limine/common/sys/smp.c
2024-07-12 07:13:08 +02:00

805 lines
25 KiB
C

#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <lib/libc.h>
#include <lib/acpi.h>
#include <sys/cpu.h>
#include <lib/misc.h>
#include <lib/print.h>
#include <sys/smp.h>
#include <sys/lapic.h>
#include <sys/gdt.h>
#include <mm/vmm.h>
#include <mm/pmm.h>
#include <mm/mtrr.h>
#define LIMINE_NO_POINTERS
#include <limine.h>
#if defined (__riscv64)
#include <sys/sbi.h>
#endif
#if defined (__aarch64__)
#include <libfdt/libfdt.h>
#endif
extern symbol smp_trampoline_start;
extern size_t smp_trampoline_size;
#if defined (__x86_64__) || defined (__i386__)
struct trampoline_passed_info {
uint8_t smp_tpl_booted_flag;
uint8_t smp_tpl_target_mode;
uint32_t smp_tpl_pagemap;
uint32_t smp_tpl_info_struct;
struct gdtr smp_tpl_gdt;
uint64_t smp_tpl_hhdm;
uint64_t smp_tpl_mtrr_restore;
uint64_t smp_tpl_temp_stack;
} __attribute__((packed));
static bool smp_start_ap(uint32_t lapic_id, struct gdtr *gdtr,
struct limine_smp_info *info_struct,
int paging_mode, uint32_t pagemap,
bool x2apic, bool nx, uint64_t hhdm, bool wp) {
// Prepare the trampoline
static void *trampoline = NULL;
if (trampoline == NULL) {
trampoline = conv_mem_alloc(smp_trampoline_size);
memcpy(trampoline, smp_trampoline_start, smp_trampoline_size);
}
static void *temp_stack = NULL;
if (temp_stack == NULL) {
temp_stack = ext_mem_alloc(8192);
}
static struct trampoline_passed_info *passed_info = NULL;
if (passed_info == NULL) {
passed_info = (void *)(((uintptr_t)trampoline + smp_trampoline_size)
- sizeof(struct trampoline_passed_info));
}
passed_info->smp_tpl_info_struct = (uint32_t)(uintptr_t)info_struct;
passed_info->smp_tpl_booted_flag = 0;
passed_info->smp_tpl_pagemap = pagemap;
passed_info->smp_tpl_target_mode = ((uint32_t)x2apic << 2)
| ((uint32_t)(paging_mode == PAGING_MODE_X86_64_5LVL) << 1)
| ((uint32_t)nx << 3)
| ((uint32_t)wp << 4);
passed_info->smp_tpl_gdt = *gdtr;
passed_info->smp_tpl_hhdm = hhdm;
passed_info->smp_tpl_mtrr_restore = (uint64_t)(uintptr_t)mtrr_restore;
passed_info->smp_tpl_temp_stack = (uint64_t)(uintptr_t)temp_stack;
asm volatile ("" ::: "memory");
// Send the INIT IPI
if (x2apic) {
x2apic_write(LAPIC_REG_ICR0, ((uint64_t)lapic_id << 32) | 0x4500);
} else {
lapic_write(LAPIC_REG_ICR1, lapic_id << 24);
lapic_write(LAPIC_REG_ICR0, 0x4500);
}
delay(10000000);
// Send the Startup IPI
if (x2apic) {
x2apic_write(LAPIC_REG_ICR0, ((uint64_t)lapic_id << 32) |
((size_t)trampoline / 4096) | 0x4600);
} else {
lapic_write(LAPIC_REG_ICR1, lapic_id << 24);
lapic_write(LAPIC_REG_ICR0, ((size_t)trampoline / 4096) | 0x4600);
}
for (int i = 0; i < 100; i++) {
if (locked_read(&passed_info->smp_tpl_booted_flag) == 1) {
return true;
}
delay(10000000);
}
return false;
}
struct limine_smp_info *init_smp(size_t *cpu_count,
uint32_t *_bsp_lapic_id,
int paging_mode,
pagemap_t pagemap,
bool x2apic,
bool nx,
uint64_t hhdm,
bool wp) {
if (!lapic_check())
return NULL;
// Search for MADT table
struct madt *madt = acpi_get_table("APIC", 0);
if (madt == NULL)
return NULL;
struct gdtr gdtr = gdt;
uint32_t eax, ebx, ecx, edx;
if (!cpuid(1, 0, &eax, &ebx, &ecx, &edx))
return NULL;
uint8_t bsp_lapic_id = ebx >> 24;
x2apic = x2apic && x2apic_enable();
uint32_t bsp_x2apic_id = 0;
if (x2apic) {
// The Intel manual recommends checking if leaf 0x1f exists first, and
// using that in place of 0xb if that's the case
