mirror of https://github.com/attractivechaos/klib
Constructing suffix array for multi-sentinel str.
This commit is contained in:
parent
b8a245fc3b
commit
8b387d36b5
|
@ -0,0 +1,242 @@
|
|||
/*
|
||||
* Copyright (c) 2008 Yuta Mori All Rights Reserved.
|
||||
* 2011 Attractive Chaos <attractor@live.co.uk>
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person
|
||||
* obtaining a copy of this software and associated documentation
|
||||
* files (the "Software"), to deal in the Software without
|
||||
* restriction, including without limitation the rights to use,
|
||||
* copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the
|
||||
* Software is furnished to do so, subject to the following
|
||||
* conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be
|
||||
* included in all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
||||
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
||||
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
||||
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
* OTHER DEALINGS IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
/* This is a library for constructing the suffix array for a string containing
|
||||
* multiple sentinels with sentinels all represented by 0. The last symbol in
|
||||
* the string must be a sentinel. The library is modified from an early version
|
||||
* of Yuta Mori's SAIS library, but is slower than the lastest SAIS by about
|
||||
* 30%, partly due to the recent optimization Yuta has applied and partly due
|
||||
* to the extra comparisons between sentinels. This is not the first effort in
|
||||
* supporting multi-sentinel strings, but is probably the easiest to use. */
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef _KSA64
|
||||
#include <stdint.h>
|
||||
typedef int64_t saint_t;
|
||||
#define SAINT_MAX INT64_MAX
|
||||
#define SAIS_CORE ksa_core64
|
||||
#define SAIS_BWT ksa_bwt64
|
||||
#define SAIS_MAIN ksa_sa64
|
||||
#else
|
||||
#include <limits.h>
|
||||
typedef int saint_t;
|
||||
#define SAINT_MAX INT_MAX
|
||||
#define SAIS_CORE ksa_core
|
||||
#define SAIS_BWT ksa_bwt
|
||||
#define SAIS_MAIN ksa_sa
|
||||
#endif
|
||||
|
||||
/* T is of type "const unsigned char*". If T[i] is a sentinel, chr(i) takes a negative value */
|
||||
#define chr(i) (cs == sizeof(saint_t) ? ((const saint_t *)T)[i] : (T[i]? (saint_t)T[i] : i - SAINT_MAX))
|
||||
|
||||
/** Count the occurrences of each symbol */
|
||||
static void getCounts(const unsigned char *T, saint_t *C, saint_t n, saint_t k, int cs)
|
||||
{
|
||||
saint_t i;
|
||||
for (i = 0; i < k; ++i) C[i] = 0;
|
||||
for (i = 0; i < n; ++i) {
|
||||
saint_t c = chr(i);
|
||||
++C[c > 0? c : 0];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the end of each bucket
|
||||
*
|
||||
* @param C occurrences computed by getCounts(); input
|
||||
* @param B start/end of each bucket; output
|
||||
* @param k size of alphabet
|
||||
* @param end compute the end of bucket if true; otherwise compute the end
|
||||
*/
|
||||
static inline void getBuckets(const saint_t *C, saint_t *B, saint_t k, saint_t end)
|
||||
{
|
||||
saint_t i, sum = 0;
|
||||
if (end) for (i = 0; i < k; ++i) sum += C[i], B[i] = sum;
|
||||
else for (i = 0; i < k; ++i) sum += C[i], B[i] = sum - C[i];
|
||||
}
|
||||
|
||||
/** Induced sort */
|
||||
