#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include noreturn void multiboot1_spinup_32(uint32_t entry_point, uint32_t multiboot1_info); bool multiboot1_load(char *config, char *cmdline) { struct file_handle *kernel_file; char *kernel_path = config_get_value(config, 0, "KERNEL_PATH"); if (kernel_path == NULL) panic(true, "multiboot1: KERNEL_PATH not specified"); if ((kernel_file = uri_open(kernel_path)) == NULL) panic(true, "multiboot1: Failed to open kernel with path `%s`. Is the path correct?", kernel_path); uint8_t *kernel = freadall(kernel_file, MEMMAP_KERNEL_AND_MODULES); size_t kernel_file_size = kernel_file->size; fclose(kernel_file); struct multiboot1_header header = {0}; size_t header_offset = 0; for (header_offset = 0; header_offset < 8192; header_offset += 4) { uint32_t v; memcpy(&v, kernel + header_offset, 4); if (v == MULTIBOOT1_HEADER_MAGIC) { memcpy(&header, kernel + header_offset, sizeof(header)); break; } } if (header.magic != MULTIBOOT1_HEADER_MAGIC) { pmm_free(kernel_file, kernel_file_size); return false; } print("multiboot1: Loading kernel `%s`...\n", kernel_path); struct multiboot1_info *multiboot1_info = conv_mem_alloc(sizeof(struct multiboot1_info)); if (header.magic + header.flags + header.checksum) panic(true, "multiboot1: Header checksum is invalid"); uint32_t entry_point; uint32_t kernel_top; if (header.flags & (1 << 16)) { if (header.load_addr > header.header_addr) panic(true, "multiboot1: Illegal load address"); size_t load_size = 0; if (header.load_end_addr) load_size = header.load_end_addr - header.load_addr; else load_size = kernel_file_size; memmap_alloc_range(header.load_addr, load_size, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); memcpy((void *)(uintptr_t)header.load_addr, kernel + (header_offset - (header.header_addr - header.load_addr)), load_size); kernel_top = header.load_addr + load_size; if (header.bss_end_addr) { uintptr_t bss_addr = header.load_addr + load_size; if (header.bss_end_addr < bss_addr) panic(true, "multiboot1: Illegal bss end address"); uint32_t bss_size = header.bss_end_addr - bss_addr; memmap_alloc_range(bss_addr, bss_size, MEMMAP_KERNEL_AND_MODULES, true, true, false, false); memset((void *)bss_addr, 0, bss_size); kernel_top = bss_addr + bss_size; } entry_point = header.entry_addr; } else { int bits = elf_bits(kernel); switch (bits) { case 32: if (elf32_load(kernel, &entry_point, &kernel_top, MEMMAP_KERNEL_AND_MODULES)) panic(true, "multiboot1: ELF32 load failure"); break; case 64: { uint64_t e, t; if (elf64_load(kernel, &e, &t, NULL, MEMMAP_KERNEL_AND_MODULES, false, true, NULL, NULL, false, NULL, NULL, NULL)) panic(true, "multiboot1: ELF64 load failure"); entry_point = e; kernel_top = t; break; } default: panic(true, "multiboot1: Invalid ELF file bitness"); } } uint32_t n_modules; for (n_modules = 0; ; n_modules++) { if (config_get_value(config, n_modules, "MODULE_PATH") == NULL) break; } if (n_modules) { struct multiboot1_module *mods = conv_mem_alloc(sizeof(*mods) * n_modules); multiboot1_info->mods_count = n_modules; multiboot1_info->mods_addr = (uint32_t)(size_t)mods; for (size_t i = 0; i < n_modules; i++) { struct multiboot1_module *m = mods + i; char *module_path = config_get_value(config, i, "MODULE_PATH"); if (module_path == NULL) panic(true, "multiboot1: Module disappeared unexpectedly"); print("multiboot1: Loading module `%s`...