pmm: Undo most of what was done between 85603ec8 and 74a3a1c6

This commit is contained in:
mintsuki 2022-09-24 03:57:55 +02:00
parent 0cb98610f0
commit 4a4409e1b2
3 changed files with 284 additions and 99 deletions

View File

@ -160,6 +160,102 @@ retry:
#error Unknown architecture #error Unknown architecture
#endif #endif
// Go through new EFI memmap and free up bootloader entries
size_t entry_count = efi_mmap_size / efi_desc_size;
EFI_MEMORY_DESCRIPTOR *efi_copy = ext_mem_alloc(EFI_COPY_MAX_ENTRIES * efi_desc_size);
size_t efi_copy_i = 0;
for (size_t i = 0; i < entry_count; i++) {
EFI_MEMORY_DESCRIPTOR *orig_entry = (void *)efi_mmap + i * efi_desc_size;
EFI_MEMORY_DESCRIPTOR *new_entry = (void *)efi_copy + efi_copy_i * efi_desc_size;
memcpy(new_entry, orig_entry, efi_desc_size);
uint64_t base = orig_entry->PhysicalStart;
uint64_t length = orig_entry->NumberOfPages * 4096;
uint64_t top = base + length;
// Find for a match in the untouched memory map
for (size_t j = 0; j < untouched_memmap_entries; j++) {
if (untouched_memmap[j].type != MEMMAP_USABLE)
continue;
if (top > untouched_memmap[j].base && top <= untouched_memmap[j].base + untouched_memmap[j].length) {
if (untouched_memmap[j].base < base) {
new_entry->NumberOfPages = (base - untouched_memmap[j].base) / 4096;
efi_copy_i++;
if (efi_copy_i == EFI_COPY_MAX_ENTRIES) {
panic(false, "efi: New memory map exhausted");
}
new_entry = (void *)efi_copy + efi_copy_i * efi_desc_size;
memcpy(new_entry, orig_entry, efi_desc_size);
new_entry->NumberOfPages -= (base - untouched_memmap[j].base) / 4096;
new_entry->PhysicalStart = base;
new_entry->VirtualStart = new_entry->PhysicalStart;
length = new_entry->NumberOfPages * 4096;
top = base + length;
}
if (untouched_memmap[j].base > base) {
new_entry->NumberOfPages = (untouched_memmap[j].base - base) / 4096;
efi_copy_i++;
if (efi_copy_i == EFI_COPY_MAX_ENTRIES) {
panic(false, "efi: New memory map exhausted");
}
new_entry = (void *)efi_copy + efi_copy_i * efi_desc_size;
memcpy(new_entry, orig_entry, efi_desc_size);
new_entry->NumberOfPages -= (untouched_memmap[j].base - base) / 4096;
new_entry->PhysicalStart = untouched_memmap[j].base;
new_entry->VirtualStart = new_entry->PhysicalStart;
base = new_entry->PhysicalStart;
length = new_entry->NumberOfPages * 4096;
top = base + length;
}
if (length < untouched_memmap[j].length) {
panic(false, "efi: Memory map corruption");
}
new_entry->Type = EfiConventionalMemory;
if (length == untouched_memmap[j].length) {
// It's a perfect match!
break;
}
new_entry->NumberOfPages = untouched_memmap[j].length / 4096;
efi_copy_i++;
if (efi_copy_i == EFI_COPY_MAX_ENTRIES) {
panic(false, "efi: New memory map exhausted");
}
new_entry = (void *)efi_copy + efi_copy_i * efi_desc_size;
memcpy(new_entry, orig_entry, efi_desc_size);
new_entry->NumberOfPages = (length - untouched_memmap[j].length) / 4096;
new_entry->PhysicalStart = base + untouched_memmap[j].length;
new_entry->VirtualStart = new_entry->PhysicalStart;
break;
}
}
efi_copy_i++;
if (efi_copy_i == EFI_COPY_MAX_ENTRIES) {
panic(false, "efi: New memory map exhausted");
}
}
efi_mmap = efi_copy;
efi_mmap_size = efi_copy_i * efi_desc_size;
efi_boot_services_exited = true; efi_boot_services_exited = true;
printv("efi: Exited boot services.\n"); printv("efi: Exited boot services.\n");

View File

@ -21,6 +21,7 @@ struct memmap_entry {
#define MEMMAP_KERNEL_AND_MODULES 0x1001 #define MEMMAP_KERNEL_AND_MODULES 0x1001
#define MEMMAP_FRAMEBUFFER 0x1002 #define MEMMAP_FRAMEBUFFER 0x1002
#define MEMMAP_EFI_RECLAIMABLE 0x2000 #define MEMMAP_EFI_RECLAIMABLE 0x2000
#define MEMMAP_EFI_BOOTSERVICES 0x2001
struct meminfo { struct meminfo {
size_t uppermem; size_t uppermem;
@ -37,6 +38,9 @@ extern size_t memmap_entries;
#if defined (UEFI) #if defined (UEFI)
extern struct memmap_entry *memmap; extern struct memmap_entry *memmap;
extern size_t memmap_entries; extern size_t memmap_entries;
extern struct memmap_entry *untouched_memmap;