static void induceSA(const unsigned char *T, saint_t *SA, saint_t *C, saint_t *B, saint_t n, saint_t k, saint_t cs)
|
||||
{
|
||||
saint_t *b, i, j;
|
||||
saint_t c0, c1;
|
||||
/* left-to-right induced sort (for L-type) */
|
||||
if (C == B) getCounts(T, C, n, k, cs);
|
||||
getBuckets(C, B, k, 0); /* find starts of buckets */
|
||||
for (i = 0, b = 0, c1 = -1; i < n; ++i) {
|
||||
j = SA[i], SA[i] = ~j;
|
||||
if (0 < j) { /* >0 if j-1 is L-type; <0 if S-type; ==0 undefined */
|
||||
--j;
|
||||
if ((c0 = chr(j)) != c1) {
|
||||
B[c1 > 0? c1 : 0] = b - SA;
|
||||
c1 = c0;
|
||||
b = SA + B[c1 > 0? c1 : 0];
|
||||
}
|
||||
*b++ = (0 < j && chr(j - 1) < c1) ? ~j : j;
|
||||
}
|
||||
}
|
||||
/* right-to-left induced sort (for S-type) */
|
||||
if (C == B) getCounts(T, C, n, k, cs);
|
||||
getBuckets(C, B, k, 1); /* find ends of buckets */
|
||||
for (i = n - 1, b = 0, c1 = -1; 0 <= i; --i) {
|
||||
if (0 < (j = SA[i])) { /* the prefix is S-type */
|
||||
--j;
|
||||
if ((c0 = chr(j)) != c1) {
|
||||
B[c1 > 0? c1 : 0] = b - SA;
|
||||
c1 = c0;
|
||||
b = SA + B[c1 > 0? c1 : 0];
|
||||
}
|
||||
if (c0 > 0) *--b = (j == 0 || chr(j - 1) > c1) ? ~j : j;
|
||||
} else SA[i] = ~j; /* if L-type, change the sign */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Recursively construct the suffix array for a string containing multiple
|
||||
* sentinels. NULL is taken as the sentinel.
|
||||
*
|
||||
* @param T NULL terminated input string (there can be multiple NULLs)
|
||||
* @param SA output suffix array
|
||||
* @param fs working space available in SA (typically 0 when first called)
|
||||
* @param n length of T, including the trailing NULL
|
||||
* @param k size of the alphabet (typically 256 when first called)
|
||||
* @param cs # bytes per element in T; 1 or sizeof(saint_t) (typically 1 when first called)
|
||||
*
|
||||
* @return 0 upon success
|
||||
*/
|
||||
int SAIS_CORE(const unsigned char *T, saint_t *SA, saint_t fs, saint_t n, saint_t k, int cs)
|
||||
{
|
||||
saint_t *C, *B;
|
||||
saint_t i, j, c, m, q, qlen, name;
|
||||
saint_t c0, c1;
|
||||
|
||||
/* STAGE I: reduce the problem by at least 1/2 sort all the S-substrings */
|
||||
if (k <= fs) C = SA + n, B = (k <= fs - k) ? C + k : C;
|
||||
else {
|
||||
if ((C = (saint_t*)malloc(k * (1 + (cs == 1)) * sizeof(saint_t))) == NULL) return -2;
|
||||
B = cs == 1? C + k : C;
|
||||
}
|
||||
getCounts(T, C, n, k, cs);
|
||||
getBuckets(C, B, k, 1); /* find ends of buckets */
|
||||
for (i = 0; i < n; ++i) SA[i] = 0;
|
||||
/* mark L and S (the t array in Nong et al.), and keep the positions of LMS in the buckets */
|
||||
for (i = n - 2, c = 1, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
|
||||
if ((c0 = chr(i)) < c1 + c) c = 1; /* c1 = chr(i+1); c==1 if in an S run */
|
||||
else if (c) SA[--B[c1 > 0? c1 : 0]] = i + 1, c = 0;
|
||||
}
|
||||
induceSA(T, SA, C, B, n, k, cs);
|
||||
if (fs < k) free(C);
|
||||
/* pack all the sorted LMS into the first m items of SA
|
||||
2*m must be not larger than n (see Nong et al. for the proof) */
|
||||
for (i = 0, m = 0; i < n; ++i) {
|
||||
saint_t p = SA[i];
|
||||
if (p == n - 1) SA[m++] = p;
|
||||
else if (0 < p && chr(p - 1) > (c0 = chr(p))) {
|
||||
for (j = p + 1; j < n && c0 == (c1 = chr(j)); ++j);
|
||||
if (j < n && c0 < c1) SA[m++] = p;
|
||||
}
