libserialport/serialport.c

2313 lines
53 KiB
C

/*
* This file is part of the libserialport project.
*
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2010-2012 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2013 Martin Ling <martin-libserialport@earth.li>
* Copyright (C) 2013 Matthias Heidbrink <m-sigrok@heidbrink.biz>
* Copyright (C) 2014 Aurelien Jacobs <aurel@gnuage.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "libserialport.h"
#include "libserialport_internal.h"
const struct std_baudrate std_baudrates[] = {
#ifdef _WIN32
/*
* The baudrates 50/75/134/150/200/1800/230400/460800 do not seem to
* have documented CBR_* macros.
*/
BAUD(110), BAUD(300), BAUD(600), BAUD(1200), BAUD(2400), BAUD(4800),
BAUD(9600), BAUD(14400), BAUD(19200), BAUD(38400), BAUD(57600),
BAUD(115200), BAUD(128000), BAUD(256000),
#else
BAUD(50), BAUD(75), BAUD(110), BAUD(134), BAUD(150), BAUD(200),
BAUD(300), BAUD(600), BAUD(1200), BAUD(1800), BAUD(2400), BAUD(4800),
BAUD(9600), BAUD(19200), BAUD(38400), BAUD(57600), BAUD(115200),
BAUD(230400),
#if !defined(__APPLE__) && !defined(__OpenBSD__)
BAUD(460800),
#endif
#endif
};
void (*sp_debug_handler)(const char *format, ...) = sp_default_debug_handler;
static enum sp_return get_config(struct sp_port *port, struct port_data *data,
struct sp_port_config *config);
static enum sp_return set_config(struct sp_port *port, struct port_data *data,
const struct sp_port_config *config);
SP_API enum sp_return sp_get_port_by_name(const char *portname, struct sp_port **port_ptr)
{
struct sp_port *port;
enum sp_return ret;
int len;
TRACE("%s, %p", portname, port_ptr);
if (!port_ptr)
RETURN_ERROR(SP_ERR_ARG, "Null result pointer");
*port_ptr = NULL;
if (!portname)
RETURN_ERROR(SP_ERR_ARG, "Null port name");
DEBUG("Building structure for port %s", portname);
if (!(port = malloc(sizeof(struct sp_port))))
RETURN_ERROR(SP_ERR_MEM, "Port structure malloc failed");
len = strlen(portname) + 1;
if (!(port->name = malloc(len))) {
free(port);
RETURN_ERROR(SP_ERR_MEM, "Port name malloc failed");
}
memcpy(port->name, portname, len);
#ifdef _WIN32
port->hdl = INVALID_HANDLE_VALUE;
#else
port->fd = -1;
#endif
port->description = NULL;
port->transport = SP_TRANSPORT_NATIVE;
port->usb_bus = -1;
port->usb_address = -1;
port->usb_vid = -1;
port->usb_pid = -1;
port->usb_manufacturer = NULL;
port->usb_product = NULL;
port->usb_serial = NULL;
port->bluetooth_address = NULL;
#ifndef NO_PORT_METADATA
if ((ret = get_port_details(port)) != SP_OK) {
sp_free_port(port);
return ret;
}
#endif
*port_ptr = port;
RETURN_OK();
}
SP_API char *sp_get_port_name(const struct sp_port *port)
{
TRACE("%p", port);
if (!port)
return NULL;
RETURN_VALUE("%s", port->name);
}
SP_API char *sp_get_port_description(struct sp_port *port)
{
TRACE("%p", port);
if (!port || !port->description)
return NULL;
RETURN_VALUE("%s", port->description);
}
SP_API enum sp_transport sp_get_port_transport(struct sp_port *port)
{
TRACE("%p", port);
if (!port)
RETURN_ERROR(SP_ERR_ARG, "Null port");
RETURN_VALUE("%d", port->transport);
}
SP_API enum sp_return sp_get_port_usb_bus_address(const struct sp_port *port,
int *usb_bus,int *usb_address)
{
TRACE("%p", port);
if (!port)
RETURN_ERROR(SP_ERR_ARG, "Null port");
if (port->transport != SP_TRANSPORT_USB)
RETURN_ERROR(SP_ERR_ARG, "Port does not use USB transport");
if (port->usb_bus < 0 || port->usb_address < 0)
RETURN_ERROR(SP_ERR_SUPP, "Bus and address values are not available");
if (usb_bus) *usb_bus = port->usb_bus;
if (usb_address) *usb_address = port->usb_address;
RETURN_OK();
}
SP_API enum sp_return sp_get_port_usb_vid_pid(const struct sp_port *port,
int *usb_vid, int *usb_pid)
{
TRACE("%p", port);
if (!port)
RETURN_ERROR(SP_ERR_ARG, "Null port");
if (port->transport != SP_TRANSPORT_USB)
RETURN_ERROR(SP_ERR_ARG, "Port does not use USB transport");
if (port->usb_vid < 0 || port->usb_pid < 0)
RETURN_ERROR(SP_ERR_SUPP, "VID:PID values are not available");
if (usb_vid) *usb_vid = port->usb_vid;
if (usb_pid) *usb_pid = port->usb_pid;
RETURN_OK();
}
SP_API char *sp_get_port_usb_manufacturer(const struct sp_port *port)
{
TRACE("%p", port);
if (!port || port->transport != SP_TRANSPORT_USB || !port->usb_manufacturer)
return NULL;
RETURN_VALUE("%s", port->usb_manufacturer);
}
SP_API char *sp_get_port_usb_product(const struct sp_port *port)
{
TRACE("%p", port);
if (!port || port->transport != SP_TRANSPORT_USB || !port->usb_product)
return NULL;
RETURN_VALUE("%s", port->usb_product);
}
SP_API char *sp_get_port_usb_serial(const struct sp_port *port)
{
TRACE("%p", port);
if (!port || port->transport != SP_TRANSPORT_USB || !port->usb_serial)
return NULL;
RETURN_VALUE("%s", port->usb_serial);
}
SP_API char *sp_get_port_bluetooth_address(const struct sp_port *port)
{
TRACE("%p", port);
if (!port || port->transport != SP_TRANSPORT_BLUETOOTH
|| !port->bluetooth_address)
return NULL;
RETURN_VALUE("%s", port->bluetooth_address);
}
SP_API enum sp_return sp_get_port_handle(const struct sp_port *port,
void *result_ptr)
{
TRACE("%p, %p", port, result_ptr);
if (!port)
RETURN_ERROR(SP_ERR_ARG, "Null port");
#ifdef _WIN32
HANDLE *handle_ptr = result_ptr;
*handle_ptr = port->hdl;
#else
int *fd_ptr = result_ptr;
*fd_ptr = port->fd;
#endif
RETURN_OK();
}
SP_API enum sp_return sp_copy_port(const struct sp_port *port,
struct sp_port **copy_ptr)
{
TRACE("%p, %p", port, copy_ptr);
if (!copy_ptr)
RETURN_ERROR(SP_ERR_ARG, "Null result pointer");
*copy_ptr = NULL;
if (!port)
RETURN_ERROR(SP_ERR_ARG, "Null port");
if (!port->name)
RETURN_ERROR(SP_ERR_ARG, "Null port name");
DEBUG("Copying port structure");
RETURN_VALUE("%p", sp_get_port_by_name(port->name, copy_ptr));
}
SP_API void sp_free_port(struct sp_port *port)
{
TRACE("%p", port);
if (!port) {
DEBUG("Null port");
RETURN();
}
DEBUG("Freeing port structure");
if (port->name)
free(port->name);
if (port->description)
free(port->description);
if (port->usb_manufacturer)
free(port->usb_manufacturer);
if (port->usb_product)
free(port->usb_product);
if (port->usb_serial)
free(port->usb_serial);
if (port->bluetooth_address)