extern size_t untouched_memmap_entries;
#endif #endif
extern bool allocations_disallowed; extern bool allocations_disallowed;
@ -45,8 +49,6 @@ void init_memmap(void);
struct memmap_entry *get_memmap(size_t *entries); struct memmap_entry *get_memmap(size_t *entries);
struct memmap_entry *get_raw_memmap(size_t *entry_count); struct memmap_entry *get_raw_memmap(size_t *entry_count);
void print_memmap(struct memmap_entry *mm, size_t size); void print_memmap(struct memmap_entry *mm, size_t size);
bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry);
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool panic, bool simulation, bool new_entry); bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool panic, bool simulation, bool new_entry);
void pmm_randomise_memory(void); void pmm_randomise_memory(void);
@ -59,6 +61,7 @@ void *conv_mem_alloc(size_t count);
void pmm_free(void *ptr, size_t length); void pmm_free(void *ptr, size_t length);
#if defined (UEFI) #if defined (UEFI)
void pmm_reclaim_uefi_mem(void);
void pmm_release_uefi_mem(void); void pmm_release_uefi_mem(void);
#endif #endif

View File

@ -60,8 +60,8 @@ static size_t memmap_max_entries;
struct memmap_entry *memmap; struct memmap_entry *memmap;
size_t memmap_entries = 0; size_t memmap_entries = 0;
static struct memmap_entry *untouched_memmap; struct memmap_entry *untouched_memmap;
static size_t untouched_memmap_entries = 0; size_t untouched_memmap_entries = 0;
#endif #endif
static const char *memmap_type(uint32_t type) { static const char *memmap_type(uint32_t type) {
@ -84,6 +84,8 @@ static const char *memmap_type(uint32_t type) {
return "Kernel/Modules"; return "Kernel/Modules";
case MEMMAP_EFI_RECLAIMABLE: case MEMMAP_EFI_RECLAIMABLE:
return "EFI reclaimable"; return "EFI reclaimable";
case MEMMAP_EFI_BOOTSERVICES:
return "EFI boot services";
default: default:
return "???"; return "???";
} }
@ -116,6 +118,10 @@ static bool align_entry(uint64_t *base, uint64_t *length) {
return true; return true;
} }
static bool sanitiser_keep_first_page = false;
#define MEMMAP_DROP_LATER ((uint32_t)-1)
static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_entries) { static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_entries) {
size_t count = *_count; size_t count = *_count;
@ -138,6 +144,14 @@ static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_
if ( (res_base >= base && res_base < top) if ( (res_base >= base && res_base < top)
&& (res_top >= base && res_top < top) ) { && (res_top >= base && res_top < top) ) {
// Drop the entry entirely if usable
if (m[j].type == MEMMAP_USABLE) {
m[j].type = MEMMAP_DROP_LATER;
}
if (m[j].type == MEMMAP_DROP_LATER) {
continue;
}
// TODO actually handle splitting off usable chunks // TODO actually handle splitting off usable chunks
panic(false, "A non-usable memory map entry is inside a usable section."); panic(false, "A non-usable memory map entry is inside a usable section.");
} }
@ -162,12 +176,22 @@ static void sanitise_entries(struct memmap_entry *m, size_t *_count, bool align_
} }
} }
// Collect "drop later" entries
for (size_t i = 0; i < count; i++) {
if (m[i].type != MEMMAP_DROP_LATER) {
continue;
}
m[i] = m[count - 1];
count--; i--;
}
// Remove 0 length usable entries and usable entries below 0x1000 // Remove 0 length usable entries and usable entries below 0x1000
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
if (m[i].type != MEMMAP_USABLE) if (m[i].type != MEMMAP_USABLE)
continue; continue;
if (m[i].base < 0x1000) { if (!sanitiser_keep_first_page && m[i].base < 0x1000) {
if (m[i].base + m[i].length <= 0x1000) { if (m[i].base + m[i].length <= 0x1000) {
goto del_mm1; goto del_mm1;
} }
@ -221,13 +245,9 @@ del_mm1:
*_count = count; *_count = count;
} }
#if defined (UEFI)
static void pmm_reclaim_uefi_mem(struct memmap_entry *m, size_t *_count);
#endif
struct memmap_entry *get_memmap(size_t *entries) { struct memmap_entry *get_memmap(size_t *entries) {
