap_entries].length;
|
|
|
|
if (memmap[memmap_entries].type == MEMMAP_USABLE) {
|
|
if (memmap[memmap_entries].base >= EBDA && memmap[memmap_entries].base < 0x100000) {
|
|
if (top <= 0x100000)
|
|
continue;
|
|
|
|
memmap[memmap_entries].length -= 0x100000 - memmap[memmap_entries].base;
|
|
memmap[memmap_entries].base = 0x100000;
|
|
}
|
|
|
|
if (top > EBDA && top <= 0x100000) {
|
|
memmap[memmap_entries].length -= top - EBDA;
|
|
}
|
|
}
|
|
|
|
memmap_entries++;
|
|
}
|
|
|
|
sanitise_entries(memmap, &memmap_entries, false);
|
|
|
|
// Allocate bootloader itself
|
|
memmap_alloc_range(4096,
|
|
ALIGN_UP((uintptr_t)bss_end, 4096) - 4096, MEMMAP_BOOTLOADER_RECLAIMABLE, 0, true, false, false);
|
|
|
|
sanitise_entries(memmap, &memmap_entries, false);
|
|
|
|
allocations_disallowed = false;
|
|
}
|
|
#endif
|
|
|
|
#if defined (UEFI)
|
|
extern symbol __image_base;
|
|
extern symbol __image_end;
|
|
|
|
void init_memmap(void) {
|
|
EFI_STATUS status;
|
|
|
|
EFI_MEMORY_DESCRIPTOR tmp_mmap[1];
|
|
efi_mmap_size = sizeof(tmp_mmap);
|
|
UINTN mmap_key = 0;
|
|
|
|
gBS->GetMemoryMap(&efi_mmap_size, tmp_mmap, &mmap_key, &efi_desc_size, &efi_desc_ver);
|
|
|
|
memmap_max_entries = (efi_mmap_size / efi_desc_size) + 512;
|
|
|
|
efi_mmap_size += 4096;
|
|
|
|
status = gBS->AllocatePool(EfiLoaderData, efi_mmap_size, (void **)&efi_mmap);
|
|
if (status) {
|
|
goto fail;
|
|
}
|
|
|
|
status = gBS->AllocatePool(EfiLoaderData, memmap_max_entries * sizeof(struct memmap_entry), (void **)&memmap);
|
|
if (status) {
|
|
goto fail;
|
|
}
|
|
|
|
status = gBS->AllocatePool(EfiLoaderData, memmap_max_entries * sizeof(struct memmap_entry), (void **)&untouched_memmap);
|
|
if (status) {
|
|
goto fail;
|
|
}
|
|
|
|
status = gBS->GetMemoryMap(&efi_mmap_size, efi_mmap, &mmap_key, &efi_desc_size, &efi_desc_ver);
|
|
if (status) {
|
|
goto fail;
|
|
}
|
|
|
|
size_t entry_count = efi_mmap_size / efi_desc_size;
|
|
|
|
for (size_t i = 0; i < entry_count; i++) {
|
|
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
|
|
|
|
uint32_t our_type;
|
|
switch (entry->Type) {
|
|
case EfiReservedMemoryType:
|
|
case EfiRuntimeServicesCode:
|
|
case EfiRuntimeServicesData:
|
|
case EfiUnusableMemory:
|
|
case EfiMemoryMappedIO:
|
|
case EfiMemoryMappedIOPortSpace:
|
|
case EfiPalCode:
|
|
case EfiLoaderCode:
|
|
case EfiLoaderData:
|
|
default:
|
|
our_type = MEMMAP_RESERVED; break;
|
|
case EfiBootServicesCode:
|
|
case EfiBootServicesData:
|
|
our_type = MEMMAP_EFI_RECLAIMABLE; break;
|
|
case EfiACPIReclaimMemory:
|
|
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
|
|
case EfiACPIMemoryNVS:
|
|
our_type = MEMMAP_ACPI_NVS; break;
|
|
case EfiConventionalMemory:
|
|
our_type = MEMMAP_USABLE; break;
|
|
}
|
|
|
|
uint64_t base = entry->PhysicalStart;
|
|
uint64_t length = entry->NumberOfPages * 4096;
|
|
|
|
// We only manage memory below 4GiB. For anything above that, make it
|
|
// EFI reclaimable.