free(port->bluetooth_address);
#ifdef _WIN32
if (port->usb_path)
free(port->usb_path);
#endif
free(port);
RETURN();
}
SP_PRIV struct sp_port **list_append(struct sp_port **list,
const char *portname)
{
void *tmp;
unsigned int count;
for (count = 0; list[count]; count++);
if (!(tmp = realloc(list, sizeof(struct sp_port *) * (count + 2))))
goto fail;
list = tmp;
if (sp_get_port_by_name(portname, &list[count]) != SP_OK)
goto fail;
list[count + 1] = NULL;
return list;
fail:
sp_free_port_list(list);
return NULL;
}
SP_API enum sp_return sp_list_ports(struct sp_port ***list_ptr)
{
struct sp_port **list;
int ret;
TRACE("%p", list_ptr);
if (!list_ptr)
RETURN_ERROR(SP_ERR_ARG, "Null result pointer");
DEBUG("Enumerating ports");
if (!(list = malloc(sizeof(struct sp_port **))))
RETURN_ERROR(SP_ERR_MEM, "Port list malloc failed");
list[0] = NULL;
#ifdef NO_ENUMERATION
ret = SP_ERR_SUPP;
#else
ret = list_ports(&list);
#endif
switch (ret) {
case SP_OK:
*list_ptr = list;
RETURN_OK();
case SP_ERR_SUPP:
DEBUG_ERROR(SP_ERR_SUPP, "Enumeration not supported on this platform");
default:
if (list)
sp_free_port_list(list);
*list_ptr = NULL;
return ret;
}
}
SP_API void sp_free_port_list(struct sp_port **list)
{
unsigned int i;
TRACE("%p", list);
if (!list) {
DEBUG("Null list");
RETURN();
}
DEBUG("Freeing port list");
for (i = 0; list[i]; i++)
sp_free_port(list[i]);
free(list);
RETURN();
}
#define CHECK_PORT() do { \
if (port == NULL) \
RETURN_ERROR(SP_ERR_ARG, "Null port"); \
if (port->name == NULL) \
RETURN_ERROR(SP_ERR_ARG, "Null port name"); \
} while (0)
#ifdef _WIN32
#define CHECK_PORT_HANDLE() do { \
if (port->hdl == INVALID_HANDLE_VALUE) \
RETURN_ERROR(SP_ERR_ARG, "Invalid port handle"); \
} while (0)
#else
#define CHECK_PORT_HANDLE() do { \
if (port->fd < 0) \
RETURN_ERROR(SP_ERR_ARG, "Invalid port fd"); \
} while (0)
#endif
#define CHECK_OPEN_PORT() do { \
CHECK_PORT(); \
CHECK_PORT_HANDLE(); \
} while (0)
SP_API enum sp_return sp_open(struct sp_port *port, enum sp_mode flags)
{
struct port_data data;
struct sp_port_config config;
enum sp_return ret;
TRACE("%p, 0x%x", port, flags);
CHECK_PORT();
if (flags > (SP_MODE_READ | SP_MODE_WRITE))
RETURN_ERROR(SP_ERR_ARG, "Invalid flags");
DEBUG("Opening port %s", port->name);
#ifdef _WIN32
DWORD desired_access = 0, flags_and_attributes = 0, errors;
char *escaped_port_name;
COMSTAT status;
/* Prefix port name with '\\.\' to work with ports above COM9. */
if (!(escaped_port_name = malloc(strlen(port->name) + 5)))
RETURN_ERROR(SP_ERR_MEM, "Escaped port name malloc failed");
sprintf(escaped_port_name, "\\\\.\\%s", port->name);
/* Map 'flags' to the OS-specific settings. */
flags_and_attributes = FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED;
if (flags & SP_MODE_READ)
desired_access |= GENERIC_READ;
if (flags & SP_MODE_WRITE)
desired_access |= GENERIC_WRITE;
port->hdl = CreateFile(escaped_port_name, desired_access, 0, 0,
OPEN_EXISTING, flags_and_attributes, 0);
free(escaped_port_name);
if (port->hdl == INVALID_HANDLE_VALUE)
RETURN_FAIL("port CreateFile() failed");
/* All timeouts initially disabled. */
port->timeouts.ReadIntervalTimeout = 0;
port->timeouts.ReadTotalTimeoutMultiplier = 0;
port->timeouts.ReadTotalTimeoutConstant = 0;
port->timeouts.WriteTotalTimeoutMultiplier = 0;
port->timeouts.WriteTotalTimeoutConstant = 0;
if (SetCommTimeouts(port->hdl, &port->timeouts) == 0) {
sp_close(port);
RETURN_FAIL("SetCommTimeouts() failed");
}
/* Prepare OVERLAPPED structures. */
#define INIT_OVERLAPPED(ovl) do { \
memset(&port->ovl, 0, sizeof(port->ovl)); \
port->ovl.hEvent = INVALID_HANDLE_VALUE; \
if ((port->ovl.hEvent = CreateEvent(NULL, TRUE, TRUE, NULL)) \
== INVALID_HANDLE_VALUE) { \
sp_close(port); \
RETURN_FAIL(#ovl "CreateEvent() failed"); \
} \
} while (0)
INIT_OVERLAPPED(read_ovl);
INIT_OVERLAPPED(write_ovl);
INIT_OVERLAPPED(wait_ovl);
/* Set event mask for RX and error events. */
if (SetCommMask(port->hdl, EV_RXCHAR | EV_ERR) == 0) {
sp_close(port);
RETURN_FAIL("SetCommMask() failed");
}
/* Start background operation for RX and error events. */
if (WaitCommEvent(port->hdl, &port->events, &port->wait_ovl) == 0) {
if (GetLastError() != ERROR_IO_PENDING) {
sp_close(port);
RETURN_FAIL("WaitCommEvent() failed");
}
}
port->writing = FALSE;
#else
int flags_local = O_NONBLOCK | O_NOCTTY;
/* Map 'flags' to the OS-specific settings. */
if (flags & (SP_MODE_READ | SP_MODE_WRITE))
flags_local |= O_RDWR;
else if (flags & SP_MODE_READ)
flags_local |= O_RDONLY;
else if (flags & SP_MODE_WRITE)
flags_local |= O_WRONLY;
if ((port->fd = open(port->name, flags_local)) < 0)
RETURN_FAIL("open() failed");
#endif
ret = get_config(port, &data, &config);
if (ret < 0) {
sp_close(port);
RETURN_CODEVAL(ret);
}
/* Set sane port settings. */
#ifdef _WIN32
data.dcb.fBinary = TRUE;
data.dcb.fDsrSensitivity = FALSE;
data.dcb.fErrorChar = FALSE;
data.dcb.fNull = FALSE;
data.dcb.fAbortOnError = TRUE;
#else
/* Turn off all fancy termios tricks, give us a raw channel. */
data.term.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP | INLCR | IGNCR | ICRNL | IMAXBEL);
#ifdef IUCLC
data.term.c_iflag &= ~IUCLC;
#endif
data.term.c_oflag &= ~(OPOST | ONLCR | OCRNL | ONOCR | ONLRET);
#ifdef OLCUC
data.term.c_oflag &= ~OLCUC;
#endif
#ifdef NLDLY
data.term.c_oflag &= ~NLDLY;
#endif
#ifdef CRDLY
data.term.c_oflag &= ~CRDLY;
#endif
#ifdef TABDLY
data.term.c_oflag &= ~TABDLY;
#endif
#ifdef BSDLY
data.term.c_oflag &= ~BSDLY;
#endif
#ifdef VTDLY
data.term.c_oflag &= ~VTDLY;
#endif
#ifdef FFDLY
data.term.c_oflag &= ~FFDLY;
#endif
#ifdef OFILL
data.term.c_oflag &= ~OFILL;
#endif
data.term.c_lflag &= ~(ISIG | ICANON | ECHO | IEXTEN);
data.term.c_cc[VMIN] = 0;
data.term.c_cc[VTIME] = 0;
/* Ignore modem status lines; enable receiver; leave control lines alone on close. */
data.term.c_cflag |= (CLOCAL | CREAD | HUPCL);
#endif
#ifdef _WIN32
if (ClearCommError(port->hdl, &errors, &status) == 0)
RETURN_FAIL("ClearCommError() failed");
#endif
ret = set_config(port, &data, &config);
if (ret < 0) {
sp_close(port);
RETURN_CODEVAL(ret);
}
RETURN_OK();
}
SP_API enum sp_return sp_close(struct sp_port *port)