#if defined (UEFI) #if defined (UEFI)
pmm_reclaim_uefi_mem(memmap, &memmap_entries); pmm_reclaim_uefi_mem();
#endif #endif
sanitise_entries(memmap, &memmap_entries, true); sanitise_entries(memmap, &memmap_entries, true);
@ -336,7 +356,7 @@ void init_memmap(void) {
our_type = MEMMAP_RESERVED; break; our_type = MEMMAP_RESERVED; break;
case EfiBootServicesCode: case EfiBootServicesCode:
case EfiBootServicesData: case EfiBootServicesData:
our_type = MEMMAP_EFI_RECLAIMABLE; break; our_type = MEMMAP_EFI_BOOTSERVICES; break;
case EfiACPIReclaimMemory: case EfiACPIReclaimMemory:
our_type = MEMMAP_ACPI_RECLAIMABLE; break; our_type = MEMMAP_ACPI_RECLAIMABLE; break;
case EfiACPIMemoryNVS: case EfiACPIMemoryNVS:
@ -416,83 +436,121 @@ fail:
panic(false, "pmm: Failure initialising memory map"); panic(false, "pmm: Failure initialising memory map");
} }
static void pmm_reclaim_uefi_mem(struct memmap_entry *m, size_t *_count) { void pmm_reclaim_uefi_mem(void) {
size_t count = *_count;
size_t recl_i = 0; size_t recl_i = 0;
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < memmap_entries; i++) {
if (m[i].type == MEMMAP_EFI_RECLAIMABLE) { if (memmap[i].type == MEMMAP_EFI_RECLAIMABLE) {
recl_i++; recl_i++;
} }
} }
struct memmap_entry *recl = ext_mem_alloc(recl_i * sizeof(struct memmap_entry)); struct memmap_entry *recl = ext_mem_alloc(recl_i * sizeof(struct memmap_entry));
for (size_t i = 0, j = 0; i < count; i++) { {
if (m[i].type == MEMMAP_EFI_RECLAIMABLE) { size_t recl_j = 0;
recl[j++] = m[i]; for (size_t i = 0; i < memmap_entries; i++) {
if (memmap[i].type == MEMMAP_EFI_RECLAIMABLE) {
recl[recl_j++] = memmap[i];
}
} }
} }
for (size_t ri = 0; ri < recl_i; ri++) { another_recl:;
struct memmap_entry *r = &recl[ri]; // Punch holes in our EFI reclaimable entry for every EFI area which is
// boot services or conventional that fits within
size_t efi_mmap_entry_count = efi_mmap_size / efi_desc_size;
for (size_t i = 0; i < efi_mmap_entry_count; i++) {
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
// Punch holes in our EFI reclaimable entry for every EFI area which is uint64_t base = recl->base;
// boot services or conventional that fits within uint64_t top = base + recl->length;
size_t efi_mmap_entry_count = efi_mmap_size / efi_desc_size; uint64_t efi_base = entry->PhysicalStart;
for (size_t i = 0; i < efi_mmap_entry_count; i++) { uint64_t efi_size = entry->NumberOfPages * 4096;
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
uint64_t base = r->base; if (efi_base < base) {
uint64_t top = base + r->length; if (efi_size <= base - efi_base)
uint64_t efi_base = entry->PhysicalStart;
uint64_t efi_size = entry->NumberOfPages * 4096;
if (efi_base < base) {
if (efi_size <= base - efi_base)
continue;
efi_size -= base - efi_base;
efi_base = base;
}
uint64_t efi_top = efi_base + efi_size;
if (efi_top > top) {
if (efi_size <= efi_top - top)
continue;
efi_size -= efi_top - top;
efi_top = top;
}
// Sanity check
if (!(efi_base >= base && efi_base < top
&& efi_top > base && efi_top <= top))
continue; continue;
efi_size -= base - efi_base;
efi_base = base;
}
uint64_t efi_top = efi_base + efi_size;
if (efi_top > top) {
if (efi_size <= efi_top - top)
continue;
efi_size -= efi_top - top;
efi_top = top;
}
// Sanity check
if (!(efi_base >= base && efi_base < top
&& efi_top > base && efi_top <= top))
continue;
uint32_t our_type;
switch (entry->Type) {
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
our_type = MEMMAP_USABLE; break;
case EfiACPIReclaimMemory:
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
case EfiACPIMemoryNVS:
our_type = MEMMAP_ACPI_NVS; break;
default:
our_type = MEMMAP_RESERVED; break;
}
memmap_alloc_range(efi_base, efi_size, our_type, false, true, false, true);
}
if (--recl_i > 0) {
recl++;
goto another_recl;
}
// Ensure the boot services are still boot services, or free, in
// the EFI memmap, and disallow allocations since our stack and page tables
// are placed in this newly freed memory.