if (!cpuid(0x1f, 0, &eax, &ebx, &ecx, &edx))
if (!cpuid(0xb, 0, &eax, &ebx, &ecx, &edx))
return NULL;
bsp_x2apic_id = edx;
*_bsp_lapic_id = bsp_x2apic_id;
} else {
*_bsp_lapic_id = bsp_lapic_id;
}
*cpu_count = 0;
// Count the MAX of startable APs and allocate accordingly
size_t max_cpus = 0;
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length;
madt_ptr += *(madt_ptr + 1)) {
switch (*madt_ptr) {
case 0: {
// Processor local xAPIC
struct madt_lapic *lapic = (void *)madt_ptr;
// Check if we can actually try to start the AP
if ((lapic->flags & 1) ^ ((lapic->flags >> 1) & 1))
max_cpus++;
continue;
}
case 9: {
// Processor local x2APIC
if (!x2apic)
continue;
struct madt_x2apic *x2lapic = (void *)madt_ptr;
// Check if we can actually try to start the AP
if ((x2lapic->flags & 1) ^ ((x2lapic->flags >> 1) & 1))
max_cpus++;
continue;
}
}
}
if (max_cpus == 0) {
return NULL;
}
struct limine_smp_info *ret = ext_mem_alloc(max_cpus * sizeof(struct limine_smp_info));
*cpu_count = 0;
// Try to start all APs
mtrr_save();
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length;
madt_ptr += *(madt_ptr + 1)) {
switch (*madt_ptr) {
case 0: {
// Processor local xAPIC
struct madt_lapic *lapic = (void *)madt_ptr;
// Check if we can actually try to start the AP
if (!((lapic->flags & 1) ^ ((lapic->flags >> 1) & 1)))
continue;
struct limine_smp_info *info_struct = &ret[*cpu_count];
info_struct->processor_id = lapic->acpi_processor_uid;
info_struct->lapic_id = lapic->lapic_id;
// Do not try to restart the BSP
if (lapic->lapic_id == bsp_lapic_id) {
(*cpu_count)++;
continue;
}
printv("smp: [xAPIC] Found candidate AP for bring-up. LAPIC ID: %u\n", lapic->lapic_id);
// Try to start the AP
if (!smp_start_ap(lapic->lapic_id, &gdtr, info_struct,
paging_mode, (uintptr_t)pagemap.top_level,
x2apic, nx, hhdm, wp)) {
print("smp: FAILED to bring-up AP\n");
continue;
}
printv("smp: Successfully brought up AP\n");
(*cpu_count)++;
continue;
}
case 9: {
// Processor local x2APIC
if (!x2apic)
continue;
struct madt_x2apic *x2lapic = (void *)madt_ptr;
// Check if we can actually try to start the AP
if (!((x2lapic->flags & 1) ^ ((x2lapic->flags >> 1) & 1)))
continue;
struct limine_smp_info *info_struct = &ret[*cpu_count];
info_struct->processor_id = x2lapic->acpi_processor_uid;
info_struct->lapic_id = x2lapic->x2apic_id;
// Do not try to restart the BSP
if (x2lapic->x2apic_id == bsp_x2apic_id) {
(*cpu_count)++;
continue;
}
printv("smp: [x2APIC] Found candidate AP for bring-up. LAPIC ID: %u\n", x2lapic->x2apic_id);
// Try to start the AP
if (!smp_start_ap(x2lapic->x2apic_id, &gdtr, info_struct,
paging_mode, (uintptr_t)pagemap.top_level,
true, nx, hhdm, wp)) {
print("smp: FAILED to bring-up AP\n");
continue;
}
printv("smp: Successfully brought up AP\n");
(*cpu_count)++;
continue;
}
}
}
if (*cpu_count == 0) {
pmm_free(ret, max_cpus * sizeof(struct limine_smp_info));
return NULL;
}
return ret;
}
#elif defined (__aarch64__)
struct trampoline_passed_info {
uint64_t smp_tpl_booted_flag;
uint64_t smp_tpl_hhdm_offset;
uint64_t smp_tpl_ttbr0;
uint64_t smp_tpl_ttbr1;
uint64_t smp_tpl_mair;
uint64_t smp_tpl_tcr;
uint64_t smp_tpl_sctlr;
uint64_t smp_tpl_info_struct;
};
enum {
BOOT_WITH_SPIN_TBL,
BOOT_WITH_PSCI_SMC,
BOOT_WITH_PSCI_HVC,
BOOT_WITH_ACPI_PARK
};
static uint32_t psci_cpu_on = 0xC4000003;
static bool try_start_ap(int boot_method, uint64_t method_ptr,
struct limine_smp_info *info_struct,
