Constructing suffix array for multi-sentinel str.

This commit is contained in:
Heng Li 2011-08-19 18:08:48 -04:00
parent b8a245fc3b
commit 8b387d36b5
1 changed files with 242 additions and 0 deletions

242
ksa.c Normal file
View File

@ -0,0 +1,242 @@
/*
* Copyright (c) 2008 Yuta Mori All Rights Reserved.
* 2011 Attractive Chaos <attractor@live.co.uk>
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/* This is a library for constructing the suffix array for a string containing
* multiple sentinels with sentinels all represented by 0. The last symbol in
* the string must be a sentinel. The library is modified from an early version
* of Yuta Mori's SAIS library, but is slower than the lastest SAIS by about
* 30%, partly due to the recent optimization Yuta has applied and partly due
* to the extra comparisons between sentinels. This is not the first effort in
* supporting multi-sentinel strings, but is probably the easiest to use. */
#include <stdlib.h>
#ifdef _KSA64
#include <stdint.h>
typedef int64_t saint_t;
#define SAINT_MAX INT64_MAX
#define SAIS_CORE ksa_core64
#define SAIS_BWT ksa_bwt64
#define SAIS_MAIN ksa_sa64
#else
#include <limits.h>
typedef int saint_t;
#define SAINT_MAX INT_MAX
#define SAIS_CORE ksa_core
#define SAIS_BWT ksa_bwt
#define SAIS_MAIN ksa_sa
#endif
/* T is of type "const unsigned char*". If T[i] is a sentinel, chr(i) takes a negative value */
#define chr(i) (cs == sizeof(saint_t) ? ((const saint_t *)T)[i] : (T[i]? (saint_t)T[i] : i - SAINT_MAX))
/** Count the occurrences of each symbol */
static void getCounts(const unsigned char *T, saint_t *C, saint_t n, saint_t k, int cs)
{
saint_t i;
for (i = 0; i < k; ++i) C[i] = 0;
for (i = 0; i < n; ++i) {
saint_t c = chr(i);
++C[c > 0? c : 0];
}
}
/**
* Find the end of each bucket
*
* @param C occurrences computed by getCounts(); input
* @param B start/end of each bucket; output
* @param k size of alphabet
* @param end compute the end of bucket if true; otherwise compute the end
*/
static inline void getBuckets(const saint_t *C, saint_t *B, saint_t k, saint_t end)
{
saint_t i, sum = 0;
if (end) for (i = 0; i < k; ++i) sum += C[i], B[i] = sum;
else for (i = 0; i < k; ++i) sum += C[i], B[i] = sum - C[i];
}
/** Induced sort */
static void induceSA(const unsigned char *T, saint_t *SA, saint_t *C, saint_t *B, saint_t n, saint_t k, saint_t cs)
{
saint_t *b, i, j;
saint_t c0, c1;
/* left-to-right induced sort (for L-type) */
if (C == B) getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 0); /* find starts of buckets */
for (i = 0, b = 0, c1 = -1; i < n; ++i) {
j = SA[i], SA[i] = ~j;
if (0 < j) { /* >0 if j-1 is L-type; <0 if S-type; ==0 undefined */
--j;
if ((c0 = chr(j)) != c1) {
B[c1 > 0? c1 : 0] = b - SA;
c1 = c0;
b = SA + B[c1 > 0? c1 : 0];
}
*b++ = (0 < j && chr(j - 1) < c1) ? ~j : j;
}
}
/* right-to-left induced sort (for S-type) */
if (C == B) getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 1); /* find ends of buckets */
for (i = n - 1, b = 0, c1 = -1; 0 <= i; --i) {
if (0 < (j = SA[i])) { /* the prefix is S-type */
--j;
if ((c0 = chr(j)) != c1) {
B[c1 > 0? c1 : 0] = b - SA;
c1 = c0;
b = SA + B[c1 > 0? c1 : 0];
}
if (c0 > 0) *--b = (j == 0 || chr(j - 1) > c1) ? ~j : j;
} else SA[i] = ~j; /* if L-type, change the sign */
}
}
/**
* Recursively construct the suffix array for a string containing multiple
* sentinels. NULL is taken as the sentinel.
*
* @param T NULL terminated input string (there can be multiple NULLs)
* @param SA output suffix array
* @param fs working space available in SA (typically 0 when first called)
* @param n length of T, including the trailing NULL
* @param k size of the alphabet (typically 256 when first called)
* @param cs # bytes per element in T; 1 or sizeof(saint_t) (typically 1 when first called)
*
* @return 0 upon success
*/
int SAIS_CORE(const unsigned char *T, saint_t *SA, saint_t fs, saint_t n, saint_t k, int cs)