for (size_t i = 0; i < memmap_entries; i++) {
if (memmap[i].type != MEMMAP_EFI_BOOTSERVICES)
continue;
// Go through EFI memmap and ensure this entry fits within a boot services
// or conventional entry
size_t entry_count = efi_mmap_size / efi_desc_size;
for (size_t j = 0; j < entry_count; j++) {
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + j * efi_desc_size;
uint32_t our_type;
switch (entry->Type) { switch (entry->Type) {
case EfiBootServicesCode: case EfiBootServicesCode:
case EfiBootServicesData: case EfiBootServicesData:
case EfiConventionalMemory: case EfiConventionalMemory:
our_type = MEMMAP_USABLE; break; break;
case EfiACPIReclaimMemory:
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
case EfiACPIMemoryNVS:
our_type = MEMMAP_ACPI_NVS; break;
default: default:
our_type = MEMMAP_RESERVED; break; continue;
} }
memmap_alloc_range_in(m, &count, efi_base, efi_size, our_type, 0, true, false, false); uintptr_t base = memmap[i].base;
uintptr_t top = base + memmap[i].length;
uintptr_t efi_base = entry->PhysicalStart;
uintptr_t efi_size = entry->NumberOfPages * 4096;
uintptr_t efi_top = efi_base + efi_size;
if (!(base >= efi_base && base < efi_top
&& top > efi_base && top <= efi_top))
continue;
memmap[i].type = MEMMAP_USABLE;
} }
} }
allocations_disallowed = true; allocations_disallowed = true;
sanitise_entries(m, &count, false); sanitise_entries(memmap, &memmap_entries, false);
*_count = count;
} }
void pmm_release_uefi_mem(void) { void pmm_release_uefi_mem(void) {
@ -524,9 +582,49 @@ struct memmap_entry *get_raw_memmap(size_t *entry_count) {
#if defined (UEFI) #if defined (UEFI)
struct memmap_entry *get_raw_memmap(size_t *entry_count) { struct memmap_entry *get_raw_memmap(size_t *entry_count) {
pmm_reclaim_uefi_mem(untouched_memmap, &untouched_memmap_entries); size_t mmap_count = efi_mmap_size / efi_desc_size;
*entry_count = untouched_memmap_entries; size_t mmap_len = mmap_count * sizeof(struct memmap_entry);
return untouched_memmap;
struct memmap_entry *mmap = ext_mem_alloc(mmap_len);
for (size_t i = 0; i < mmap_count; i++) {
EFI_MEMORY_DESCRIPTOR *entry = (void *)efi_mmap + i * efi_desc_size;
uint32_t our_type;
switch (entry->Type) {
case EfiReservedMemoryType:
case EfiRuntimeServicesCode:
case EfiRuntimeServicesData:
case EfiUnusableMemory:
case EfiMemoryMappedIO:
case EfiMemoryMappedIOPortSpace:
case EfiPalCode:
case EfiLoaderCode:
case EfiLoaderData:
default:
our_type = MEMMAP_RESERVED; break;
case EfiACPIReclaimMemory:
our_type = MEMMAP_ACPI_RECLAIMABLE; break;
case EfiACPIMemoryNVS:
our_type = MEMMAP_ACPI_NVS; break;
case EfiBootServicesCode:
case EfiBootServicesData:
case EfiConventionalMemory:
our_type = MEMMAP_USABLE; break;
}
mmap[i].base = entry->PhysicalStart;
mmap[i].length = entry->NumberOfPages * 4096;
mmap[i].type = our_type;
}
bool s_old = sanitiser_keep_first_page;
sanitiser_keep_first_page = true;
sanitise_entries(mmap, &mmap_count, false);
sanitiser_keep_first_page = s_old;
*entry_count = mmap_count;
return mmap;
} }
#endif #endif
@ -617,22 +715,19 @@ struct meminfo mmap_get_info(size_t mmap_count, struct memmap_entry *mmap) {
return info; return info;
} }
static bool pmm_new_entry(struct memmap_entry *m, size_t *_count, static bool pmm_new_entry(uint64_t base, uint64_t length, uint32_t type) {
uint64_t base, uint64_t length, uint32_t type) {
size_t count = *_count;
uint64_t top = base + length; uint64_t top = base + length;
// Handle overlapping new entries. // Handle overlapping new entries.
