Merge pull request #12 from N00byEdge/kaslr

Add KASLR for PIE ELF kernels when using stivale
This commit is contained in:
mint 2020-05-29 16:37:29 +02:00 committed by GitHub
commit c79817eeaf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 165 additions and 14 deletions

View File

@ -104,6 +104,8 @@ struct stivale_header {
// bit 1 0 = 4-level paging, 1 = use 5-level paging (if
available)
Ignored if booting a 32-bit kernel.
// bit 2 0 = Disable KASLR, 1 = enable KASLR (up to 1GB slide)
Ignored if booting a 32-bit or non-relocatable kernel
// All other bits undefined.
uint16_t framebuffer_width; // These 3 values are parsed if a graphics mode

View File

@ -14,6 +14,9 @@
#define ARCH_X86_64 0x3e
#define ARCH_X86_32 0x03
#define BITS_LE 0x01
#define ET_DYN 0x0003
#define SHT_RELA 0x00000004
#define R_X86_64_RELATIVE 0x00000008
/* Indices into identification array */
#define EI_CLASS 4
@ -103,6 +106,13 @@ struct elf32_shdr {
uint32_t sh_entsize;
};
struct elf64_rela {
uint64_t r_addr;
uint32_t r_info;
uint32_t r_symbol;
uint64_t r_addend;
};
int elf_bits(struct file_handle *fd) {
struct elf64_hdr hdr;
fread(fd, &hdr, 0, 20);
@ -122,7 +132,57 @@ int elf_bits(struct file_handle *fd) {
}
}
int elf64_load_section(struct file_handle *fd, void *buffer, const char *name, size_t limit) {
static int elf64_apply_relocations(struct file_handle *fd, struct elf64_hdr *hdr, void *buffer, uint64_t vaddr, size_t size, uint64_t slide) {
if (hdr->type != ET_DYN)
return 0; // Nothing to do if the ELF is not relocatable
// Find RELA sections
for (uint16_t i = 0; i < hdr->sh_num; i++) {
struct elf64_shdr section;
fread(fd, &section, hdr->shoff + i * sizeof(struct elf64_shdr),
sizeof(struct elf64_shdr));
if (section.sh_type != SHT_RELA)
continue;
if (section.sh_entsize != sizeof(struct elf64_rela)) {
print("elf: Unknown sh_entsize for RELA section!\n");
return 1;
}
// This is a RELA header, get and apply all relocations
for (uint64_t offset = 0; offset < section.sh_size; offset += section.sh_entsize) {
struct elf64_rela relocation;
fread(fd, &relocation, section.sh_offset + offset, section.sh_size);
switch (relocation.r_info) {
case R_X86_64_RELATIVE:
// Relocation is before buffer
if (relocation.r_addr < vaddr)
continue;
// Relocation is after buffer
if (vaddr + size < relocation.r_addr + 8)
continue;
// It's inside it, calculate where it is
uint64_t *ptr = (uint64_t *)((uint8_t *)buffer - vaddr + relocation.r_addr);
// Write the relocated value
*ptr = slide + relocation.r_addend;
break;
default:
print("elf: Unknown RELA type: %X\n", relocation.r_info);
return 1;
}
}
}
return 0;
}
int elf64_load_section(struct file_handle *fd, void *buffer, const char *name, size_t limit, uint64_t slide) {
struct elf64_hdr hdr;
fread(fd, &hdr, 0, sizeof(struct elf64_hdr));
@ -157,7 +217,7 @@ int elf64_load_section(struct file_handle *fd, void *buffer, const char *name, s
if (section.sh_size > limit)
return 3;
fread(fd, buffer, section.sh_offset, section.sh_size);
return 0;
return elf64_apply_relocations(fd, &hdr, buffer, section.sh_addr, section.sh_size, slide);
}
}
@ -208,7 +268,7 @@ int elf32_load_section(struct file_handle *fd, void *buffer, const char *name, s
#define FIXED_HIGHER_HALF_OFFSET_64 ((uint64_t)0xffffffff80000000)
int elf64_load(struct file_handle *fd, uint64_t *entry_point, uint64_t *top) {
int elf64_load(struct file_handle *fd, uint64_t *entry_point, uint64_t *top, uint64_t slide) {
struct elf64_hdr hdr;
fread(fd, &hdr, 0, sizeof(struct elf64_hdr));
@ -237,26 +297,37 @@ int elf64_load(struct file_handle *fd, uint64_t *entry_point, uint64_t *top) {
if (phdr.p_type != PT_LOAD)
continue;
if (phdr.p_vaddr & ((uint64_t)1 << 63))
phdr.p_vaddr -= FIXED_HIGHER_HALF_OFFSET_64;
uint64_t load_vaddr = phdr.p_vaddr;
if (load_vaddr & ((uint64_t)1 << 63))
load_vaddr -= FIXED_HIGHER_HALF_OFFSET_64;
load_vaddr += slide;
uint64_t this_top = load_vaddr + phdr.p_memsz;
uint64_t this_top = phdr.p_vaddr + phdr.p_memsz;
if (this_top > *top)
*top = this_top;
is_valid_memory_range((size_t)phdr.p_vaddr, (size_t)phdr.p_memsz);
is_valid_memory_range((size_t)load_vaddr, (size_t)phdr.p_memsz);
fread(fd, (void *)(uint32_t)phdr.p_vaddr, phdr.p_offset, phdr.p_filesz);
fread(fd, (void *)(uint32_t)load_vaddr, phdr.p_offset, phdr.p_filesz);
size_t to_zero = (size_t)(phdr.p_memsz - phdr.p_filesz);
if (to_zero) {
void *ptr = (void *)(uint32_t)(phdr.p_vaddr + phdr.p_filesz);
void *ptr = (void *)(uint32_t)(load_vaddr + phdr.p_filesz);
memset(ptr, 0, to_zero);
}
if (elf64_apply_relocations(fd, &hdr, (void *)(uint32_t)load_vaddr, phdr.p_vaddr, phdr.p_memsz, slide))
return -1;
}
*entry_point = hdr.entry;
if (hdr.type == ET_DYN)
*entry_point = hdr.entry + slide;
else
*entry_point = hdr.entry;
return 0;
}