uint64_t ttbr0, uint64_t ttbr1, uint64_t mair,
uint64_t tcr, uint64_t sctlr,
uint64_t hhdm_offset) {
// Prepare the trampoline
static void *trampoline = NULL;
if (trampoline == NULL) {
trampoline = ext_mem_alloc(smp_trampoline_size);
memcpy(trampoline, smp_trampoline_start, smp_trampoline_size);
}
static struct trampoline_passed_info *passed_info = NULL;
if (passed_info == NULL) {
passed_info = (void *)(((uintptr_t)trampoline + 0x1000)
- sizeof(struct trampoline_passed_info));
}
passed_info->smp_tpl_info_struct = (uint64_t)(uintptr_t)info_struct;
passed_info->smp_tpl_booted_flag = 0;
passed_info->smp_tpl_ttbr0 = ttbr0;
passed_info->smp_tpl_ttbr1 = ttbr1;
passed_info->smp_tpl_mair = mair;
passed_info->smp_tpl_tcr = tcr;
passed_info->smp_tpl_sctlr = sctlr;
passed_info->smp_tpl_hhdm_offset = hhdm_offset;
// Cache coherency between the I-Cache and D-Cache is not guaranteed by the
// architecture and as such we must perform I-Cache invalidation.
// Additionally, the newly-booted AP may have caches disabled which implies
// it possibly does not see our cache contents either.
clean_dcache_poc((uintptr_t)trampoline, (uintptr_t)trampoline + 0x1000);
inval_icache_pou((uintptr_t)trampoline, (uintptr_t)trampoline + 0x1000);
asm volatile ("" ::: "memory");
switch (boot_method) {
case BOOT_WITH_SPIN_TBL:
*(volatile uint64_t *)method_ptr = (uint64_t)(uintptr_t)trampoline;
clean_dcache_poc(method_ptr, method_ptr + 8);
asm ("sev");
break;
case BOOT_WITH_PSCI_SMC:
case BOOT_WITH_PSCI_HVC: {
register int32_t result asm("w0");
register uint32_t cmd asm("w0") = psci_cpu_on;
register uint64_t cpu asm("x1") = info_struct->mpidr;
register uint64_t addr asm("x2") = (uint64_t)(uintptr_t)trampoline;
register uint64_t ctx asm("x3") = 0;
if (boot_method == BOOT_WITH_PSCI_SMC)
asm volatile ("smc #0" : "=r"(result) : "r"(cmd), "r"(cpu), "r"(addr), "r"(ctx));
else
asm volatile ("hvc #0" : "=r"(result) : "r"(cmd), "r"(cpu), "r"(addr), "r"(ctx));
switch (result) {
case 0: // Success
break;
case -2:
printv("smp: PSCI says CPU_ON was given invalid arguments\n");
return false;
case -4:
printv("smp: PSCI says AP is already on\n");
return false;
case -5:
printv("smp: PSCI says CPU_ON is already pending for this AP\n");
return false;
case -6:
printv("smp: PSCI reports internal failure\n");
return false;
case -9:
printv("smp: PSCI says CPU_ON was given an invalid address\n");
return false;
default:
printv("smp: PSCI reports an unexpected error (%d)\n", result);
return false;
}
break;
}
case BOOT_WITH_ACPI_PARK:
panic(false, "ACPI parking protocol is unsupported, please report this!");
break;
default:
panic(false, "Invalid boot method specified");
}
for (int i = 0; i < 1000000; i++) {
// We do not need cache invalidation here as by the time the AP gets to
// set this flag, it has enabled it's caches
if (locked_read(&passed_info->smp_tpl_booted_flag) == 1) {
return true;
}
//delay(10000000);
}
return false;
}
static struct limine_smp_info *try_acpi_smp(size_t *cpu_count,
uint64_t *_bsp_mpidr,
pagemap_t pagemap,
uint64_t mair,
uint64_t tcr,
uint64_t sctlr,
uint64_t hhdm_offset) {
int boot_method = BOOT_WITH_ACPI_PARK;
// Search for FADT table
uint8_t *fadt = acpi_get_table("FACP", 0);
if (fadt == NULL)
return NULL;
// Read the single field from the FADT without defining a struct for the whole table
uint16_t arm_boot_args;
memcpy(&arm_boot_args, fadt + 129, 2);
if (arm_boot_args & 1) // PSCI compliant?