|
|
if (our_type == MEMMAP_USABLE) {
|
|
if (base + length > 0x100000000) {
|
|
if (base < 0x100000000) {
|
|
memmap[memmap_entries].base = base;
|
|
memmap[memmap_entries].length = 0x100000000 - base;
|
|
memmap[memmap_entries].type = our_type;
|
|
|
|
base = 0x100000000;
|
|
length -= memmap[memmap_entries].length;
|
|
|
|
memmap_entries++;
|
|
}
|
|
|
|
our_type = MEMMAP_EFI_RECLAIMABLE;
|
|
}
|
|
}
|
|
|
|
memmap[memmap_entries].base = base;
|
|
memmap[memmap_entries].length = length;
|
|
memmap[memmap_entries].type = our_type;
|
|
|
|
memmap_entries++;
|
|
}
|
|
|
|
bool old_skfp = sanitiser_keep_first_page;
|
|
sanitiser_keep_first_page = true;
|
|
sanitise_entries(memmap, &memmap_entries, false);
|
|
|
|
allocations_disallowed = false;
|
|
|
|
// Let's leave 64MiB to the firmware below 4GiB
|
|
for (size_t i = 0; i < 64; i++) {
|
|
ext_mem_alloc_type(0x100000, MEMMAP_EFI_RECLAIMABLE);
|
|
}
|
|
|
|
memcpy(untouched_memmap, memmap, memmap_entries * sizeof(struct memmap_entry));
|
|
untouched_memmap_entries = memmap_entries;
|
|
|
|
// Now own all the usable entries
|
|
for (size_t i = 0; i < untouched_memmap_entries; i++) {
|
|
if (untouched_memmap[i].type != MEMMAP_USABLE)
|
|
continue;
|
|
|
|
EFI_PHYSICAL_ADDRESS base = untouched_memmap[i].base;
|
|
|
|
status = gBS->AllocatePages(AllocateAddress, EfiLoaderData,
|
|
untouched_memmap[i].length / 4096, &base);
|
|
|
|
if (status) {
|
|
for (size_t j = 0; j < untouched_memmap[i].length; j += 4096) {
|
|
base = untouched_memmap[i].base + j;
|
|
status = gBS->AllocatePages(AllocateAddress, EfiLoaderData, 1, &base);
|
|
if (status) {
|
|
memmap_alloc_range(base, 4096, MEMMAP_EFI_RECLAIMABLE, MEMMAP_USABLE, true, false, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
memcpy(untouched_memmap, memmap, memmap_entries * sizeof(struct memmap_entry));
|
|
untouched_memmap_entries = memmap_entries;
|
|
|
|
sanitiser_keep_first_page = old_skfp;
|
|
|
|
size_t bootloader_size = ALIGN_UP((uintptr_t)__image_end - (uintptr_t)__image_base, 4096);
|
|
|
|
// Allocate bootloader itself
|
|
memmap_alloc_range((uintptr_t)__image_base, bootloader_size,
|
|
MEMMAP_BOOTLOADER_RECLAIMABLE, 0, true, false, true);
|
|
|
|
sanitise_entries(memmap, &memmap_entries, false);
|
|
|
|
return;
|
|
|
|
fail:
|
|
panic(false, "pmm: Failure initialising memory map");
|
|
}
|
|
|
|
static void pmm_reclaim_uefi_mem(struct memmap_entry *m, size_t *_count) {
|
|
size_t count = *_count;
|
|
|
|
size_t recl_i = 0;
|
|
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (m[i].type == MEMMAP_EFI_RECLAIMABLE) {
|
|
recl_i++;
|
|
}
|
|
}
|
|
|
|
struct memmap_entry *recl = ext_mem_alloc(recl_i * sizeof(struct memmap_entry));
|
|
|
|
for (size_t i = 0, j = 0; i < count; i++) {
|
|
if (m[i].type == MEMMAP_EFI_RECLAIMABLE) {
|
|
recl[j++] = m[i];
|
|
}
|
|
}
|
|
|
|
for (size_t ri = 0; ri < recl_i; ri++) {
|
|
struct memmap_entry *r = &recl[ri];
|
|
|
|
// Punch holes in our EFI reclaimable entry for every EFI area which is
|
|
// boot services or conventional that fits within
|
|
size_t efi_mmap_entry_count = efi_mmap_size / efi_desc_size;
|
|
for (size_t i = 0; i < efi_mmap_entry_count; i++) {
|
|
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
|
|
|
|
uint64_t base = r->base;
|
|
uint64_t top = base + r->length;
|
|
uint64_t efi_base = entry->PhysicalStart;
|
|
uint64_t efi_size = entry->NumberOfPages * 4096;
|
|
|
|
if (efi_base < base) {
|
|
if (efi_size <= base - efi_base)
|
|
continue;
|
|
efi_size -= base - efi_base;
|
|
efi_base = base;