{
TRACE("%p", port);
CHECK_OPEN_PORT();
DEBUG("Closing port %s", port->name);
#ifdef _WIN32
/* Returns non-zero upon success, 0 upon failure. */
if (CloseHandle(port->hdl) == 0)
RETURN_FAIL("port CloseHandle() failed");
port->hdl = INVALID_HANDLE_VALUE;
/* Close event handles for overlapped structures. */
#define CLOSE_OVERLAPPED(ovl) do { \
if (port->ovl.hEvent != INVALID_HANDLE_VALUE && \
CloseHandle(port->ovl.hEvent) == 0) \
RETURN_FAIL(# ovl "event CloseHandle() failed"); \
} while (0)
CLOSE_OVERLAPPED(read_ovl);
CLOSE_OVERLAPPED(write_ovl);
CLOSE_OVERLAPPED(wait_ovl);
#else
/* Returns 0 upon success, -1 upon failure. */
if (close(port->fd) == -1)
RETURN_FAIL("close() failed");
port->fd = -1;
#endif
RETURN_OK();
}
SP_API enum sp_return sp_flush(struct sp_port *port, enum sp_buffer buffers)
{
TRACE("%p, 0x%x", port, buffers);
CHECK_OPEN_PORT();
if (buffers > SP_BUF_BOTH)
RETURN_ERROR(SP_ERR_ARG, "Invalid buffer selection");
const char *buffer_names[] = {"no", "input", "output", "both"};
DEBUG("Flushing %s buffers on port %s", buffer_names[buffers], port->name);
#ifdef _WIN32
DWORD flags = 0;
if (buffers & SP_BUF_INPUT)
flags |= PURGE_RXCLEAR;
if (buffers & SP_BUF_OUTPUT)
flags |= PURGE_TXCLEAR;
/* Returns non-zero upon success, 0 upon failure. */
if (PurgeComm(port->hdl, flags) == 0)
RETURN_FAIL("PurgeComm() failed");
#else
int flags = 0;
if (buffers & SP_BUF_BOTH)
flags = TCIOFLUSH;
else if (buffers & SP_BUF_INPUT)
flags = TCIFLUSH;
else if (buffers & SP_BUF_OUTPUT)
flags = TCOFLUSH;
/* Returns 0 upon success, -1 upon failure. */
if (tcflush(port->fd, flags) < 0)
RETURN_FAIL("tcflush() failed");
#endif
RETURN_OK();
}
SP_API enum sp_return sp_drain(struct sp_port *port)
{
TRACE("%p", port);
CHECK_OPEN_PORT();
DEBUG("Draining port %s", port->name);
#ifdef _WIN32
/* Returns non-zero upon success, 0 upon failure. */
if (FlushFileBuffers(port->hdl) == 0)
RETURN_FAIL("FlushFileBuffers() failed");
RETURN_OK();
#else
int result;
while (1) {
#ifdef __ANDROID__
int arg = 1;
result = ioctl(port->fd, TCSBRK, &arg);
#else
result = tcdrain(port->fd);
#endif
if (result < 0) {
if (errno == EINTR) {
DEBUG("tcdrain() was interrupted");
continue;
} else {
RETURN_FAIL("tcdrain() failed");
}
} else {
RETURN_OK();
}
}
#endif
}
SP_API enum sp_return sp_blocking_write(struct sp_port *port, const void *buf,
size_t count, unsigned int timeout)
{
TRACE("%p, %p, %d, %d", port, buf, count, timeout);
CHECK_OPEN_PORT();
if (!buf)
RETURN_ERROR(SP_ERR_ARG, "Null buffer");
if (timeout)
DEBUG("Writing %d bytes to port %s, timeout %d ms", count, port->name, timeout);
else
DEBUG("Writing %d bytes to port %s, no timeout", count, port->name);
if (count == 0)
RETURN_VALUE("0", 0);
#ifdef _WIN32
DWORD bytes_written = 0;
BOOL result;
/* Wait for previous non-blocking write to complete, if any. */
if (port->writing) {
DEBUG("Waiting for previous write to complete");
result = GetOverlappedResult(port->hdl, &port->write_ovl, &bytes_written, TRUE);
port->writing = 0;
if (!result)
RETURN_FAIL("Previous write failed to complete");
DEBUG("Previous write completed");
}
/* Set timeout. */
port->timeouts.WriteTotalTimeoutConstant = timeout;
if (SetCommTimeouts(port->hdl, &port->timeouts) == 0)
RETURN_FAIL("SetCommTimeouts() failed");
/* Start write. */
if (WriteFile(port->hdl, buf, count, NULL, &port->write_ovl) == 0) {
if (GetLastError() == ERROR_IO_PENDING) {
DEBUG("Waiting for write to complete");
GetOverlappedResult(port->hdl, &port->write_ovl, &bytes_written, TRUE);
DEBUG("Write completed, %d/%d bytes written", bytes_written, count);
RETURN_VALUE("%d", bytes_written);
} else {
RETURN_FAIL("WriteFile() failed");
}
} else {
DEBUG("Write completed immediately");
RETURN_VALUE("%d", count);
}
#else
size_t bytes_written = 0;
unsigned char *ptr = (unsigned char *) buf;
struct timeval start, delta, now, end = {0, 0};
fd_set fds;
int result;
if (timeout) {
/* Get time at start of operation. */
gettimeofday(&start, NULL);
/* Define duration of timeout. */
delta.tv_sec = timeout / 1000;
delta.tv_usec = (timeout % 1000) * 1000;
/* Calculate time at which we should give up. */
timeradd(&start, &delta, &end);
}
/* Loop until we have written the requested number of bytes. */
while (bytes_written < count)
{
/* Wait until space is available. */
FD_ZERO(&fds);
FD_SET(port->fd, &fds);
if (timeout) {
gettimeofday(&now, NULL);
if (timercmp(&now, &end, >)) {
DEBUG("write timed out");
RETURN_VALUE("%d", bytes_written);
}
timersub(&end, &now, &delta);
}
result = select(port->fd + 1, NULL, &fds, NULL, timeout ? &delta : NULL);
if (result < 0) {
if (errno == EINTR) {
DEBUG("select() call was interrupted, repeating");
continue;
} else {
RETURN_FAIL("select() failed");
}
} else if (result == 0) {
DEBUG("write timed out");
RETURN_VALUE("%d", bytes_written);
}
/* Do write. */
result = write(port->fd, ptr, count - bytes_written);
if (result < 0) {
if (errno == EAGAIN)
/* This shouldn't happen because we did a select() first, but handle anyway. */
continue;
else
/* This is an actual failure. */
RETURN_FAIL("write() failed");
}
bytes_written += result;
ptr += result;
}
RETURN_VALUE("%d", bytes_written);
#endif
}
SP_API enum sp_return sp_nonblocking_write(struct sp_port *port,
const void *buf, size_t count)
{
TRACE("%p, %p, %d", port, buf, count);
CHECK_OPEN_PORT();
if (!buf)
RETURN_ERROR(SP_ERR_ARG, "Null buffer");
DEBUG("Writing up to %d bytes to port %s", count, port->name);
if (count == 0)
RETURN_VALUE("0", 0);
#ifdef _WIN32
DWORD written = 0;
BYTE *ptr = (BYTE *) buf;
/* Check whether previous write is complete. */
if (port->writing) {
if (HasOverlappedIoCompleted(&port->write_ovl)) {
DEBUG("Previous write completed");
port->writing = 0;
} else {
DEBUG("Previous write not complete");
/* Can't take a new write until the previous one finishes. */
RETURN_VALUE("0", 0);
}
}
/* Set timeout. */
port->timeouts.WriteTotalTimeoutConstant = 0;
if (SetCommTimeouts(port->hdl, &port->timeouts) == 0)
RETURN_FAIL("SetCommTimeouts() failed");
/* Keep writing data until the OS has to actually start an async IO for it.
