limine/common/protos/multiboot1.c

435 lines
16 KiB
C

#if defined (__x86_64__) || defined (__i386__)
#include <stdint.h>
#include <stddef.h>
#include <stdnoreturn.h>
#include <protos/multiboot1.h>
#include <protos/multiboot.h>
#include <config.h>
#include <lib/libc.h>
#include <lib/elf.h>
#include <lib/misc.h>
#include <lib/config.h>
#include <lib/print.h>
#include <lib/uri.h>
#include <lib/fb.h>
#include <lib/term.h>
#include <lib/elsewhere.h>
#include <sys/pic.h>
#include <sys/cpu.h>
#include <sys/idt.h>
#include <fs/file.h>
#include <mm/vmm.h>
#include <mm/pmm.h>
#include <drivers/vga_textmode.h>
#define LIMINE_BRAND "Limine " LIMINE_VERSION
// Returns the size required to store the multiboot info.
static size_t get_multiboot1_info_size(
char *cmdline,
size_t modules_count, size_t modules_cmdlines_size,
uint32_t section_entry_size, uint32_t section_num
) {
return ALIGN_UP(sizeof(struct multiboot1_info), 16) + // base structure
ALIGN_UP(strlen(cmdline) + 1, 16) + // cmdline
ALIGN_UP(sizeof(LIMINE_BRAND), 16) + // bootloader brand
ALIGN_UP(sizeof(section_entry_size * section_num), 16) + // ELF info
ALIGN_UP(sizeof(struct multiboot1_module) * modules_count, 16) + // modules count
ALIGN_UP(modules_cmdlines_size, 16) + // modules command lines
ALIGN_UP(sizeof(struct multiboot1_mmap_entry) * 256, 16); // memory map
}
static void *mb1_info_alloc(void **mb1_info_raw, size_t size) {
void *ret = *mb1_info_raw;
*mb1_info_raw += ALIGN_UP(size, 16);
return ret;
}
noreturn void multiboot1_load(char *config, char *cmdline) {
struct file_handle *kernel_file;
char *kernel_path = config_get_value(config, 0, "KERNEL_PATH");
if (kernel_path == NULL)
panic(true, "multiboot1: KERNEL_PATH not specified");
print("multiboot1: Loading kernel `%#`...\n", kernel_path);
if ((kernel_file = uri_open(kernel_path)) == NULL)
panic(true, "multiboot1: Failed to open kernel with path `%#`. Is the path correct?", kernel_path);
uint8_t *kernel = freadall(kernel_file, MEMMAP_KERNEL_AND_MODULES);
size_t kernel_file_size = kernel_file->size;
fclose(kernel_file);
struct multiboot1_header header = {0};
size_t header_offset = 0;
for (header_offset = 0; header_offset < 8192; header_offset += 4) {
uint32_t v = *(uint32_t *)(kernel+header_offset);
if (v == MULTIBOOT1_HEADER_MAGIC) {
memcpy(&header, kernel + header_offset, sizeof(header));
break;
}
}
if (header.magic != MULTIBOOT1_HEADER_MAGIC) {
panic(true, "multiboot1: Invalid magic");
}
if (header.magic + header.flags + header.checksum)
panic(true, "multiboot1: Header checksum is invalid");
bool section_hdr_info_valid = false;
struct elf_section_hdr_info section_hdr_info = {0};
uint64_t entry_point;
struct elsewhere_range *ranges;
uint64_t ranges_count;
if (header.flags & (1 << 16)) {
if (header.load_addr > header.header_addr)
panic(true, "multiboot1: Illegal load address");
size_t load_size;
if (header.load_end_addr)
load_size = header.load_end_addr - header.load_addr;
else
load_size = kernel_file_size;
uint32_t bss_size = 0;
if (header.bss_end_addr) {
uintptr_t bss_addr = header.load_addr + load_size;
if (header.bss_end_addr < bss_addr)
panic(true, "multiboot1: Illegal bss end address");
bss_size = header.bss_end_addr - bss_addr;
}
size_t full_size = load_size + bss_size;
void *elsewhere = ext_mem_alloc(full_size);
memcpy(elsewhere, kernel + (header_offset
- (header.header_addr - header.load_addr)), load_size);