boot_method = arm_boot_args & 2 ? BOOT_WITH_PSCI_HVC : BOOT_WITH_PSCI_SMC;
// Search for MADT table
struct madt *madt = acpi_get_table("APIC", 0);
if (madt == NULL)
return NULL;
uint64_t bsp_mpidr;
asm volatile ("mrs %0, mpidr_el1" : "=r"(bsp_mpidr));
// This bit is Res1 in the system reg, but not included in the MPIDR from MADT
bsp_mpidr &= ~((uint64_t)1 << 31);
*_bsp_mpidr = bsp_mpidr;
printv("smp: BSP MPIDR is %X\n", bsp_mpidr);
*cpu_count = 0;
// Count the MAX of startable APs and allocate accordingly
size_t max_cpus = 0;
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length;
madt_ptr += *(madt_ptr + 1)) {
switch (*madt_ptr) {
case 11: {
// GIC CPU Interface
struct madt_gicc *gicc = (void *)madt_ptr;
// Check if we can actually try to start the AP
if (gicc->flags & 1)
max_cpus++;
continue;
}
}
}
struct limine_smp_info *ret = ext_mem_alloc(max_cpus * sizeof(struct limine_smp_info));
*cpu_count = 0;
// Try to start all APs
for (uint8_t *madt_ptr = (uint8_t *)madt->madt_entries_begin;
(uintptr_t)madt_ptr < (uintptr_t)madt + madt->header.length;
madt_ptr += *(madt_ptr + 1)) {
switch (*madt_ptr) {
case 11: {
// GIC CPU Interface
struct madt_gicc *gicc = (void *)madt_ptr;
// Check if we can actually try to start the AP
if (!(gicc->flags & 1))
continue;
struct limine_smp_info *info_struct = &ret[*cpu_count];
info_struct->processor_id = gicc->acpi_uid;
info_struct->mpidr = gicc->mpidr;
// Do not try to restart the BSP
if (gicc->mpidr == bsp_mpidr) {
(*cpu_count)++;
continue;
}
printv("smp: Found candidate AP for bring-up. Interface no.: %x, MPIDR: %X\n", gicc->iface_no, gicc->mpidr);
// Try to start the AP
if (!try_start_ap(boot_method, gicc->parking_addr, info_struct,
(uint64_t)(uintptr_t)pagemap.top_level[0],
(uint64_t)(uintptr_t)pagemap.top_level[1],
mair, tcr, sctlr, hhdm_offset)) {
print("smp: FAILED to bring-up AP\n");
continue;
}
printv("smp: Successfully brought up AP\n");
(*cpu_count)++;
continue;
}
}
}
return ret;
}
static struct limine_smp_info *try_dtb_smp(size_t *cpu_count,
uint64_t *_bsp_mpidr,
pagemap_t pagemap,
uint64_t mair,
uint64_t tcr,
uint64_t sctlr,
uint64_t hhdm_offset) {
void *dtb = get_device_tree_blob(0);
uint64_t bsp_mpidr;
asm volatile ("mrs %0, mpidr_el1" : "=r"(bsp_mpidr));
// This bit is Res1 in the system reg, but not included in the MPIDR from DT
bsp_mpidr &= ~((uint64_t)1 << 31);
*_bsp_mpidr = bsp_mpidr;
printv("smp: BSP MPIDR is %X\n", bsp_mpidr);
*cpu_count = 0;
int cpus = fdt_path_offset(dtb, "/cpus");
if (cpus < 0) {
printv("smp: failed to find /cpus node: %s\n", fdt_strerror(cpus));
return NULL;
}
int psci = fdt_path_offset(dtb, "/psci");
if (psci > 0 && !fdt_node_check_compatible(dtb, psci, "arm,psci")) {
const void *prop;
if (!(prop = fdt_getprop(dtb, psci, "cpu_on", NULL))) {
printv("smp: failed to find PSCI cpu_on prop\n");