* At that point we know the buffer is full. */
while (written < count)
{
/* Copy first byte of user buffer. */
port->pending_byte = *ptr++;
/* Start asynchronous write. */
if (WriteFile(port->hdl, &port->pending_byte, 1, NULL, &port->write_ovl) == 0) {
if (GetLastError() == ERROR_IO_PENDING) {
if (HasOverlappedIoCompleted(&port->write_ovl)) {
DEBUG("Asynchronous write completed immediately");
port->writing = 0;
written++;
continue;
} else {
DEBUG("Asynchronous write running");
port->writing = 1;
RETURN_VALUE("%d", ++written);
}
} else {
/* Actual failure of some kind. */
RETURN_FAIL("WriteFile() failed");
}
} else {
DEBUG("Single byte written immediately");
written++;
}
}
DEBUG("All bytes written immediately");
RETURN_VALUE("%d", written);
#else
/* Returns the number of bytes written, or -1 upon failure. */
ssize_t written = write(port->fd, buf, count);
if (written < 0)
RETURN_FAIL("write() failed");
else
RETURN_VALUE("%d", written);
#endif
}
SP_API enum sp_return sp_blocking_read(struct sp_port *port, void *buf,
size_t count, unsigned int timeout)
{
TRACE("%p, %p, %d, %d", port, buf, count, timeout);
CHECK_OPEN_PORT();
if (!buf)
RETURN_ERROR(SP_ERR_ARG, "Null buffer");
if (timeout)
DEBUG("Reading %d bytes from port %s, timeout %d ms", count, port->name, timeout);
else
DEBUG("Reading %d bytes from port %s, no timeout", count, port->name);
if (count == 0)
RETURN_VALUE("0", 0);
#ifdef _WIN32
DWORD bytes_read = 0;
/* Set timeout. */
port->timeouts.ReadIntervalTimeout = 0;
port->timeouts.ReadTotalTimeoutConstant = timeout;
if (SetCommTimeouts(port->hdl, &port->timeouts) == 0)
RETURN_FAIL("SetCommTimeouts() failed");
/* Start read. */
if (ReadFile(port->hdl, buf, count, NULL, &port->read_ovl) == 0) {
if (GetLastError() == ERROR_IO_PENDING) {
DEBUG("Waiting for read to complete");
GetOverlappedResult(port->hdl, &port->read_ovl, &bytes_read, TRUE);
DEBUG("Read completed, %d/%d bytes read", bytes_read, count);
} else {
RETURN_FAIL("ReadFile() failed");
}
} else {
DEBUG("Read completed immediately");
bytes_read = count;
}
/* Start background operation for subsequent events. */
if (WaitCommEvent(port->hdl, &port->events, &port->wait_ovl) == 0) {
if (GetLastError() != ERROR_IO_PENDING)
RETURN_FAIL("WaitCommEvent() failed");
}
RETURN_VALUE("%d", bytes_read);
#else
size_t bytes_read = 0;
unsigned char *ptr = (unsigned char *) buf;
struct timeval start, delta, now, end = {0, 0};
fd_set fds;
int result;
if (timeout) {
/* Get time at start of operation. */
gettimeofday(&start, NULL);
/* Define duration of timeout. */
delta.tv_sec = timeout / 1000;
delta.tv_usec = (timeout % 1000) * 1000;
/* Calculate time at which we should give up. */
timeradd(&start, &delta, &end);
}
/* Loop until we have the requested number of bytes. */
while (bytes_read < count)
{
/* Wait until data is available. */
FD_ZERO(&fds);
FD_SET(port->fd, &fds);
if (timeout) {
gettimeofday(&now, NULL);
if (timercmp(&now, &end, >))
/* Timeout has expired. */
RETURN_VALUE("%d", bytes_read);
timersub(&end, &now, &delta);
}
result = select(port->fd + 1, &fds, NULL, NULL, timeout ? &delta : NULL);
if (result < 0) {
if (errno == EINTR) {
DEBUG("select() call was interrupted, repeating");
continue;
} else {
RETURN_FAIL("select() failed");
}
} else if (result == 0) {
DEBUG("read timed out");
RETURN_VALUE("%d", bytes_read);
}
/* Do read. */
result = read(port->fd, ptr, count - bytes_read);
if (result < 0) {
if (errno == EAGAIN)
/* This shouldn't happen because we did a select() first, but handle anyway. */
continue;
else
/* This is an actual failure. */
RETURN_FAIL("read() failed");
}
bytes_read += result;
ptr += result;
}
RETURN_VALUE("%d", bytes_read);
#endif
}
SP_API enum sp_return sp_nonblocking_read(struct sp_port *port, void *buf,
size_t count)
{
TRACE("%p, %p, %d", port, buf, count);
CHECK_OPEN_PORT();
if (!buf)
RETURN_ERROR(SP_ERR_ARG, "Null buffer");
DEBUG("Reading up to %d bytes from port %s", count, port->name);
#ifdef _WIN32
DWORD bytes_read;
/* Set timeout. */
port->timeouts.ReadIntervalTimeout = MAXDWORD;
port->timeouts.ReadTotalTimeoutConstant = 0;
if (SetCommTimeouts(port->hdl, &port->timeouts) == 0)
RETURN_FAIL("SetCommTimeouts() failed");
/* Do read. */
if (ReadFile(port->hdl, buf, count, NULL, &port->read_ovl) == 0)
RETURN_FAIL("ReadFile() failed");
/* Get number of bytes read. */
if (GetOverlappedResult(port->hdl, &port->read_ovl, &bytes_read, TRUE) == 0)
RETURN_FAIL("GetOverlappedResult() failed");
if (bytes_read > 0) {
/* Start background operation for subsequent events. */
if (WaitCommEvent(port->hdl, &port->events, &port->wait_ovl) == 0) {
if (GetLastError() != ERROR_IO_PENDING)
RETURN_FAIL("WaitCommEvent() failed");
}
}
RETURN_VALUE("%d", bytes_read);
#else
ssize_t bytes_read;
/* Returns the number of bytes read, or -1 upon failure. */
if ((bytes_read = read(port->fd, buf, count)) < 0) {
if (errno == EAGAIN)
/* No bytes available. */
bytes_read = 0;
else
/* This is an actual failure. */
RETURN_FAIL("read() failed");
}
RETURN_VALUE("%d", bytes_read);
#endif
}
SP_API enum sp_return sp_input_waiting(struct sp_port *port)
{
TRACE("%p", port);
CHECK_OPEN_PORT();
DEBUG("Checking input bytes waiting on port %s", port->name);
#ifdef _WIN32
DWORD errors;
COMSTAT comstat;
if (ClearCommError(port->hdl, &errors, &comstat) == 0)
RETURN_FAIL("ClearCommError() failed");
RETURN_VALUE("%d", comstat.cbInQue);
#else
int bytes_waiting;
if (ioctl(port->fd, TIOCINQ, &bytes_waiting) < 0)
RETURN_FAIL("TIOCINQ ioctl failed");
RETURN_VALUE("%d", bytes_waiting);
#endif
}
SP_API enum sp_return sp_output_waiting(struct sp_port *port)
{
TRACE("%p", port);
CHECK_OPEN_PORT();
DEBUG("Checking output bytes waiting on port %s", port->name);
#ifdef _WIN32
DWORD errors;
COMSTAT comstat;
if (ClearCommError(port->hdl, &errors, &comstat) == 0)
RETURN_FAIL("ClearCommError() failed");
RETURN_VALUE("%d", comstat.cbOutQue);
#else
int bytes_waiting;
if (ioctl(port->fd, TIOCOUTQ, &bytes_waiting) < 0)
RETURN_FAIL("TIOCOUTQ ioctl failed");
RETURN_VALUE("%d", bytes_waiting);
#endif
}
SP_API enum sp_return sp_new_event_set(struct sp_event_set **result_ptr)
{
struct sp_event_set *result;
TRACE("%p", result_ptr);
if (!result_ptr)
RETURN_ERROR(SP_ERR_ARG, "Null result");
*result_ptr = NULL;
if (!(result = malloc(sizeof(struct sp_event_set))))
RETURN_ERROR(SP_ERR_MEM, "sp_event_set malloc() failed");
memset(result, 0, sizeof(struct sp_event_set));