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < memmap_entries; i++) {
uint64_t entry_base = m[i].base; uint64_t entry_base = memmap[i].base;
uint64_t entry_top = m[i].base + m[i].length; uint64_t entry_top = memmap[i].base + memmap[i].length;
// Full overlap // Full overlap
if (base <= entry_base && top >= entry_top) { if (base <= entry_base && top >= entry_top) {
// Remove overlapped entry // Remove overlapped entry
m[i] = m[count - 1]; memmap[i] = memmap[memmap_entries - 1];
count--; memmap_entries--;
i--; i--;
continue; continue;
} }
@ -640,30 +735,30 @@ static bool pmm_new_entry(struct memmap_entry *m, size_t *_count,
// Partial overlap (bottom) // Partial overlap (bottom)
if (base <= entry_base && top < entry_top && top > entry_base) { if (base <= entry_base && top < entry_top && top > entry_base) {
// Entry gets bottom shaved off // Entry gets bottom shaved off
m[i].base += top - entry_base; memmap[i].base += top - entry_base;
m[i].length -= top - entry_base; memmap[i].length -= top - entry_base;
continue; continue;
} }
// Partial overlap (top) // Partial overlap (top)
if (base > entry_base && base < entry_top && top >= entry_top) { if (base > entry_base && base < entry_top && top >= entry_top) {
// Entry gets top shaved off // Entry gets top shaved off
m[i].length -= entry_top - base; memmap[i].length -= entry_top - base;
continue; continue;
} }
// Nested (pain) // Nested (pain)
if (base > entry_base && top < entry_top) { if (base > entry_base && top < entry_top) {
// Entry gets top shaved off first // Entry gets top shaved off first
m[i].length -= entry_top - base; memmap[i].length -= entry_top - base;
// Now we need to create a new entry // Now we need to create a new entry
if (count >= memmap_max_entries) if (memmap_entries >= memmap_max_entries)
panic(false, "Memory map exhausted."); panic(false, "Memory map exhausted.");
struct memmap_entry *new_entry = &m[count++]; struct memmap_entry *new_entry = &memmap[memmap_entries++];
new_entry->type = m[i].type; new_entry->type = memmap[i].type;
new_entry->base = top; new_entry->base = top;
new_entry->length = entry_top - top; new_entry->length = entry_top - top;
@ -671,23 +766,19 @@ static bool pmm_new_entry(struct memmap_entry *m, size_t *_count,
} }
} }
if (count >= memmap_max_entries) if (memmap_entries >= memmap_max_entries)
panic(false, "Memory map exhausted."); panic(false, "Memory map exhausted.");
struct memmap_entry *target = &m[count++]; struct memmap_entry *target = &memmap[memmap_entries++];
target->type = type; target->type = type;
target->base = base; target->base = base;
target->length = length; target->length = length;
*_count = count;
return true; return true;
} }
bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count, bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
size_t count = *_count;
if (length == 0) if (length == 0)
return true; return true;
@ -697,18 +788,18 @@ bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
uint64_t top = base + length; uint64_t top = base + length;
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < memmap_entries; i++) {
if (overlay_type != 0 && m[i].type != overlay_type) if (overlay_type != 0 && memmap[i].type != overlay_type)
continue; continue;
uint64_t entry_base = m[i].base; uint64_t entry_base = memmap[i].base;
uint64_t entry_top = m[i].base + m[i].length; uint64_t entry_top = memmap[i].base + memmap[i].length;
if (base >= entry_base && base < entry_top && top <= entry_top) { if (base >= entry_base && base < entry_top && top <= entry_top) {
if (simulation) if (simulation)
return true; return true;
if (pmm_new_entry(m, &count, base, length, type) == true) { if (pmm_new_entry(base, length, type) == true) {
goto success; goto success;
} }
} }
@ -721,16 +812,11 @@ bool memmap_alloc_range_in(struct memmap_entry *m, size_t *_count,
return false; return false;
} }
if (pmm_new_entry(m, &count, base, length, type) == false) { if (pmm_new_entry(base, length, type) == false) {
return false; return false;
} }
success: success:
sanitise_entries(m, &count, false); sanitise_entries(memmap, &memmap_entries, false);
*_count = count;
return true; return true;
} }
bool memmap_alloc_range(uint64_t base, uint64_t length, uint32_t type, uint32_t overlay_type, bool do_panic, bool simulation, bool new_entry) {
return memmap_alloc_range_in(memmap, &memmap_entries, base, length, type, overlay_type, do_panic, simulation, new_entry);
}