return NULL;
}
const uint8_t *bytes = prop;
psci_cpu_on = ((uint64_t)bytes[0] << 24)
| ((uint64_t)bytes[1] << 16)
| ((uint64_t)bytes[2] << 8)
| ((uint64_t)bytes[3]);
}
int address_cells = fdt_address_cells(dtb, cpus);
if (address_cells < 0) {
printv("smp: fdt_address_cells failed: %s\n", fdt_strerror(address_cells));
return NULL;
}
if (address_cells > 2) {
printv("smp: illegal #address-cells value: %d\n", address_cells);
return NULL;
}
uint64_t max_cpus = 0;
int node;
fdt_for_each_subnode(node, dtb, cpus) {
const void *prop;
if (!(prop = fdt_getprop(dtb, node, "device_type", NULL)) || strcmp(prop, "cpu")) {
continue;
}
if (!(prop = fdt_getprop(dtb, node, "reg", NULL))) {
continue;
}
max_cpus++;
}
struct limine_smp_info *ret = ext_mem_alloc(max_cpus * sizeof(struct limine_smp_info));
fdt_for_each_subnode(node, dtb, cpus) {
const void *prop;
if (!(prop = fdt_getprop(dtb, node, "device_type", NULL)) || strcmp(prop, "cpu")) {
continue;
}
if (!(prop = fdt_getprop(dtb, node, "reg", NULL))) {
continue;
}
uint64_t mpidr = 0;
if (address_cells == 1) {
const uint8_t *bytes = prop;
mpidr = ((uint64_t)bytes[0] << 24)
| ((uint64_t)bytes[1] << 16)
| ((uint64_t)bytes[2] << 8)
| ((uint64_t)bytes[3]);
} else if (address_cells == 2) {
const uint8_t *bytes = prop;
mpidr = ((uint64_t)bytes[3] << 32)
| ((uint64_t)bytes[4] << 24)
| ((uint64_t)bytes[5] << 16)
| ((uint64_t)bytes[6] << 8)
| ((uint64_t)bytes[7]);
}
struct limine_smp_info *info_struct = &ret[*cpu_count];
info_struct->processor_id = 0;
info_struct->mpidr = mpidr;
// Do not try to restart the BSP
if (mpidr == bsp_mpidr) {
(*cpu_count)++;
continue;
}
if (!(prop = fdt_getprop(dtb, node, "enable-method", NULL))) {
printv("smp: missing enable-method\n");
continue;
}
int boot_method = -1;
uint64_t method_ptr = 0;
if (!strcmp(prop, "psci")) {
if (psci < 0) {
printv("smp: failed to find /psci: %s\n", fdt_strerror(psci));
continue;
}
const void *psci_method = fdt_getprop(dtb, psci, "method", NULL);
if (!strcmp(psci_method, "smc")) {
boot_method = BOOT_WITH_PSCI_SMC;
} else if (!strcmp(psci_method, "hvc")) {
boot_method = BOOT_WITH_PSCI_HVC;
} else {
printv("smp: illegal PSCI method: '%s'\n", psci_method);
}
} else if (!strcmp(prop, "spin-table")) {
boot_method = BOOT_WITH_SPIN_TBL;
if (!(prop = fdt_getprop(dtb, node, "cpu-release-addr", NULL))) {
printv("smp: missing cpu-release-addr\n");
continue;
}
const uint8_t *bytes = prop;
method_ptr = ((uint64_t)bytes[0] << 56)
| ((uint64_t)bytes[1] << 48)
| ((uint64_t)bytes[2] << 40)
| ((uint64_t)bytes[3] << 32)
| ((uint64_t)bytes[4] << 24)
| ((uint64_t)bytes[5] << 16)
| ((uint64_t)bytes[6] << 8)
| ((uint64_t)bytes[7]);
} else {
printv("smp: illegal enable-method: '%s'\n", prop);
continue;
}
printv("smp: Found candidate AP for bring-up. MPIDR: %X\n", mpidr);
// Try to start the AP