*result_ptr = result;
RETURN_OK();
}
static enum sp_return add_handle(struct sp_event_set *event_set,
event_handle handle, enum sp_event mask)
{
void *new_handles;
enum sp_event *new_masks;
TRACE("%p, %d, %d", event_set, handle, mask);
if (!(new_handles = realloc(event_set->handles,
sizeof(event_handle) * (event_set->count + 1))))
RETURN_ERROR(SP_ERR_MEM, "handle array realloc() failed");
if (!(new_masks = realloc(event_set->masks,
sizeof(enum sp_event) * (event_set->count + 1))))
RETURN_ERROR(SP_ERR_MEM, "mask array realloc() failed");
event_set->handles = new_handles;
event_set->masks = new_masks;
((event_handle *) event_set->handles)[event_set->count] = handle;
event_set->masks[event_set->count] = mask;
event_set->count++;
RETURN_OK();
}
SP_API enum sp_return sp_add_port_events(struct sp_event_set *event_set,
const struct sp_port *port, enum sp_event mask)
{
TRACE("%p, %p, %d", event_set, port, mask);
if (!event_set)
RETURN_ERROR(SP_ERR_ARG, "Null event set");
if (!port)
RETURN_ERROR(SP_ERR_ARG, "Null port");
if (mask > (SP_EVENT_RX_READY | SP_EVENT_TX_READY | SP_EVENT_ERROR))
RETURN_ERROR(SP_ERR_ARG, "Invalid event mask");
if (!mask)
RETURN_OK();
#ifdef _WIN32
enum sp_event handle_mask;
if ((handle_mask = mask & SP_EVENT_TX_READY))
TRY(add_handle(event_set, port->write_ovl.hEvent, handle_mask));
if ((handle_mask = mask & (SP_EVENT_RX_READY | SP_EVENT_ERROR)))
TRY(add_handle(event_set, port->wait_ovl.hEvent, handle_mask));
#else
TRY(add_handle(event_set, port->fd, mask));
#endif
RETURN_OK();
}
SP_API void sp_free_event_set(struct sp_event_set *event_set)
{
TRACE("%p", event_set);
if (!event_set) {
DEBUG("Null event set");
RETURN();
}
DEBUG("Freeing event set");
if (event_set->handles)
free(event_set->handles);
if (event_set->masks)
free(event_set->masks);
free(event_set);
RETURN();
}
SP_API enum sp_return sp_wait(struct sp_event_set *event_set,
unsigned int timeout)
{
TRACE("%p, %d", event_set, timeout);
if (!event_set)
RETURN_ERROR(SP_ERR_ARG, "Null event set");
#ifdef _WIN32
if (WaitForMultipleObjects(event_set->count, event_set->handles, FALSE,
timeout ? timeout : INFINITE) == WAIT_FAILED)
RETURN_FAIL("WaitForMultipleObjects() failed");
RETURN_OK();
#else
struct timeval start, delta, now, end = {0, 0};
int result, timeout_remaining;
struct pollfd *pollfds;
unsigned int i;
if (!(pollfds = malloc(sizeof(struct pollfd) * event_set->count)))
RETURN_ERROR(SP_ERR_MEM, "pollfds malloc() failed");
for (i = 0; i < event_set->count; i++) {
pollfds[i].fd = ((int *) event_set->handles)[i];
pollfds[i].events = 0;
pollfds[i].revents = 0;
if (event_set->masks[i] & SP_EVENT_RX_READY)
pollfds[i].events |= POLLIN;
if (event_set->masks[i] & SP_EVENT_TX_READY)
pollfds[i].events |= POLLOUT;
if (event_set->masks[i] & SP_EVENT_ERROR)
pollfds[i].events |= POLLERR;
}
if (timeout) {
/* Get time at start of operation. */
gettimeofday(&start, NULL);
/* Define duration of timeout. */
delta.tv_sec = timeout / 1000;
delta.tv_usec = (timeout % 1000) * 1000;
/* Calculate time at which we should give up. */
timeradd(&start, &delta, &end);
}
/* Loop until an event occurs. */
while (1)
{
if (timeout) {
gettimeofday(&now, NULL);
if (timercmp(&now, &end, >)) {
DEBUG("wait timed out");
break;
}
timersub(&end, &now, &delta);
timeout_remaining = delta.tv_sec * 1000 + delta.tv_usec / 1000;
}
result = poll(pollfds, event_set->count, timeout ? timeout_remaining : -1);
if (result < 0) {
if (errno == EINTR) {
DEBUG("poll() call was interrupted, repeating");
continue;
} else {
free(pollfds);
RETURN_FAIL("poll() failed");
}
} else if (result == 0) {
DEBUG("poll() timed out");
break;
} else {
DEBUG("poll() completed");
break;
}
}
free(pollfds);
RETURN_OK();
#endif
}
#ifdef USE_TERMIOS_SPEED
static enum sp_return get_baudrate(int fd, int *baudrate)
{
void *data;
TRACE("%d, %p", fd, baudrate);
DEBUG("Getting baud rate");
if (!(data = malloc(get_termios_size())))
RETURN_ERROR(SP_ERR_MEM, "termios malloc failed");
if (ioctl(fd, get_termios_get_ioctl(), data) < 0) {
free(data);
RETURN_FAIL("getting termios failed");
}
*baudrate = get_termios_speed(data);
free(data);
RETURN_OK();
}
static enum sp_return set_baudrate(int fd, int baudrate)
{
void *data;
TRACE("%d, %d", fd, baudrate);
DEBUG("Getting baud rate");
if (!(data = malloc(get_termios_size())))
RETURN_ERROR(SP_ERR_MEM, "termios malloc failed");
if (ioctl(fd, get_termios_get_ioctl(), data) < 0) {
free(data);
RETURN_FAIL("getting termios failed");
}
DEBUG("Setting baud rate");
set_termios_speed(data, baudrate);
if (ioctl(fd, get_termios_set_ioctl(), data) < 0) {
free(data);
RETURN_FAIL("setting termios failed");
}
free(data);
RETURN_OK();
}
#endif /* USE_TERMIOS_SPEED */
#ifdef USE_TERMIOX
static enum sp_return get_flow(int fd, struct port_data *data)
{
void *termx;
TRACE("%d, %p", fd, data);
DEBUG("Getting advanced flow control");
if (!(termx = malloc(get_termiox_size())))
RETURN_ERROR(SP_ERR_MEM, "termiox malloc failed");
if (ioctl(fd, TCGETX, termx) < 0) {
free(termx);
RETURN_FAIL("getting termiox failed");
}
get_termiox_flow(termx, &data->rts_flow, &data->cts_flow,
&data->dtr_flow, &data->dsr_flow);
free(termx);
RETURN_OK();
}
static enum sp_return set_flow(int fd, struct port_data *data)
{
void *termx;
TRACE("%d, %p", fd, data);
DEBUG("Getting advanced flow control");
if (!(termx = malloc(get_termiox_size())))
RETURN_ERROR(SP_ERR_MEM, "termiox malloc failed");
if (ioctl(fd, TCGETX, termx) < 0) {
free(termx);
RETURN_FAIL("getting termiox failed");
}
DEBUG("Setting advanced flow control");
set_termiox_flow(termx, data->rts_flow, data->cts_flow,
data->dtr_flow, data->dsr_flow);
if (ioctl(fd, TCSETX, termx) < 0) {
free(termx);
RETURN_FAIL("setting termiox failed");
}
free(termx);
RETURN_OK();
}
#endif /* USE_TERMIOX */
static enum sp_return get_config(struct sp_port *port, struct port_data *data,
struct sp_port_config *config)
{
unsigned int i;
TRACE("%p, %p, %p", port, data, config);
DEBUG("Getting configuration for port %s", port->name);
#ifdef _WIN32
if (!GetCommState(port->hdl, &data->dcb))
RETURN_FAIL("GetCommState() failed");
for (i = 0; i < NUM_STD_BAUDRATES; i++) {
if (data->dcb.BaudRate == std_baudrates[i].index) {
config->baudrate = std_baudrates[i].value;
break;
}
}
if (i == NUM_STD_BAUDRATES)
/* BaudRate field can be either an index or a custom baud rate. */
config->baudrate = data->dcb.BaudRate;
config->bits = data->dcb.ByteSize;
if (data->dcb.fParity)