|
|
}
|
|
|
|
uint64_t efi_top = efi_base + efi_size;
|
|
|
|
if (efi_top > top) {
|
|
if (efi_size <= efi_top - top)
|
|
continue;
|
|
efi_size -= efi_top - top;
|
|
efi_top = top;
|
|
}
|
|
|
|
// Sanity check
|
|
if (!(efi_base >= base && efi_base < top
|
|
&& efi_top > base && efi_top <= top))
|
|
continue;
|
|
|
|
uint32_t our_type;
|
|
switch (entry->Type) {
|
|
case EfiBootServicesCode:
|
|
case EfiBootServicesData:
|
|
case EfiConventionalMemory:
|
|
our_type = MEMMAP_USABLE; break;
|
|
case EfiACPIReclaimMemory:
|
|
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
|
|
case EfiACPIMemoryNVS:
|
|
our_type = MEMMAP_ACPI_NVS; break;
|
|
default:
|
|
our_type = MEMMAP_RESERVED; break;
|
|
}
|
|
|
|
memmap_alloc_range_in(m, &count, efi_base, efi_size, our_type, 0, true, false, false);
|
|
}
|
|
}
|
|
|
|
allocations_disallowed = true;
|
|
|
|
sanitise_entries(m, &count, false);
|
|
|
|
*_count = count;
|
|
}
|
|
|
|
void pmm_release_uefi_mem(void) {
|
|
EFI_STATUS status;
|
|
|
|
for (size_t i = 0; i < untouched_memmap_entries; i++) {
|
|
if (untouched_memmap[i].type != MEMMAP_USABLE
|
|
&& untouched_memmap[i].type != MEMMAP_BOOTLOADER_RECLAIMABLE) {
|
|
continue;
|
|
}
|
|
|
|
status = gBS->FreePages(untouched_memmap[i].base, untouched_memmap[i].length / 4096);
|
|
|
|
if (status) {
|
|
panic(false, "pmm: FreePages failure (%x)", status);
|
|
}
|
|
}
|
|
|
|
allocations_disallowed = true;
|
|
}
|
|
#endif
|
|
|
|
#if defined (BIOS)
|
|
struct memmap_entry *get_raw_memmap(size_t *entry_count) {
|
|
*entry_count = e820_entries;
|
|
return e820_map;
|
|
}
|
|
#endif
|
|
|
|
#if defined (UEFI)
|
|
struct memmap_entry *get_raw_memmap(size_t *entry_count) {
|
|
if (efi_boot_services_exited == false) {
|
|
panic(true, "get_raw_memmap called whilst in boot services");
|
|
}
|
|
|
|
bool old_skfp = sanitiser_keep_first_page;
|
|
sanitiser_keep_first_page = true;
|
|
pmm_reclaim_uefi_mem(untouched_memmap, &untouched_memmap_entries);
|
|
sanitiser_keep_first_page = old_skfp;
|
|
|
|
*entry_count = untouched_memmap_entries;
|
|
return untouched_memmap;
|
|
}
|
|
#endif
|
|
|
|
void pmm_free(void *ptr, size_t count) {
|
|
count = ALIGN_UP(count, 4096);
|
|
if (allocations_disallowed)
|
|
panic(false, "Memory allocations disallowed");
|
|
memmap_alloc_range((uintptr_t)ptr, count, MEMMAP_USABLE, 0, false, false, true);
|
|
}
|
|
|
|
void *ext_mem_alloc(size_t count) {
|
|
return ext_mem_alloc_type(count, MEMMAP_BOOTLOADER_RECLAIMABLE);
|
|
}
|
|
|
|
void *ext_mem_alloc_type(size_t count, uint32_t type) {
|
|
return ext_mem_alloc_type_aligned(count, type, 4096);
|
|
}
|
|
|
|
// Allocate memory top down, hopefully without bumping into kernel or modules
|
|
void *ext_mem_alloc_type_aligned(size_t count, uint32_t type, size_t alignment) {
|
|
count = ALIGN_UP(count, alignment);
|
|
|
|
if (allocations_disallowed)
|
|
panic(false, "Memory allocations disallowed");
|
|
|
|
for (int i = memmap_entries - 1; i >= 0; i--) {
|
|
if (memmap[i].type != 1)
|
|
continue;
|
|
|
|
int64_t entry_base = (int64_t)(memmap[i].base);
|
|
int64_t entry_top = (int64_t)(memmap[i].base + memmap[i].length);
|
|
|
|
// Let's make sure the entry is not > 4GiB
|
|
if (entry_top >= 0x100000000) {
|
|
entry_top = 0x100000000;
|
|
if (entry_base >= entry_top)
|
|
continue;
|
|
}
|
|
|
|
int64_t alloc_base = ALIGN_DOWN(entry_top - (int64_t)count, alignment);
|
|
|
|
// This entry is too small for us.
|
|
if (alloc_base < entry_base)
|
|
continue;
|
|
|
|
// We now reserve the range we need.
|
|
int64_t aligned_length = entry_top - alloc_base;
|
|
memmap_alloc_range((uint64_t)alloc_base, (uint64_t)aligned_length, type, MEMMAP_USABLE, true, false, false);
|
|
|
|
void *ret = (void *)(size_t)alloc_base;
|
|
|
|
// Zero out allocated space
|
|
memset(ret, 0, count);
|
|
|
|
sanitise_entries(memmap, &memmap_entries, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
panic(false, "High memory allocator: Out of memory");
|
|
}
|
|
|
|
/// Compute and returns the amount of upper and lower memory till
|
|
/// the first hole.
|
|
struct meminfo mmap_get_info(size_t mmap_count, struct memmap_entry *mmap) {
|
|
struct meminfo info = {0};
|
|
|
|
for (size_t i = 0; i < mmap_count; i++) {
|
|
if (mmap[i].type == MEMMAP_USABLE) {
|
|
// NOTE: Upper memory starts at address 1MiB and the
|
|
// value of uppermem is the address of the first upper memory
|
|
// hole minus 1MiB.
|
|
if (mmap[i].base < 0x100000) {
|
|
if (mmap[i].base + mmap[i].length > 0x100000) {
|
|
size_t low_len = 0x100000 - mmap[i].base;
|
|
|
|
info.lowermem += low_len;
|
|
info.uppermem += mmap[i].length - low_len;
|
|
} else {
|
|
info.lowermem += mmap[i].length;
|
|
}
|
|
} else {
|
|
info.uppermem += mmap[i].length;
|
|
}
|
|
}
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
static bool pmm_new_entry(struct memmap_entry *m, size_t *_count,
|
|
uint64_t base, uint64_t length, uint32_t type) {
|
|
size_t count = *_count;
|
|
|
|
uint64_t top = base + length;
|
|
|
|
// Handle overlapping new entries.
|
|
for (size_t i = 0; i < count; i++) {
|
|
uint64_t entry_base = m[i].base;
|
|
uint64_t entry_top = m[i].base + m[i].length;
|
|
|
|
// Full overlap
|
|
if (base <= entry_base && top >= entry_top) {
|
|
// Remove overlapped entry
|
|
m[i] = m[count - 1];
|
|
count--;
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
// Partial overlap (bottom)
|
|
if (base <= entry_base && top < entry_top && top > entry_base) {
|
|
// Entry gets bottom shaved off
|
|
m[i].base += top - entry_base;
|
|
m[i].length -= top - entry_base;
|
|
continue;
|
|
}
|
|
|
|
// Partial overlap (top)
|
|
if (base > entry_base && base < entry_top && top >= entry_top) {
|
|
// Entry gets top shaved off
|
|
m[i].length -= entry_top - base;
|
|
continue;
|
|
}
|
|
|
|
// Nested (pain)
|
|
if (base > entry_base && top < entry_top) {
|
|
// Entry gets top shaved off first
|
|
m[i].length -= entry_top - base;
|
|
|
|
// Now we need to create a new entry
|
|
if (count >= memmap_max_entries)
|
|
panic(false, "Memory map exhausted.");
|
|
|
|
struct memmap_entry *new_entry = &m[count++];
|
|
|
|
new_entry->type = m[i].type;
|
|
new_entry->base = top;
|
|
new_entry->length = entry_top - top;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (count >= memmap_max_entries)
|
|
panic(false, "Memory map exhausted.");
|
|
|
|
struct memmap_entry *target = &m[count++];
|
|
|
|
target->type = type;
|
|
target->base = base;
|
|
target->length = length;
|
|
|
|
*_count = count;
|
|
return true;
|
|
}
|
|
|
|
bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
|
|
uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
|
|
size_t count = *_count;
|
|
|
|
if (length == 0)
|
|
return true;
|
|
|
|
if (simulation && new_entry) {
|
|
return true;
|
|
}
|
|
|
|
uint64_t top = base + length;
|
|
|
|
for (size_t i = 0; i < count; i++) {
|
|
if (overlay_type != 0 && m[i].type != overlay_type)
|
|
continue;
|
|
|
|
uint64_t entry_base = m[i].base;
|
|
uint64_t entry_top = m[i].base + m[i].length;
|
|
|
|
if (base >= entry_base && base < entry_top && top <= entry_top) {
|
|
if (simulation)
|
|
return true;
|
|
|
|
if (pmm_new_entry(m, &count, base, length, type) == true) {
|
|
goto success;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!new_entry && do_panic)
|
|
panic(false, "Memory allocation failure.");
|
|
|
|
if (!new_entry) {
|
|
return false;
|
|
}
|
|
|
|
if (pmm_new_entry(m, &count, base, length, type) == false) {
|
|
return false;
|
|
}
|
|
|
|
success:
|
|
sanitise_entries(m, &count, false);
|
|
*_count = count;
|
|
return true;
|
|
}
|
|
|
|
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
|
|
return memmap_alloc_range_in(memmap, &memmap_entries, base, length, type, overlay_type, do_panic, simulation, new_entry);
|
|
}
|