{
saint_t *C, *B;
saint_t i, j, c, m, q, qlen, name;
saint_t c0, c1;
/* STAGE I: reduce the problem by at least 1/2 sort all the S-substrings */
if (k <= fs) C = SA + n, B = (k <= fs - k) ? C + k : C;
else {
if ((C = (saint_t*)malloc(k * (1 + (cs == 1)) * sizeof(saint_t))) == NULL) return -2;
B = cs == 1? C + k : C;
}
getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 1); /* find ends of buckets */
for (i = 0; i < n; ++i) SA[i] = 0;
/* mark L and S (the t array in Nong et al.), and keep the positions of LMS in the buckets */
for (i = n - 2, c = 1, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
if ((c0 = chr(i)) < c1 + c) c = 1; /* c1 = chr(i+1); c==1 if in an S run */
else if (c) SA[--B[c1 > 0? c1 : 0]] = i + 1, c = 0;
}
induceSA(T, SA, C, B, n, k, cs);
if (fs < k) free(C);
/* pack all the sorted LMS into the first m items of SA
2*m must be not larger than n (see Nong et al. for the proof) */
for (i = 0, m = 0; i < n; ++i) {
saint_t p = SA[i];
if (p == n - 1) SA[m++] = p;
else if (0 < p && chr(p - 1) > (c0 = chr(p))) {
for (j = p + 1; j < n && c0 == (c1 = chr(j)); ++j);
if (j < n && c0 < c1) SA[m++] = p;
}
}
for (i = m; i < n; ++i) SA[i] = 0; /* init the name array buffer */
/* store the length of all substrings */
for (i = n - 2, j = n, c = 1, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
if ((c0 = chr(i)) < c1 + c) c = 1; /* c1 = chr(i+1) */
else if (c) SA[m + ((i + 1) >> 1)] = j - i - 1, j = i + 1, c = 0;
}
/* find the lexicographic names of all substrings */
for (i = 0, name = 0, q = n, qlen = 0; i < m; ++i) {
saint_t p = SA[i], plen = SA[m + (p >> 1)], diff = 1;
if (plen == qlen) {
for (j = 0; j < plen && chr(p + j) == chr(q + j); j++);
if (j == plen) diff = 0;
}
if (diff) ++name, q = p, qlen = plen;
SA[m + (p >> 1)] = name;
}
/* STAGE II: solve the reduced problem; recurse if names are not yet unique */
if (name < m) {
saint_t *RA = SA + n + fs - m - 1;
for (i = n - 1, j = m - 1; m <= i; --i)
if (SA[i] != 0) RA[j--] = SA[i];
RA[m] = 0; // add a sentinel; in the resulting SA, SA[0]==m always stands
if (SAIS_CORE((unsigned char *)RA, SA, fs + n - m * 2 - 2, m + 1, name + 1, sizeof(saint_t)) != 0) return -2;
for (i = n - 2, j = m - 1, c = 1, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
if ((c0 = chr(i)) < c1 + c) c = 1;
else if (c) RA[j--] = i + 1, c = 0; /* get p1 */
}
for (i = 0; i < m; ++i) SA[i] = RA[SA[i+1]]; /* get index */
}
/* STAGE III: induce the result for the original problem */
if (k <= fs) C = SA + n, B = (k <= fs - k) ? C + k : C;
else {
if ((C = (saint_t*)malloc(k * (1 + (cs == 1)) * sizeof(saint_t))) == NULL) return -2;
B = cs == 1? C + k : C;
}
/* put all LMS characters into their buckets */
getCounts(T, C, n, k, cs);
getBuckets(C, B, k, 1); /* find ends of buckets */
for (i = m; i < n; ++i) SA[i] = 0; /* init SA[m..n-1] */
for (i = m - 1; 0 <= i; --i) {
j = SA[i], SA[i] = 0;
c = chr(j);
SA[--B[c > 0? c : 0]] = j;
}
induceSA(T, SA, C, B, n, k, cs);
if (fs < k) free(C);
return 0;
}
/**
* Construct the suffix array for a NULL terminated string possibly containing
* multiple sentinels (NULLs).
*
* @param T[0..n-1] NULL terminated input string
* @param SA[0..n-1] output suffix array
* @param n length of the given string, including NULL
* @param k size of the alphabet including the sentinel; no more than 256
* @return 0 upon success
*/
int SAIS_MAIN(const unsigned char *T, saint_t *SA, saint_t n, int k)
{
if (T == NULL || SA == NULL || T[n - 1] != '\0' || n <= 0) return -1;
if (k < 0 || k > 256) k = 256;
return SAIS_CORE(T, SA, 0, n, (saint_t)k, 1);
}
int SAIS_BWT(unsigned char *T, saint_t n, int k)
{
saint_t *SA, i;
int ret;
if ((SA = malloc(n * sizeof(saint_t))) == 0) return -1;
if ((ret = SAIS_MAIN(T, SA, n, k)) != 0) return ret;
for (i = 0; i < n; ++i)
if (SA[i]) SA[i] = T[SA[i] - 1]; // if SA[i]==0, SA[i]=0
for (i = 0; i < n; ++i) T[i] = SA[i];
free(SA);
return 0;
}