\n", module_path); struct file_handle *f; if ((f = uri_open(module_path)) == NULL) panic(true, "multiboot1: Failed to open module with path `%s`. Is the path correct?", module_path); char *module_cmdline = config_get_value(config, i, "MODULE_STRING"); char *lowmem_modstr = conv_mem_alloc(strlen(module_cmdline) + 1); strcpy(lowmem_modstr, module_cmdline); void *module_addr = (void *)(uintptr_t)ALIGN_UP(kernel_top, 4096); while (!memmap_alloc_range((uintptr_t)module_addr, f->size, MEMMAP_KERNEL_AND_MODULES, true, false, false, false)) { module_addr += 0x200000; } kernel_top = (uintptr_t)module_addr + f->size; fread(f, module_addr, 0, f->size); m->begin = (uint32_t)(size_t)module_addr; m->end = m->begin + f->size; m->cmdline = (uint32_t)(size_t)lowmem_modstr; m->pad = 0; fclose(f); if (verbose) { print("multiboot1: Requested module %u:\n", i); print(" Path: %s\n", module_path); print(" String: \"%s\"\n", module_cmdline ?: ""); print(" Begin: %x\n", m->begin); print(" End: %x\n", m->end); } } multiboot1_info->flags |= (1 << 3); } char *lowmem_cmdline = conv_mem_alloc(strlen(cmdline) + 1); strcpy(lowmem_cmdline, cmdline); multiboot1_info->cmdline = (uint32_t)(size_t)lowmem_cmdline; if (cmdline) multiboot1_info->flags |= (1 << 2); char *bootload_name = "Limine " LIMINE_VERSION; char *lowmem_bootname = conv_mem_alloc(strlen(bootload_name) + 1); strcpy(lowmem_bootname, bootload_name); multiboot1_info->bootloader_name = (uint32_t)(size_t)lowmem_bootname; multiboot1_info->flags |= (1 << 9); term_deinit(); if (header.flags & (1 << 2)) { size_t req_width = header.fb_width; size_t req_height = header.fb_height; size_t req_bpp = header.fb_bpp; if (header.fb_mode == 0) { char *resolution = config_get_value(config, 0, "RESOLUTION"); if (resolution != NULL) parse_resolution(&req_width, &req_height, &req_bpp, resolution); struct fb_info fbinfo; if (!fb_init(&fbinfo, req_width, req_height, req_bpp)) { goto nofb; } multiboot1_info->fb_addr = (uint64_t)fbinfo.framebuffer_addr; multiboot1_info->fb_width = fbinfo.framebuffer_width; multiboot1_info->fb_height = fbinfo.framebuffer_height; multiboot1_info->fb_bpp = fbinfo.framebuffer_bpp; multiboot1_info->fb_pitch = fbinfo.framebuffer_pitch; multiboot1_info->fb_type = 1; multiboot1_info->fb_red_mask_size = fbinfo.red_mask_size; multiboot1_info->fb_red_mask_shift = fbinfo.red_mask_shift; multiboot1_info->fb_green_mask_size = fbinfo.green_mask_size; multiboot1_info->fb_green_mask_shift = fbinfo.green_mask_shift; multiboot1_info->fb_blue_mask_size = fbinfo.blue_mask_size; multiboot1_info->fb_blue_mask_shift = fbinfo.blue_mask_shift; } else if (header.fb_mode == 1) { nofb:; #if uefi == 1 panic(true, "multiboot1: Cannot use text mode with UEFI."); #elif bios == 1 size_t rows, cols; init_vga_textmode(&rows, &cols, false); multiboot1_info->fb_addr = 0xb8000; multiboot1_info->fb_width = cols; multiboot1_info->fb_height = rows; multiboot1_info->fb_bpp = 16; multiboot1_info->fb_pitch = 2 * cols; multiboot1_info->fb_type = 2; #endif } else { panic(true, "multiboot1: Illegal framebuffer type requested"); } multiboot1_info->flags |= (1 << 12); } else { #if uefi == 1 panic(true, "multiboot1: Cannot use text mode with UEFI."); #elif bios == 1 size_t rows, cols; init_vga_textmode(&rows, &cols, false); #endif } #if uefi == 1 efi_exit_boot_services(); #endif size_t mb_mmap_count; struct e820_entry_t *raw_memmap = get_raw_memmap(&mb_mmap_count); size_t mb_mmap_len = mb_mmap_count * sizeof(struct multiboot1_mmap_entry); struct multiboot1_mmap_entry *mmap = conv_mem_alloc(mb_mmap_len); // Multiboot is bad and passes raw memmap. We do the same to support it. for (size_t i = 0; i < mb_mmap_count; i++) { mmap[i].size = sizeof(struct multiboot1_mmap_entry) - 4; mmap[i].addr = raw_memmap[i].base; mmap[i].len = raw_memmap[i].length; mmap[i].type = raw_memmap[i].type; } { struct meminfo memory_info = mmap_get_info(mb_mmap_count, raw_memmap); // Convert the uppermem and lowermem fields from bytes to // KiB. multiboot1_info->mem_lower = memory_info.lowermem / 1024; multiboot1_info->mem_upper = memory_info.uppermem / 1024; } multiboot1_info->mmap_length = mb_mmap_len; multiboot1_info->mmap_addr = ((uint32_t)(size_t)mmap); multiboot1_info->flags |= (1 << 0) | (1 << 6); irq_flush_type = IRQ_PIC_ONLY_FLUSH; common_spinup(multiboot1_spinup_32, 2, entry_point, (uint32_t)(uintptr_t)multiboot1_info); }