switch (data->dcb.Parity) {
case NOPARITY:
config->parity = SP_PARITY_NONE;
break;
case ODDPARITY:
config->parity = SP_PARITY_ODD;
break;
case EVENPARITY:
config->parity = SP_PARITY_EVEN;
break;
case MARKPARITY:
config->parity = SP_PARITY_MARK;
break;
case SPACEPARITY:
config->parity = SP_PARITY_SPACE;
break;
default:
config->parity = -1;
}
else
config->parity = SP_PARITY_NONE;
switch (data->dcb.StopBits) {
case ONESTOPBIT:
config->stopbits = 1;
break;
case TWOSTOPBITS:
config->stopbits = 2;
break;
default:
config->stopbits = -1;
}
switch (data->dcb.fRtsControl) {
case RTS_CONTROL_DISABLE:
config->rts = SP_RTS_OFF;
break;
case RTS_CONTROL_ENABLE:
config->rts = SP_RTS_ON;
break;
case RTS_CONTROL_HANDSHAKE:
config->rts = SP_RTS_FLOW_CONTROL;
break;
default:
config->rts = -1;
}
config->cts = data->dcb.fOutxCtsFlow ? SP_CTS_FLOW_CONTROL : SP_CTS_IGNORE;
switch (data->dcb.fDtrControl) {
case DTR_CONTROL_DISABLE:
config->dtr = SP_DTR_OFF;
break;
case DTR_CONTROL_ENABLE:
config->dtr = SP_DTR_ON;
break;
case DTR_CONTROL_HANDSHAKE:
config->dtr = SP_DTR_FLOW_CONTROL;
break;
default:
config->dtr = -1;
}
config->dsr = data->dcb.fOutxDsrFlow ? SP_DSR_FLOW_CONTROL : SP_DSR_IGNORE;
if (data->dcb.fInX) {
if (data->dcb.fOutX)
config->xon_xoff = SP_XONXOFF_INOUT;
else
config->xon_xoff = SP_XONXOFF_IN;
} else {
if (data->dcb.fOutX)
config->xon_xoff = SP_XONXOFF_OUT;
else
config->xon_xoff = SP_XONXOFF_DISABLED;
}
#else // !_WIN32
if (tcgetattr(port->fd, &data->term) < 0)
RETURN_FAIL("tcgetattr() failed");
if (ioctl(port->fd, TIOCMGET, &data->controlbits) < 0)
RETURN_FAIL("TIOCMGET ioctl failed");
#ifdef USE_TERMIOX
int ret = get_flow(port->fd, data);
if (ret == SP_ERR_FAIL && errno == EINVAL)
data->termiox_supported = 0;
else if (ret < 0)
RETURN_CODEVAL(ret);
else
data->termiox_supported = 1;
#else
data->termiox_supported = 0;
#endif
for (i = 0; i < NUM_STD_BAUDRATES; i++) {
if (cfgetispeed(&data->term) == std_baudrates[i].index) {
config->baudrate = std_baudrates[i].value;
break;
}
}
if (i == NUM_STD_BAUDRATES) {
#ifdef __APPLE__
config->baudrate = (int)data->term.c_ispeed;
#elif defined(USE_TERMIOS_SPEED)
TRY(get_baudrate(port->fd, &config->baudrate));
#else
config->baudrate = -1;
#endif
}
switch (data->term.c_cflag & CSIZE) {
case CS8:
config->bits = 8;
break;
case CS7:
config->bits = 7;
break;
case CS6:
config->bits = 6;
break;
case CS5:
config->bits = 5;
break;
default:
config->bits = -1;
}
if (!(data->term.c_cflag & PARENB) && (data->term.c_iflag & IGNPAR))
config->parity = SP_PARITY_NONE;
else if (!(data->term.c_cflag & PARENB) || (data->term.c_iflag & IGNPAR))
config->parity = -1;
#ifdef CMSPAR
else if (data->term.c_cflag & CMSPAR)
config->parity = (data->term.c_cflag & PARODD) ? SP_PARITY_MARK : SP_PARITY_SPACE;
#endif
else
config->parity = (data->term.c_cflag & PARODD) ? SP_PARITY_ODD : SP_PARITY_EVEN;
config->stopbits = (data->term.c_cflag & CSTOPB) ? 2 : 1;
if (data->term.c_cflag & CRTSCTS) {
config->rts = SP_RTS_FLOW_CONTROL;
config->cts = SP_CTS_FLOW_CONTROL;
} else {
if (data->termiox_supported && data->rts_flow)
config->rts = SP_RTS_FLOW_CONTROL;
else
config->rts = (data->controlbits & TIOCM_RTS) ? SP_RTS_ON : SP_RTS_OFF;
config->cts = (data->termiox_supported && data->cts_flow) ?
SP_CTS_FLOW_CONTROL : SP_CTS_IGNORE;
}
if (data->termiox_supported && data->dtr_flow)
config->dtr = SP_DTR_FLOW_CONTROL;
else
config->dtr = (data->controlbits & TIOCM_DTR) ? SP_DTR_ON : SP_DTR_OFF;
config->dsr = (data->termiox_supported && data->dsr_flow) ?
SP_DSR_FLOW_CONTROL : SP_DSR_IGNORE;
if (data->term.c_iflag & IXOFF) {
if (data->term.c_iflag & IXON)
config->xon_xoff = SP_XONXOFF_INOUT;
else
config->xon_xoff = SP_XONXOFF_IN;
} else {
if (data->term.c_iflag & IXON)
config->xon_xoff = SP_XONXOFF_OUT;
else
config->xon_xoff = SP_XONXOFF_DISABLED;
}
#endif
RETURN_OK();
}
static enum sp_return set_config(struct sp_port *port, struct port_data *data,
const struct sp_port_config *config)
{
unsigned int i;
#ifdef __APPLE__
BAUD_TYPE baud_nonstd;
baud_nonstd = B0;
#endif
#ifdef USE_TERMIOS_SPEED
int baud_nonstd = 0;
#endif
TRACE("%p, %p, %p", port, data, config);
DEBUG("Setting configuration for port %s", port->name);
#ifdef _WIN32
if (config->baudrate >= 0) {
for (i = 0; i < NUM_STD_BAUDRATES; i++) {
if (config->baudrate == std_baudrates[i].value) {
data->dcb.BaudRate = std_baudrates[i].index;
break;
}
}
if (i == NUM_STD_BAUDRATES)
data->dcb.BaudRate = config->baudrate;
}
if (config->bits >= 0)
data->dcb.ByteSize = config->bits;
if (config->parity >= 0) {
switch (config->parity) {
case SP_PARITY_NONE:
data->dcb.Parity = NOPARITY;
break;
case SP_PARITY_ODD:
data->dcb.Parity = ODDPARITY;
break;
case SP_PARITY_EVEN:
data->dcb.Parity = EVENPARITY;
break;
case SP_PARITY_MARK:
data->dcb.Parity = MARKPARITY;
break;
case SP_PARITY_SPACE:
data->dcb.Parity = SPACEPARITY;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid parity setting");
}
}
if (config->stopbits >= 0) {
switch (config->stopbits) {
/* Note: There's also ONE5STOPBITS == 1.5 (unneeded so far). */
case 1:
data->dcb.StopBits = ONESTOPBIT;
break;
case 2:
data->dcb.StopBits = TWOSTOPBITS;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid stop bit setting");
}
}
if (config->rts >= 0) {
switch (config->rts) {
case SP_RTS_OFF:
data->dcb.fRtsControl = RTS_CONTROL_DISABLE;
break;
case SP_RTS_ON:
data->dcb.fRtsControl = RTS_CONTROL_ENABLE;
break;
case SP_RTS_FLOW_CONTROL:
data->dcb.fRtsControl = RTS_CONTROL_HANDSHAKE;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid RTS setting");
}
}
if (config->cts >= 0) {
switch (config->cts) {
case SP_CTS_IGNORE:
data->dcb.fOutxCtsFlow = FALSE;
break;
case SP_CTS_FLOW_CONTROL:
data->dcb.fOutxCtsFlow = TRUE;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid CTS setting");
}
}
if (config->dtr >= 0) {
switch (config->dtr) {
case SP_DTR_OFF:
data->dcb.fDtrControl = DTR_CONTROL_DISABLE;
break;
case SP_DTR_ON:
data->dcb.fDtrControl = DTR_CONTROL_ENABLE;
break;
case SP_DTR_FLOW_CONTROL:
data->dcb.fDtrControl = DTR_CONTROL_HANDSHAKE;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid DTR setting");
}
}
if (config->dsr >= 0) {
switch (config->dsr) {
case SP_DSR_IGNORE:
data->dcb.fOutxDsrFlow = FALSE;
break;
case SP_DSR_FLOW_CONTROL:
data->dcb.fOutxDsrFlow = TRUE;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid DSR setting");
}
}
if (config->xon_xoff >= 0) {
switch (config->xon_xoff) {
case SP_XONXOFF_DISABLED:
data->dcb.fInX = FALSE;
data->dcb.fOutX = FALSE;
break;
case SP_XONXOFF_IN:
data->dcb.fInX = TRUE;
data->dcb.fOutX = FALSE;
break;
case SP_XONXOFF_OUT:
data->dcb.fInX = FALSE;
data->dcb.fOutX = TRUE;
break;
case SP_XONXOFF_INOUT:
data->dcb.fInX = TRUE;
data->dcb.fOutX = TRUE;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid XON/XOFF setting");
}
}
if (!SetCommState(port->hdl, &data->dcb))
RETURN_FAIL("SetCommState() failed");
#else /* !_WIN32 */
int controlbits;
if (config->baudrate >= 0) {
for (i = 0; i < NUM_STD_BAUDRATES; i++) {
if (config->baudrate == std_baudrates[i].value) {
if (cfsetospeed(&data->term, std_baudrates[i].index) < 0)
RETURN_FAIL("cfsetospeed() failed");
if (cfsetispeed(&data->term, std_baudrates[i].index) < 0)
RETURN_FAIL("cfsetispeed() failed");
break;
}
}
/* Non-standard baud rate */
if (i == NUM_STD_BAUDRATES) {
#ifdef __APPLE__
/* Set "dummy" baud rate. */
if (cfsetspeed(&data->term, B9600) < 0)
RETURN_FAIL("cfsetspeed() failed");
baud_nonstd = config->baudrate;
#elif defined(USE_TERMIOS_SPEED)
baud_nonstd = 1;
#else
RETURN_ERROR(SP_ERR_SUPP, "Non-standard baudrate not supported");
#endif
}
}
if (config->bits >= 0) {
data->term.c_cflag &= ~CSIZE;
switch (config->bits) {
case 8:
data->term.c_cflag |= CS8;
break;
case 7:
data->term.c_cflag |= CS7;
break;
case 6:
data->term.c_cflag |= CS6;
break;
case 5:
data->term.c_cflag |= CS5;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid data bits setting");
}
}
if (config->parity >= 0) {
data->term.c_iflag &= ~IGNPAR;
data->term.c_cflag &= ~(PARENB | PARODD);
#ifdef CMSPAR
data->term.c_cflag &= ~CMSPAR;
#endif
switch (config->parity) {
case SP_PARITY_NONE:
data->term.c_iflag |= IGNPAR;
break;
case SP_PARITY_EVEN:
data->term.c_cflag |= PARENB;
break;
case SP_PARITY_ODD:
data->term.c_cflag |= PARENB | PARODD;
break;
#ifdef CMSPAR
case SP_PARITY_MARK:
data->term.c_cflag |= PARENB | PARODD;
data->term.c_cflag |= CMSPAR;
break;
case SP_PARITY_SPACE:
data->term.c_cflag |= PARENB;
data->term.c_cflag |= CMSPAR;
break;
#else
case SP_PARITY_MARK:
case SP_PARITY_SPACE:
RETURN_ERROR(SP_ERR_SUPP, "Mark/space parity not supported");
#endif
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid parity setting");
}
}
if (config->stopbits >= 0) {
data->term.c_cflag &= ~CSTOPB;
switch (config->stopbits) {
case 1:
data->term.c_cflag &= ~CSTOPB;
break;
case 2:
data->term.c_cflag |= CSTOPB;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid stop bits setting");
}
}
if (config->rts >= 0 || config->cts >= 0) {
if (data->termiox_supported) {
data->rts_flow = data->cts_flow = 0;
switch (config->rts) {
case SP_RTS_OFF:
case SP_RTS_ON:
controlbits = TIOCM_RTS;
if (ioctl(port->fd, config->rts == SP_RTS_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0)
RETURN_FAIL("Setting RTS signal level failed");
break;
case SP_RTS_FLOW_CONTROL:
data->rts_flow = 1;
break;
default:
break;
}
if (config->cts == SP_CTS_FLOW_CONTROL)
data->cts_flow = 1;
if (data->rts_flow && data->cts_flow)
data->term.c_iflag |= CRTSCTS;
else
data->term.c_iflag &= ~CRTSCTS;
} else {
/* Asymmetric use of RTS/CTS not supported. */
if (data->term.c_iflag & CRTSCTS) {
/* Flow control can only be disabled for both RTS & CTS together. */
if (config->rts >= 0 && config->rts != SP_RTS_FLOW_CONTROL) {
if (config->cts != SP_CTS_IGNORE)
RETURN_ERROR(SP_ERR_SUPP, "RTS & CTS flow control must be disabled together");
}
if (config->cts >= 0 && config->cts != SP_CTS_FLOW_CONTROL) {
if (config->rts <= 0 || config->rts == SP_RTS_FLOW_CONTROL)
RETURN_ERROR(SP_ERR_SUPP, "RTS & CTS flow control must be disabled together");
}
} else {
/* Flow control can only be enabled for both RTS & CTS together. */
if (((config->rts == SP_RTS_FLOW_CONTROL) && (config->cts != SP_CTS_FLOW_CONTROL)) ||
((config->cts == SP_CTS_FLOW_CONTROL) && (config->rts != SP_RTS_FLOW_CONTROL)))
RETURN_ERROR(SP_ERR_SUPP, "RTS & CTS flow control must be enabled together");
}
if (config->rts >= 0) {
if (config->rts == SP_RTS_FLOW_CONTROL) {
data->term.c_iflag |= CRTSCTS;
} else {
controlbits = TIOCM_RTS;
if (ioctl(port->fd, config->rts == SP_RTS_ON ? TIOCMBIS : TIOCMBIC,
&controlbits) < 0)
RETURN_FAIL("Setting RTS signal level failed");
}
}
}
}
if (config->dtr >= 0 || config->dsr >= 0) {
if (data->termiox_supported) {
data->dtr_flow = data->dsr_flow = 0;
switch (config->dtr) {
case SP_DTR_OFF:
case SP_DTR_ON:
controlbits = TIOCM_DTR;
if (ioctl(port->fd, config->dtr == SP_DTR_ON ? TIOCMBIS : TIOCMBIC, &controlbits) < 0)
RETURN_FAIL("Setting DTR signal level failed");
break;
case SP_DTR_FLOW_CONTROL:
data->dtr_flow = 1;
break;
default:
break;
}
if (config->dsr == SP_DSR_FLOW_CONTROL)
data->dsr_flow = 1;
} else {
/* DTR/DSR flow control not supported. */
if (config->dtr == SP_DTR_FLOW_CONTROL || config->dsr == SP_DSR_FLOW_CONTROL)
RETURN_ERROR(SP_ERR_SUPP, "DTR/DSR flow control not supported");
if (config->dtr >= 0) {
controlbits = TIOCM_DTR;
if (ioctl(port->fd, config->dtr == SP_DTR_ON ? TIOCMBIS : TIOCMBIC,
&controlbits) < 0)
RETURN_FAIL("Setting DTR signal level failed");
}
}
}
if (config->xon_xoff >= 0) {
data->term.c_iflag &= ~(IXON | IXOFF | IXANY);
switch (config->xon_xoff) {
case SP_XONXOFF_DISABLED:
break;
case SP_XONXOFF_IN:
data->term.c_iflag |= IXOFF;
break;
case SP_XONXOFF_OUT:
data->term.c_iflag |= IXON | IXANY;
break;
case SP_XONXOFF_INOUT:
data->term.c_iflag |= IXON | IXOFF | IXANY;
break;
default:
RETURN_ERROR(SP_ERR_ARG, "Invalid XON/XOFF setting");
}
}
if (tcsetattr(port->fd, TCSANOW, &data->term) < 0)
RETURN_FAIL("tcsetattr() failed");
#ifdef __APPLE__
if (baud_nonstd != B0) {
if (ioctl(port->fd, IOSSIOSPEED, &baud_nonstd) == -1)
RETURN_FAIL("IOSSIOSPEED ioctl failed");
/* Set baud rates in data->term to correct, but incompatible
* with tcsetattr() value, same as delivered by tcgetattr(). */
if (cfsetspeed(&data->term, baud_nonstd) < 0)
RETURN_FAIL("cfsetspeed() failed");
}
#elif defined(__linux__)
#ifdef USE_TERMIOS_SPEED
if (baud_nonstd)
TRY(set_baudrate(port->fd, config->baudrate));
#endif
#ifdef USE_TERMIOX
if (data->termiox_supported)
TRY(set_flow(port->fd, data));
#endif
#endif
#endif /* !_WIN32 */
RETURN_OK();
}
SP_API enum sp_return sp_new_config(struct sp_port_config **config_ptr)
{
struct sp_port_config *config;
TRACE("%p", config_ptr);
if (!config_ptr)
RETURN_ERROR(SP_ERR_ARG, "Null result pointer");
*config_ptr = NULL;
if (!(config = malloc(sizeof(struct sp_port_config))))