if (!try_start_ap(boot_method, method_ptr, info_struct,
(uint64_t)(uintptr_t)pagemap.top_level[0],
(uint64_t)(uintptr_t)pagemap.top_level[1],
mair, tcr, sctlr, hhdm_offset)) {
print("smp: FAILED to bring-up AP\n");
continue;
}
printv("smp: Successfully brought up AP\n");
(*cpu_count)++;
}
return ret;
}
struct limine_smp_info *init_smp(size_t *cpu_count,
uint64_t *bsp_mpidr,
pagemap_t pagemap,
uint64_t mair,
uint64_t tcr,
uint64_t sctlr,
uint64_t hhdm_offset) {
struct limine_smp_info *info = NULL;
if (acpi_get_rsdp() && (info = try_acpi_smp(
cpu_count, bsp_mpidr, pagemap,
mair, tcr, sctlr, hhdm_offset)))
return info;
// No RSDP means no ACPI, try device trees in that case.
if (get_device_tree_blob(0) && (info = try_dtb_smp(
cpu_count, bsp_mpidr, pagemap,
mair, tcr, sctlr, hhdm_offset)))
return info;
printv("Failed to figure out how to start APs.");
return NULL;
}
#elif defined (__riscv64)
struct trampoline_passed_info {
uint64_t smp_tpl_booted_flag;
uint64_t smp_tpl_satp;
uint64_t smp_tpl_info_struct;
uint64_t smp_tpl_hhdm_offset;
};
static bool smp_start_ap(size_t hartid, size_t satp, struct limine_smp_info *info_struct,
uint64_t hhdm_offset) {
static struct trampoline_passed_info passed_info;
passed_info.smp_tpl_booted_flag = 0;
passed_info.smp_tpl_satp = satp;
passed_info.smp_tpl_info_struct = (uint64_t)info_struct;
passed_info.smp_tpl_hhdm_offset = hhdm_offset;
asm volatile ("" ::: "memory");
struct sbiret ret = sbi_hart_start(hartid, (size_t)smp_trampoline_start, (size_t)&passed_info);
if (ret.error != SBI_SUCCESS)
return false;
for (int i = 0; i < 1000000; i++) {
if (locked_read(&passed_info.smp_tpl_booted_flag) == 1)
return true;
}
return false;
}
struct limine_smp_info *init_smp(size_t *cpu_count, pagemap_t pagemap, uint64_t hhdm_offset) {
size_t num_cpus = 0;
for (struct riscv_hart *hart = hart_list; hart != NULL; hart = hart->next) {
if (!(hart->flags & RISCV_HART_COPROC)) {
num_cpus += 1;
}
}
struct limine_smp_info *ret = ext_mem_alloc(num_cpus * sizeof(struct limine_smp_info));
if (ret == NULL) {
panic(false, "out of memory");
}
*cpu_count = 0;
for (struct riscv_hart *hart = hart_list; hart != NULL; hart = hart->next) {
if (hart->flags & RISCV_HART_COPROC) {
continue;
}
struct limine_smp_info *info_struct = &ret[*cpu_count];
info_struct->hartid = hart->hartid;
info_struct->processor_id = hart->acpi_uid;
// Don't try to start the BSP.
if (hart->hartid == bsp_hartid) {
*cpu_count += 1;
continue;
}
printv("smp: Found candidate AP for bring-up. Hart ID: %u\n", hart->hartid);
// Try to start the AP.
size_t satp = make_satp(pagemap.paging_mode, pagemap.top_level);
if (!smp_start_ap(hart->hartid, satp, info_struct, hhdm_offset)) {
print("smp: FAILED to bring-up AP\n");
continue;
}
(*cpu_count)++;
continue;
}
return ret;
}
#else
#error Unknown architecture
#endif