entry_point = header.entry_addr;
ranges_count = 1;
ranges = ext_mem_alloc(sizeof(struct elsewhere_range));
ranges->elsewhere = (uintptr_t)elsewhere;
ranges->target = header.load_addr;
ranges->length = full_size;
} else {
int bits = elf_bits(kernel);
switch (bits) {
case 32:
if (!elf32_load_elsewhere(kernel, &entry_point, &ranges, &ranges_count))
panic(true, "multiboot1: ELF32 load failure");
section_hdr_info = elf32_section_hdr_info(kernel);
section_hdr_info_valid = true;
break;
case 64: {
if (!elf64_load_elsewhere(kernel, &entry_point, &ranges, &ranges_count))
panic(true, "multiboot1: ELF64 load failure");
section_hdr_info = elf64_section_hdr_info(kernel);
section_hdr_info_valid = true;
break;
}
default:
panic(true, "multiboot1: Invalid ELF file bitness");
}
}
size_t n_modules;
size_t modules_cmdlines_size = 0;
for (n_modules = 0;; n_modules++) {
struct conf_tuple conf_tuple = config_get_tuple(config, n_modules, "MODULE_PATH", "MODULE_STRING");
if (!conf_tuple.value1) break;
char *module_cmdline = conf_tuple.value2;
if (!module_cmdline) module_cmdline = "";
modules_cmdlines_size += ALIGN_UP(strlen(module_cmdline) + 1, 16);
}
size_t mb1_info_size = get_multiboot1_info_size(
cmdline,
n_modules,
modules_cmdlines_size,
section_hdr_info_valid ? section_hdr_info.section_entry_size : 0,
section_hdr_info_valid ? section_hdr_info.num : 0
);
// Realloc elsewhere ranges to include mb1 info, modules, and elf sections
struct elsewhere_range *new_ranges = ext_mem_alloc(sizeof(struct elsewhere_range) *
(ranges_count
+ 1 /* mb1 info range */
+ n_modules
+ (section_hdr_info_valid ? section_hdr_info.num : 0)));
memcpy(new_ranges, ranges, sizeof(struct elsewhere_range) * ranges_count);
pmm_free(ranges, sizeof(struct elsewhere_range) * ranges_count);
ranges = new_ranges;
// GRUB allocates boot info at 0x10000, *except* if the kernel happens
// to overlap this region, then it gets moved to right after the
// kernel, or whichever PHDR happens to sit at 0x10000.
// Allocate it wherever, then move it to where GRUB puts it
// afterwards.
// Elsewhere append mb1 info *after* kernel but *before* modules.
void *mb1_info_raw = ext_mem_alloc(mb1_info_size);
uint64_t mb1_info_final_loc = 0x10000;
if (!elsewhere_append(true /* flexible target */,
ranges, &ranges_count,
mb1_info_raw, &mb1_info_final_loc, mb1_info_size)) {
panic(true, "multiboot1: Cannot allocate mb1 info");
}
size_t mb1_info_slide = (size_t)mb1_info_raw - mb1_info_final_loc;
struct multiboot1_info *multiboot1_info =
mb1_info_alloc(&mb1_info_raw, sizeof(struct multiboot1_info));
if (section_hdr_info_valid == true) {
multiboot1_info->elf_sect.num = section_hdr_info.num;
multiboot1_info->elf_sect.size = section_hdr_info.section_entry_size;
multiboot1_info->elf_sect.shndx = section_hdr_info.str_section_idx;
void *sections = mb1_info_alloc(&mb1_info_raw,
section_hdr_info.section_entry_size * section_hdr_info.num);
multiboot1_info->elf_sect.addr = (uintptr_t)sections - mb1_info_slide;
memcpy(sections, kernel + section_hdr_info.section_offset, section_hdr_info.section_entry_size * section_hdr_info.num);
for (size_t i = 0; i < section_hdr_info.num; i++) {
struct elf64_shdr *shdr = (void *)sections + i * section_hdr_info.section_entry_size;
if (shdr->sh_addr != 0 || shdr->sh_size == 0) {
continue;
}
uint64_t section = (uint64_t)-1; /* no target preference, use top */