RETURN_ERROR(SP_ERR_MEM, "config malloc failed");
config->baudrate = -1;
config->bits = -1;
config->parity = -1;
config->stopbits = -1;
config->rts = -1;
config->cts = -1;
config->dtr = -1;
config->dsr = -1;
*config_ptr = config;
RETURN_OK();
}
SP_API void sp_free_config(struct sp_port_config *config)
{
TRACE("%p", config);
if (!config)
DEBUG("Null config");
else
free(config);
RETURN();
}
SP_API enum sp_return sp_get_config(struct sp_port *port,
struct sp_port_config *config)
{
struct port_data data;
TRACE("%p, %p", port, config);
CHECK_OPEN_PORT();
if (!config)
RETURN_ERROR(SP_ERR_ARG, "Null config");
TRY(get_config(port, &data, config));
RETURN_OK();
}
SP_API enum sp_return sp_set_config(struct sp_port *port,
const struct sp_port_config *config)
{
struct port_data data;
struct sp_port_config prev_config;
TRACE("%p, %p", port, config);
CHECK_OPEN_PORT();
if (!config)
RETURN_ERROR(SP_ERR_ARG, "Null config");
TRY(get_config(port, &data, &prev_config));
TRY(set_config(port, &data, config));
RETURN_OK();
}
#define CREATE_ACCESSORS(x, type) \
SP_API enum sp_return sp_set_##x(struct sp_port *port, type x) { \
struct port_data data; \
struct sp_port_config config; \
TRACE("%p, %d", port, x); \
CHECK_OPEN_PORT(); \
TRY(get_config(port, &data, &config)); \
config.x = x; \
TRY(set_config(port, &data, &config)); \
RETURN_OK(); \
} \
SP_API enum sp_return sp_get_config_##x(const struct sp_port_config *config, \
type *x) { \
TRACE("%p, %p", config, x); \
if (!config) \
RETURN_ERROR(SP_ERR_ARG, "Null config"); \
*x = config->x; \
RETURN_OK(); \
} \
SP_API enum sp_return sp_set_config_##x(struct sp_port_config *config, \
type x) { \
TRACE("%p, %d", config, x); \
if (!config) \
RETURN_ERROR(SP_ERR_ARG, "Null config"); \
config->x = x; \
RETURN_OK(); \
}
CREATE_ACCESSORS(baudrate, int)
CREATE_ACCESSORS(bits, int)
CREATE_ACCESSORS(parity, enum sp_parity)
CREATE_ACCESSORS(stopbits, int)
CREATE_ACCESSORS(rts, enum sp_rts)
CREATE_ACCESSORS(cts, enum sp_cts)
CREATE_ACCESSORS(dtr, enum sp_dtr)
CREATE_ACCESSORS(dsr, enum sp_dsr)
CREATE_ACCESSORS(xon_xoff, enum sp_xonxoff)
SP_API enum sp_return sp_set_config_flowcontrol(struct sp_port_config *config,
enum sp_flowcontrol flowcontrol)
{
if (!config)
RETURN_ERROR(SP_ERR_ARG, "Null configuration");
if (flowcontrol > SP_FLOWCONTROL_DTRDSR)
RETURN_ERROR(SP_ERR_ARG, "Invalid flow control setting");
if (flowcontrol == SP_FLOWCONTROL_XONXOFF)
config->xon_xoff = SP_XONXOFF_INOUT;
else
config->xon_xoff = SP_XONXOFF_DISABLED;
if (flowcontrol == SP_FLOWCONTROL_RTSCTS) {
config->rts = SP_RTS_FLOW_CONTROL;
config->cts = SP_CTS_FLOW_CONTROL;
} else {
if (config->rts == SP_RTS_FLOW_CONTROL)
config->rts = SP_RTS_ON;
config->cts = SP_CTS_IGNORE;
}
if (flowcontrol == SP_FLOWCONTROL_DTRDSR) {
config->dtr = SP_DTR_FLOW_CONTROL;
config->dsr = SP_DSR_FLOW_CONTROL;
} else {
if (config->dtr == SP_DTR_FLOW_CONTROL)
config->dtr = SP_DTR_ON;
config->dsr = SP_DSR_IGNORE;
}
RETURN_OK();
}
SP_API enum sp_return sp_set_flowcontrol(struct sp_port *port,
enum sp_flowcontrol flowcontrol)
{
struct port_data data;
struct sp_port_config config;
TRACE("%p, %d", port, flowcontrol);
CHECK_OPEN_PORT();
TRY(get_config(port, &data, &config));
TRY(sp_set_config_flowcontrol(&config, flowcontrol));
TRY(set_config(port, &data, &config));
RETURN_OK();
}
SP_API enum sp_return sp_get_signals(struct sp_port *port,
enum sp_signal *signals)
{
TRACE("%p, %p", port, signals);
CHECK_OPEN_PORT();
if (!signals)
RETURN_ERROR(SP_ERR_ARG, "Null result pointer");
DEBUG("Getting control signals for port %s", port->name);
*signals = 0;
#ifdef _WIN32
DWORD bits;
if (GetCommModemStatus(port->hdl, &bits) == 0)
RETURN_FAIL("GetCommModemStatus() failed");
if (bits & MS_CTS_ON)
*signals |= SP_SIG_CTS;
if (bits & MS_DSR_ON)
*signals |= SP_SIG_DSR;
if (bits & MS_RLSD_ON)
*signals |= SP_SIG_DCD;
if (bits & MS_RING_ON)
*signals |= SP_SIG_RI;
#else
int bits;
if (ioctl(port->fd, TIOCMGET, &bits) < 0)
RETURN_FAIL("TIOCMGET ioctl failed");
if (bits & TIOCM_CTS)
*signals |= SP_SIG_CTS;
if (bits & TIOCM_DSR)
*signals |= SP_SIG_DSR;
if (bits & TIOCM_CAR)
*signals |= SP_SIG_DCD;
if (bits & TIOCM_RNG)
*signals |= SP_SIG_RI;
#endif
RETURN_OK();
}
SP_API enum sp_return sp_start_break(struct sp_port *port)
{
TRACE("%p", port);
CHECK_OPEN_PORT();
#ifdef _WIN32
if (SetCommBreak(port->hdl) == 0)
RETURN_FAIL("SetCommBreak() failed");
#else
if (ioctl(port->fd, TIOCSBRK, 1) < 0)
RETURN_FAIL("TIOCSBRK ioctl failed");
#endif
RETURN_OK();
}
SP_API enum sp_return sp_end_break(struct sp_port *port)
{
TRACE("%p", port);
CHECK_OPEN_PORT();
#ifdef _WIN32
if (ClearCommBreak(port->hdl) == 0)
RETURN_FAIL("ClearCommBreak() failed");
#else
if (ioctl(port->fd, TIOCCBRK, 1) < 0)
RETURN_FAIL("TIOCCBRK ioctl failed");
#endif
RETURN_OK();
}
SP_API int sp_last_error_code(void)
{
TRACE("");
#ifdef _WIN32
RETURN_VALUE("%d", GetLastError());
#else
RETURN_VALUE("%d", errno);
#endif
}
SP_API char *sp_last_error_message(void)
{
TRACE("");
#ifdef _WIN32
LPVOID message;
DWORD error = GetLastError();
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
error,
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &message,
0, NULL );
RETURN_VALUE("%s", message);
#else
RETURN_VALUE("%s", strerror(errno));
#endif
}
SP_API void sp_free_error_message(char *message)
{
TRACE("%s", message);
#ifdef _WIN32
LocalFree(message);
#else
(void)message;
#endif
RETURN();
}
SP_API void sp_set_debug_handler(void (*handler)(const char *format, ...))
{
TRACE("%p", handler);
sp_debug_handler = handler;
RETURN();
}
SP_API void sp_default_debug_handler(const char *format, ...)
{
va_list args;
va_start(args, format);
if (getenv("LIBSERIALPORT_DEBUG")) {
fputs("sp: ", stderr);
vfprintf(stderr, format, args);
}
va_end(args);
}
SP_API int sp_get_major_package_version(void)
{
return SP_PACKAGE_VERSION_MAJOR;
}
SP_API int sp_get_minor_package_version(void)
{
return SP_PACKAGE_VERSION_MINOR;
}
SP_API int sp_get_micro_package_version(void)
{
return SP_PACKAGE_VERSION_MICRO;
}
SP_API const char *sp_get_package_version_string(void)
{
return SP_PACKAGE_VERSION_STRING;
}
SP_API int sp_get_current_lib_version(void)
{
return SP_LIB_VERSION_CURRENT;
}
SP_API int sp_get_revision_lib_version(void)
{
return SP_LIB_VERSION_REVISION;
}
SP_API int sp_get_age_lib_version(void)
{
return SP_LIB_VERSION_AGE;
}
SP_API const char *sp_get_lib_version_string(void)
{
return SP_LIB_VERSION_STRING;
}
/** @} */