View File

@ -6,8 +6,8 @@
int elf_bits(struct file_handle *fd);
int elf64_load(struct file_handle *fd, uint64_t *entry_point, uint64_t *top);
int elf64_load_section(struct file_handle *fd, void *buffer, const char *name, size_t limit);
int elf64_load(struct file_handle *fd, uint64_t *entry_point, uint64_t *top, uint64_t slide);
int elf64_load_section(struct file_handle *fd, void *buffer, const char *name, size_t limit, uint64_t slide);
int elf32_load(struct file_handle *fd, uint32_t *entry_point, uint32_t *top);
int elf32_load_section(struct file_handle *fd, void *buffer, const char *name, size_t limit);

48
src/lib/random.c Normal file
View File

@ -0,0 +1,48 @@
#include <lib/blib.h>
int rdrand_available = 0;
static void check_rdrand(void) {
uint32_t eax, ebx, ecx, edx;
int ret = cpuid(1, 0, &eax, &ebx, &ecx, &edx);
if (ret)
return;
if (ecx & (1 << 30))
rdrand_available = 1;
}
static void init_simple_rand(void) {
// TODO: Some fallback randomness init
}
void init_random(void) {
check_rdrand();
if (!rdrand_available) {
init_simple_rand();
}
}
static uint32_t rdrand(void) {
uint32_t val;
asm (
"1:rdrand %0\n\t"
"jnc 1b\n\t"
:"=r"(val)
);
return val;
}
static uint32_t simple_rand(void) {
// TODO: Some fallback randomness
return 0xFEEDFACE;
}
uint32_t get_random(void) {
if (rdrand_available)
return rdrand();
else
return simple_rand();
}

10
src/lib/random.h Normal file
View File

@ -0,0 +1,10 @@
#ifndef __LIB__RANDOM_H__
#define __LIB__RANDOM_H__
#include <stdint.h>
void init_random(void);
uint32_t get_random(void);
#endif

View File

@ -22,6 +22,7 @@ asm (
#include <lib/config.h>
#include <lib/e820.h>
#include <lib/print.h>
#include <lib/random.h>
#include <fs/file.h>
#include <lib/elf.h>
#include <protos/stivale.h>
@ -98,6 +99,7 @@ refresh:
void main(int boot_drive) {
// Initial prompt.
init_vga_textmode();
init_random();
print("qloader2\n\n");

View File

@ -9,6 +9,7 @@
#include <lib/config.h>
#include <lib/time.h>
#include <lib/print.h>
#include <lib/random.h>
#include <drivers/vbe.h>
#include <drivers/vga_textmode.h>
#include <fs/file.h>
@ -46,6 +47,8 @@ struct stivale_struct {
uint64_t flags; // bit 0: 1 if booted with BIOS, 0 if booted with UEFI
} __attribute__((packed));
#define KASLR_SLIDE_BITMASK 0x03FFFF000u
struct stivale_struct stivale_struct = {0};
void stivale_load(char *cmdline, int boot_drive) {
@ -85,6 +88,8 @@ void stivale_load(char *cmdline, int boot_drive) {
int ret;
uint64_t slide = 0;
bool level5pg = false;
switch (bits) {
case 64: {
@ -100,7 +105,17 @@ void stivale_load(char *cmdline, int boot_drive) {
print("stivale: CPU has 5-level paging support\n");
level5pg = true;
}
ret = elf64_load_section(fd, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header));
ret = elf64_load_section(fd, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header), slide);
if (!ret && ((stivale_hdr.flags >> 2) & 1)) {
// KASLR is enabled, set the slide
slide = get_random() & KASLR_SLIDE_BITMASK;
// Re-read the .stivalehdr with slid relocations
ret = elf64_load_section(fd, &stivale_hdr, ".stivalehdr", sizeof(struct stivale_header), slide);
}
break;
}
case 32:
@ -125,15 +140,18 @@ void stivale_load(char *cmdline, int boot_drive) {
uint64_t entry_point = 0;
uint64_t top_used_addr = 0;
switch (bits) {
case 64:
elf64_load(fd, &entry_point, &top_used_addr);
elf64_load(fd, &entry_point, &top_used_addr, slide);
break;
case 32:
elf32_load(fd, (uint32_t *)&entry_point, (uint32_t *)&top_used_addr);
break;
}
print("stivale: Kernel slide: %X\n", slide);
print("stivale: Top used address in ELF: %X\n", top_used_addr);
stivale_struct.memory_map_entries = (uint64_t)e820_entries;