if (!elsewhere_append(true /* flexible target */,
ranges, &ranges_count,
kernel + shdr->sh_offset, &section, shdr->sh_size)) {
panic(true, "multiboot1: Cannot allocate elf sections");
}
shdr->sh_addr = section;
}
multiboot1_info->flags |= (1 << 5);
}
if (n_modules) {
struct multiboot1_module *mods =
mb1_info_alloc(&mb1_info_raw, sizeof(struct multiboot1_module) * n_modules);
multiboot1_info->mods_count = n_modules;
multiboot1_info->mods_addr = (size_t)mods - mb1_info_slide;
for (size_t i = 0; i < n_modules; i++) {
struct multiboot1_module *m = mods + i;
struct conf_tuple conf_tuple = config_get_tuple(config, i, "MODULE_PATH", "MODULE_STRING");
char *module_path = conf_tuple.value1;
if (module_path == NULL)
panic(true, "multiboot1: Module disappeared unexpectedly");
print("multiboot1: Loading module `%#`...\n", module_path);
struct file_handle *f;
if ((f = uri_open(module_path)) == NULL)
panic(true, "multiboot1: Failed to open module with path `%#`. Is the path correct?", module_path);
char *module_cmdline = conf_tuple.value2;
if (module_cmdline == NULL) {
module_cmdline = "";
}
char *lowmem_modstr = mb1_info_alloc(&mb1_info_raw, strlen(module_cmdline) + 1);
strcpy(lowmem_modstr, module_cmdline);
void *module_addr = freadall(f, MEMMAP_BOOTLOADER_RECLAIMABLE);
uint64_t module_target = (uint64_t)-1; /* no target preference, use top */
if (!elsewhere_append(true /* flexible target */,
ranges, &ranges_count,
module_addr, &module_target, f->size)) {
panic(true, "multiboot1: Cannot allocate module");
}
m->begin = module_target;
m->end = m->begin + f->size;
m->cmdline = (uint32_t)(size_t)lowmem_modstr - mb1_info_slide;
m->pad = 0;
fclose(f);
if (verbose) {
print("multiboot1: Requested module %u:\n", i);
print(" Path: %s\n", module_path);
print(" String: \"%s\"\n", module_cmdline ?: "");
print(" Begin: %x\n", m->begin);
print(" End: %x\n", m->end);
}
}
multiboot1_info->flags |= (1 << 3);
}
char *lowmem_cmdline = mb1_info_alloc(&mb1_info_raw, strlen(cmdline) + 1);
strcpy(lowmem_cmdline, cmdline);
multiboot1_info->cmdline = (uint32_t)(size_t)lowmem_cmdline - mb1_info_slide;
if (cmdline)
multiboot1_info->flags |= (1 << 2);
char *bootload_name = LIMINE_BRAND;
char *lowmem_bootname = mb1_info_alloc(&mb1_info_raw, strlen(bootload_name) + 1);
strcpy(lowmem_bootname, bootload_name);
multiboot1_info->bootloader_name = (uint32_t)(size_t)lowmem_bootname - mb1_info_slide;
multiboot1_info->flags |= (1 << 9);
if (term != NULL) {
term->deinit(term, pmm_free);
term = NULL;
}
if (header.flags & (1 << 2)) {
size_t req_width = header.fb_width;
size_t req_height = header.fb_height;
size_t req_bpp = header.fb_bpp;
if (header.fb_mode == 0) {
char *resolution = config_get_value(config, 0, "RESOLUTION");
if (resolution != NULL)
parse_resolution(&req_width, &req_height, &req_bpp, resolution);
struct fb_info fbinfo;
if (!fb_init(&fbinfo, req_width, req_height, req_bpp)) {
#if defined (UEFI)
goto skip_modeset;
#elif defined (BIOS)
vga_textmode_init(false);
multiboot1_info->fb_addr = 0xb8000;
multiboot1_info->fb_width = term->cols;
multiboot1_info->fb_height = term->rows;
multiboot1_info->fb_bpp = 16;
multiboot1_info->fb_pitch = 2 * term->cols;
multiboot1_info->fb_type = 2;
#endif
} else {
multiboot1_info->fb_addr = (uint64_t)fbinfo.framebuffer_addr;
multiboot1_info->fb_width = fbinfo.framebuffer_width;
multiboot1_info->fb_height = fbinfo.framebuffer_height;
multiboot1_info->fb_bpp = fbinfo.framebuffer_bpp;
multiboot1_info->fb_pitch = fbinfo.framebuffer_pitch;
multiboot1_info->fb_type = 1;
multiboot1_info->fb_red_mask_size = fbinfo.red_mask_size;
multiboot1_info->fb_red_mask_shift = fbinfo.red_mask_shift;
multiboot1_info->fb_green_mask_size = fbinfo.green_mask_size;
multiboot1_info->fb_green_mask_shift = fbinfo.green_mask_shift;
multiboot1_info->fb_blue_mask_size = fbinfo.blue_mask_size;
multiboot1_info->fb_blue_mask_shift = fbinfo.blue_mask_shift;
}
} else {
#if defined (UEFI)
print("multiboot1: Warning: Cannot use text mode with UEFI\n");
struct fb_info fbinfo;
if (!fb_init(&fbinfo, 0, 0, 0)) {
goto skip_modeset;
}
multiboot1_info->fb_addr = (uint64_t)fbinfo.framebuffer_addr;
multiboot1_info->fb_width = fbinfo.framebuffer_width;
multiboot1_info->fb_height = fbinfo.framebuffer_height;
multiboot1_info->fb_bpp = fbinfo.framebuffer_bpp;
multiboot1_info->fb_pitch = fbinfo.framebuffer_pitch;
multiboot1_info->fb_type = 1;
multiboot1_info->fb_red_mask_size = fbinfo.red_mask_size;
multiboot1_info->fb_red_mask_shift = fbinfo.red_mask_shift;
multiboot1_info->fb_green_mask_size = fbinfo.green_mask_size;
multiboot1_info->fb_green_mask_shift = fbinfo.green_mask_shift;
multiboot1_info->fb_blue_mask_size = fbinfo.blue_mask_size;
multiboot1_info->fb_blue_mask_shift = fbinfo.blue_mask_shift;
#elif defined (BIOS)
vga_textmode_init(false);
multiboot1_info->fb_addr = 0xb8000;
multiboot1_info->fb_width = term->cols;
multiboot1_info->fb_height = term->rows;
multiboot1_info->fb_bpp = 16;
multiboot1_info->fb_pitch = 2 * term->cols;
multiboot1_info->fb_type = 2;
#endif
}
multiboot1_info->flags |= (1 << 12);
#if defined (UEFI)
skip_modeset:;
#endif
} else {
#if defined (UEFI)
panic(true, "multiboot1: Cannot use text mode with UEFI.");
#elif defined (BIOS)
vga_textmode_init(false);
#endif
}
// Load relocation stub where it won't get overwritten (hopefully)
size_t reloc_stub_size = (size_t)multiboot_reloc_stub_end - (size_t)multiboot_reloc_stub;
void *reloc_stub = ext_mem_alloc(reloc_stub_size);
memcpy(reloc_stub, multiboot_reloc_stub, reloc_stub_size);
#if defined (UEFI)
efi_exit_boot_services();
#endif
size_t mb_mmap_count;
struct memmap_entry *raw_memmap = get_raw_memmap(&mb_mmap_count);
size_t mb_mmap_len = mb_mmap_count * sizeof(struct multiboot1_mmap_entry);
struct multiboot1_mmap_entry *mmap = mb1_info_alloc(&mb1_info_raw, mb_mmap_len);
// Multiboot is bad and passes raw memmap. We do the same to support it.
for (size_t i = 0; i < mb_mmap_count; i++) {
mmap[i].size = sizeof(struct multiboot1_mmap_entry) - 4;
mmap[i].addr = raw_memmap[i].base;
mmap[i].len = raw_memmap[i].length;
mmap[i].type = raw_memmap[i].type;
}
struct meminfo memory_info = mmap_get_info(mb_mmap_count, raw_memmap);
// Convert the uppermem and lowermem fields from bytes to
// KiB.
multiboot1_info->mem_lower = memory_info.lowermem / 1024;
multiboot1_info->mem_upper = memory_info.uppermem / 1024;
multiboot1_info->mmap_length = mb_mmap_len;
multiboot1_info->mmap_addr = (uint32_t)(size_t)mmap - mb1_info_slide;
multiboot1_info->flags |= (1 << 0) | (1 << 6);
irq_flush_type = IRQ_PIC_ONLY_FLUSH;
common_spinup(multiboot_spinup_32, 6,
(uint32_t)(uintptr_t)reloc_stub, (uint32_t)0x2badb002,
(uint32_t)mb1_info_final_loc, (uint32_t)entry_point,
(uint32_t)(uintptr_t)ranges, (uint32_t)ranges_count);
}
#endif