|
||||
}
|
||||
for (i = m; i < n; ++i) SA[i] = 0; /* init the name array buffer */
|
||||
/* store the length of all substrings */
|
||||
for (i = n - 2, j = n, c = 1, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
|
||||
if ((c0 = chr(i)) < c1 + c) c = 1; /* c1 = chr(i+1) */
|
||||
else if (c) SA[m + ((i + 1) >> 1)] = j - i - 1, j = i + 1, c = 0;
|
||||
}
|
||||
/* find the lexicographic names of all substrings */
|
||||
for (i = 0, name = 0, q = n, qlen = 0; i < m; ++i) {
|
||||
saint_t p = SA[i], plen = SA[m + (p >> 1)], diff = 1;
|
||||
if (plen == qlen) {
|
||||
for (j = 0; j < plen && chr(p + j) == chr(q + j); j++);
|
||||
if (j == plen) diff = 0;
|
||||
}
|
||||
if (diff) ++name, q = p, qlen = plen;
|
||||
SA[m + (p >> 1)] = name;
|
||||
}
|
||||
|
||||
/* STAGE II: solve the reduced problem; recurse if names are not yet unique */
|
||||
if (name < m) {
|
||||
saint_t *RA = SA + n + fs - m - 1;
|
||||
for (i = n - 1, j = m - 1; m <= i; --i)
|
||||
if (SA[i] != 0) RA[j--] = SA[i];
|
||||
RA[m] = 0; // add a sentinel; in the resulting SA, SA[0]==m always stands
|
||||
if (SAIS_CORE((unsigned char *)RA, SA, fs + n - m * 2 - 2, m + 1, name + 1, sizeof(saint_t)) != 0) return -2;
|
||||
for (i = n - 2, j = m - 1, c = 1, c1 = chr(n - 1); 0 <= i; --i, c1 = c0) {
|
||||
if ((c0 = chr(i)) < c1 + c) c = 1;
|
||||
else if (c) RA[j--] = i + 1, c = 0; /* get p1 */
|
||||
}
|
||||
for (i = 0; i < m; ++i) SA[i] = RA[SA[i+1]]; /* get index */
|
||||
}
|
||||
|
||||
/* STAGE III: induce the result for the original problem */
|
||||
if (k <= fs) C = SA + n, B = (k <= fs - k) ? C + k : C;
|
||||
else {
|
||||
if ((C = (saint_t*)malloc(k * (1 + (cs == 1)) * sizeof(saint_t))) == NULL) return -2;
|
||||
B = cs == 1? C + k : C;
|
||||
}
|
||||
/* put all LMS characters into their buckets */
|
||||
getCounts(T, C, n, k, cs);
|
||||
getBuckets(C, B, k, 1); /* find ends of buckets */
|
||||
for (i = m; i < n; ++i) SA[i] = 0; /* init SA[m..n-1] */
|
||||
for (i = m - 1; 0 <= i; --i) {
|
||||
j = SA[i], SA[i] = 0;
|
||||
c = chr(j);
|
||||
SA[--B[c > 0? c : 0]] = j;
|
||||
}
|
||||
induceSA(T, SA, C, B, n, k, cs);
|
||||
if (fs < k) free(C);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct the suffix array for a NULL terminated string possibly containing
|
||||
* multiple sentinels (NULLs).
|
||||
*
|
||||
* @param T[0..n-1] NULL terminated input string
|
||||
* @param SA[0..n-1] output suffix array
|
||||
* @param n length of the given string, including NULL
|
||||
* @param k size of the alphabet including the sentinel; no more than 256
|
||||
* @return 0 upon success
|
||||
*/
|
||||
int SAIS_MAIN(const unsigned char *T, saint_t *SA, saint_t n, int k)
|
||||
{
|
||||
if (T == NULL || SA == NULL || T[n - 1] != '\0' || n <= 0) return -1;
|
||||
if (k < 0 || k > 256) k = 256;
|
||||
return SAIS_CORE(T, SA, 0, n, (saint_t)k, 1);
|
||||
}
|
||||
|
||||
int SAIS_BWT(unsigned char *T, saint_t n, int k)
|
||||
{
|
||||
saint_t *SA, i;
|
||||
int ret;
|
||||
if ((SA = malloc(n * sizeof(saint_t))) == 0) return -1;
|
||||
if ((ret = SAIS_MAIN(T, SA, n, k)) != 0) return ret;
|
||||
for (i = 0; i < n; ++i)
|
||||
if (SA[i]) SA[i] = T[SA[i] - 1]; // if SA[i]==0, SA[i]=0
|
||||
for (i = 0; i < n; ++i) T[i] = SA[i];
|
||||
free(SA);
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue