ImDrawList: add PathFillConcave(), AddConcavePolyFilled(): amends (#760)

- Simplify and compact some code. Shallow tweaks.
- Add comments.
- Add concave shape demo.
- Remove coarse culling.
- Remove nested types to match coding style and for consistent type nams when translated to other languages.
- Merged ClassifyNode() and ReclassifyNode().
- Extracted ImTriangleIsClockwise().
- Hold copy of points inside nodes instead of pointing to them.
This commit is contained in:
ocornut 2024-01-09 23:36:26 +01:00
parent 1ff90c52d5
commit fbf45ad149
5 changed files with 160 additions and 272 deletions

View File

@ -47,6 +47,8 @@ Other changes:
frames would erroneously close the window. While it is technically a popup issue
it would generally manifest when fast moving the mouse bottom to top in a sub-menu.
(#7325, #7287, #7063)
- DrawList: Added AddConcavePolyFilled(), PathFillConcave() concave filling. (#760) [@thedmd]
Note that only simple polygons (no self-intersections, no holes) are supported.
- Docs: added more wiki links to headers of imgui.h/imgui.cpp to facilitate discovery
of interesting resources, because github doesn't allow Wiki to be crawled by search engines.
- This is the main wiki: https://github.com/ocornut/imgui/wiki

View File

@ -28,7 +28,7 @@
// Library Version
// (Integer encoded as XYYZZ for use in #if preprocessor conditionals, e.g. '#if IMGUI_VERSION_NUM >= 12345')
#define IMGUI_VERSION "1.90.5 WIP"
#define IMGUI_VERSION_NUM 19043
#define IMGUI_VERSION_NUM 19044
#define IMGUI_HAS_TABLE
/*
@ -2760,9 +2760,11 @@ struct ImDrawList
IMGUI_API void AddBezierQuadratic(const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, ImU32 col, float thickness, int num_segments = 0); // Quadratic Bezier (3 control points)
// General polygon
// - Only simple polygons are supported by filling functions (no self-intersections, no holes).
// - Concave polygon fill is more expensive than convex one: it has O(N^2) complexity. Provided as a convenience fo user but not used by main library.
IMGUI_API void AddPolyline(const ImVec2* points, int num_points, ImU32 col, ImDrawFlags flags, float thickness);
IMGUI_API void AddConvexPolyFilled(const ImVec2* points, int num_points, ImU32 col);
IMGUI_API void AddConcavePolyFilled(const ImVec2* points, const int points_count, ImU32 col);
IMGUI_API void AddConcavePolyFilled(const ImVec2* points, int num_points, ImU32 col);
// Image primitives
// - Read FAQ to understand what ImTextureID is.

View File

@ -7964,6 +7964,14 @@ static void ShowExampleAppWindowTitles(bool*)
// [SECTION] Example App: Custom Rendering using ImDrawList API / ShowExampleAppCustomRendering()
//-----------------------------------------------------------------------------
// Add a |_| looking shape
static void PathConcaveShape(ImDrawList* draw_list, float x, float y, float sz)
{
const ImVec2 pos_norms[] = { { 0.0f, 0.0f }, { 0.3f, 0.0f }, { 0.3f, 0.7f }, { 0.7f, 0.7f }, { 0.7f, 0.0f }, { 1.0f, 0.0f }, { 1.0f, 1.0f }, { 0.0f, 1.0f } };
for (const ImVec2& p : pos_norms)
draw_list->PathLineTo(ImVec2(x + 0.5f + (int)(sz * p.x), y + 0.5f + (int)(sz * p.y)));
}
// Demonstrate using the low-level ImDrawList to draw custom shapes.
static void ShowExampleAppCustomRendering(bool* p_open)
{
@ -8053,6 +8061,8 @@ static void ShowExampleAppCustomRendering(bool* p_open)
draw_list->AddRect(ImVec2(x, y), ImVec2(x + sz, y + sz), col, rounding, corners_tl_br, th); x += sz + spacing; // Square with two rounded corners
draw_list->AddTriangle(ImVec2(x+sz*0.5f,y), ImVec2(x+sz, y+sz-0.5f), ImVec2(x, y+sz-0.5f), col, th);x += sz + spacing; // Triangle
//draw_list->AddTriangle(ImVec2(x+sz*0.2f,y), ImVec2(x, y+sz-0.5f), ImVec2(x+sz*0.4f, y+sz-0.5f), col, th);x+= sz*0.4f + spacing; // Thin triangle
PathConcaveShape(draw_list, x, y, sz); draw_list->PathStroke(col, ImDrawFlags_Closed, th); x += sz + spacing; // Concave Shape
//draw_list->AddPolyline(concave_shape, IM_ARRAYSIZE(concave_shape), col, ImDrawFlags_Closed, th);
draw_list->AddLine(ImVec2(x, y), ImVec2(x + sz, y), col, th); x += sz + spacing; // Horizontal line (note: drawing a filled rectangle will be faster!)
draw_list->AddLine(ImVec2(x, y), ImVec2(x, y + sz), col, th); x += spacing; // Vertical line (note: drawing a filled rectangle will be faster!)
draw_list->AddLine(ImVec2(x, y), ImVec2(x + sz, y + sz), col, th); x += sz + spacing; // Diagonal line
@ -8082,6 +8092,7 @@ static void ShowExampleAppCustomRendering(bool* p_open)
draw_list->AddRectFilled(ImVec2(x, y), ImVec2(x + sz, y + sz), col, 10.0f, corners_tl_br); x += sz + spacing; // Square with two rounded corners
draw_list->AddTriangleFilled(ImVec2(x+sz*0.5f,y), ImVec2(x+sz, y+sz-0.5f), ImVec2(x, y+sz-0.5f), col); x += sz + spacing; // Triangle
//draw_list->AddTriangleFilled(ImVec2(x+sz*0.2f,y), ImVec2(x, y+sz-0.5f), ImVec2(x+sz*0.4f, y+sz-0.5f), col); x += sz*0.4f + spacing; // Thin triangle
PathConcaveShape(draw_list, x, y, sz); draw_list->PathFillConcave(col); x += sz + spacing; // Concave shape
draw_list->AddRectFilled(ImVec2(x, y), ImVec2(x + sz, y + thickness), col); x += sz + spacing; // Horizontal line (faster than AddLine, but only handle integer thickness)
draw_list->AddRectFilled(ImVec2(x, y), ImVec2(x + thickness, y + sz), col); x += spacing * 2.0f;// Vertical line (faster than AddLine, but only handle integer thickness)
draw_list->AddRectFilled(ImVec2(x, y), ImVec2(x + 1, y + 1), col); x += sz; // Pixel (faster than AddLine)
@ -8097,15 +8108,10 @@ static void ShowExampleAppCustomRendering(bool* p_open)
draw_list->PathFillConvex(col);
x += sz + spacing;
// Cubic Bezier Curve (4 control points): this is concave so not drawing it yet
//draw_list->PathLineTo(ImVec2(x + cp4[0].x, y + cp4[0].y));
//draw_list->PathBezierCubicCurveTo(ImVec2(x + cp4[1].x, y + cp4[1].y), ImVec2(x + cp4[2].x, y + cp4[2].y), ImVec2(x + cp4[3].x, y + cp4[3].y), curve_segments);
//draw_list->PathFillConvex(col);
//x += sz + spacing;
draw_list->AddRectFilledMultiColor(ImVec2(x, y), ImVec2(x + sz, y + sz), IM_COL32(0, 0, 0, 255), IM_COL32(255, 0, 0, 255), IM_COL32(255, 255, 0, 255), IM_COL32(0, 255, 0, 255));
x += sz + spacing;
ImGui::Dummy(ImVec2((sz + spacing) * 12.2f, (sz + spacing) * 3.0f));
ImGui::Dummy(ImVec2((sz + spacing) * 13.2f, (sz + spacing) * 3.0f));
ImGui::PopItemWidth();
ImGui::EndTabItem();
}

View File

@ -8,7 +8,7 @@ Index of this file:
// [SECTION] STB libraries implementation
// [SECTION] Style functions
// [SECTION] ImDrawList
// [SECTION] ImDrawList concave polygon fill
// [SECTION] ImTriangulator, ImDrawList concave polygon fill
// [SECTION] ImDrawListSplitter
// [SECTION] ImDrawData
// [SECTION] Helpers ShadeVertsXXX functions
@ -1702,200 +1702,130 @@ void ImDrawList::AddImageRounded(ImTextureID user_texture_id, const ImVec2& p_mi
}
//-----------------------------------------------------------------------------
// [SECTION] ImDrawList concave polygon fill
// [SECTION] ImTriangulator, ImDrawList concave polygon fill
//-----------------------------------------------------------------------------
// Triangulate concave polygons. Based on "Triangulation by Ear Clipping" paper, O(N^2) complexity.
// Reference: https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
// Provided as a convenience for user but not used by main library.
//-----------------------------------------------------------------------------
// - ImTriangulator [Internal]
// - AddConcavePolyFilled()
//-----------------------------------------------------------------------------
static bool ImPathIsConvex(const ImVec2& a, const ImVec2& b, const ImVec2& c)
enum ImTriangulatorNodeType
{
const float dx0 = b.x - a.x;
const float dy0 = b.y - a.y;
ImTriangulatorNodeType_Convex,
ImTriangulatorNodeType_Ear,
ImTriangulatorNodeType_Reflex
};
const float dx1 = c.x - b.x;
const float dy1 = c.y - b.y;
struct ImTriangulatorNode
{
ImTriangulatorNodeType Type;
int Index;
ImVec2 Pos;
ImTriangulatorNode* Next;
ImTriangulatorNode* Prev;
return dx0 * dy1 - dx1 * dy0 > 0.0f;
}
void Unlink() { Next->Prev = Prev; Prev->Next = Next; }
};
struct ImTriangulatorNodeSpan
{
ImTriangulatorNode** Data = NULL;
int Size = 0;
void push_back(ImTriangulatorNode* node) { Data[Size++] = node; }
void find_erase_unsorted(int idx) { for (int i = Size - 1; i >= 0; i--) if (Data[i]->Index == idx) { Data[i] = Data[Size - 1]; Size--; return; } }
};
struct ImTriangulator
{
struct Triangle { int Index[3]; };
static int EstimateTriangleCount(int points_count) { return (points_count < 3) ? 0 : points_count - 2; }
static int EstimateScratchBufferSize(int points_count) { return sizeof(ImTriangulatorNode) * points_count + sizeof(ImTriangulatorNode*) * points_count * 2; }
static int EstimateTriangleCount(int points_count);
static int EstimateScratchBufferSize(int points_count);
void Init(const ImVec2* points, int points_count, void* scratch_buffer);
void GetNextTriangle(unsigned int out_triangle[3]); // Return relative indexes for next triangle
ImTriangulator(const ImVec2* points, int points_count, void* scratch_buffer);
ImTriangulator(const ImVec2* points, int points_count, int points_stride_bytes, void* scratch_buffer);
// Internal functions
void BuildNodes(const ImVec2* points, int points_count);
void BuildReflexes();
void BuildEars();
void FlipNodeList();
bool IsEar(int i0, int i1, int i2, const ImVec2& v0, const ImVec2& v1, const ImVec2& v2) const;
void ReclassifyNode(ImTriangulatorNode* node);
bool HasNext() const;
Triangle Next();
private:
enum Type { Convex, Ear, Reflex };
struct Node;
struct alignas(void*) Span
{
Node** Data = nullptr;
int Size = 0;
void PushBack(Node* node);
void RemoveByIndex(int index);
};
void BuildNodes();
void BuildReflexes();
void BuildEars();
void FlipNodeList();
bool IsEar(const Node* node, int i0, int i1, int i2, const ImVec2& v0, const ImVec2& v1, const ImVec2& v2) const;
Type ClassifyNode(const Node* node) const;
void ReclasifyNode(Node* node);
const ImVec2* _Points = nullptr;
int _PointsCount = 0;
int _PointsStrideBytes = 0;
int _TrianglesLeft = 0;
Node* _Nodes = nullptr;
Span _Ears;
Span _Reflexes;
// Internal members
int _TrianglesLeft = 0;
ImTriangulatorNode* _Nodes = NULL;
ImTriangulatorNodeSpan _Ears;
ImTriangulatorNodeSpan _Reflexes;
};
struct alignas(void*) ImTriangulator::Node
// Distribute storage for nodes, ears and reflexes.
// FIXME-OPT: if everything is convex, we could report it to caller and let it switch to an convex renderer
// (this would require first building reflexes to bail to convex if empty, without even building nodes)
void ImTriangulator::Init(const ImVec2* points, int points_count, void* scratch_buffer)
{
Type Type = Convex;
int Index = 0;
const ImVec2* Point = nullptr;
Node* Next = nullptr;
Node* Prev = nullptr;
void Unlink()
{
Next->Prev = Prev;
Prev->Next = Next;
}
};
int ImTriangulator::EstimateTriangleCount(int points_count)
{
if (points_count < 3)
return 0;
return points_count - 2;
}
int ImTriangulator::EstimateScratchBufferSize(int points_count)
{
return sizeof(Node*) * points_count * 2 + sizeof(Node) * points_count;
}
ImTriangulator::ImTriangulator(const ImVec2* points, int points_count, void* scratch_buffer)
: ImTriangulator(points, points_count, sizeof(ImVec2), scratch_buffer)
{
}
ImTriangulator::ImTriangulator(const ImVec2* points, int points_count, int points_stride_bytes, void* scratch_buffer)
: _Points(points)
, _PointsCount(points_count)
, _PointsStrideBytes(points_stride_bytes)
, _TrianglesLeft(EstimateTriangleCount(points_count))
{
IM_ASSERT(scratch_buffer != nullptr && "Must provide scratch buffer.");
IM_ASSERT(points_count >= 3);
// Disable triangulator if scratch buffer isn't provided.
if (scratch_buffer == nullptr)
{
_TrianglesLeft = 0;
points_count = 0;
return;
}
// Distribute storage for nodes, ears and reflexes.
_Nodes = reinterpret_cast<Node*>(scratch_buffer);
_Ears.Data = reinterpret_cast<Node**>(_Nodes + points_count);
_Reflexes.Data = _Ears.Data + points_count;
BuildNodes();
IM_ASSERT(scratch_buffer != NULL && points_count >= 3);
_TrianglesLeft = EstimateTriangleCount(points_count);
_Nodes = (ImTriangulatorNode*)scratch_buffer; // points_count x Node
_Ears.Data = (ImTriangulatorNode**)(_Nodes + points_count); // points_count x Node*
_Reflexes.Data = (ImTriangulatorNode**)(_Nodes + points_count) + points_count; // points_count x Node*
BuildNodes(points, points_count);
BuildReflexes();
BuildEars();
}
void ImTriangulator::BuildNodes()
void ImTriangulator::BuildNodes(const ImVec2* points, int points_count)
{
# define IM_POINT_PTR(idx) reinterpret_cast<const ImVec2*>(reinterpret_cast<const ImU8*>(_Points) + (idx) * _PointsStrideBytes)
for (int i = 0; i < _PointsCount; ++i)
for (int i = 0; i < points_count; i++)
{
_Nodes[i].Type = Convex;
_Nodes[i].Index = static_cast<int>(i);
_Nodes[i].Point = IM_POINT_PTR(i);
_Nodes[i].Next = _Nodes + i + 1;
_Nodes[i].Prev = _Nodes + i - 1;
_Nodes[i].Type = ImTriangulatorNodeType_Convex;
_Nodes[i].Index = i;
_Nodes[i].Pos = points[i];
_Nodes[i].Next = _Nodes + i + 1;
_Nodes[i].Prev = _Nodes + i - 1;
}
_Nodes[0].Prev = _Nodes + _PointsCount - 1;
_Nodes[_PointsCount - 1].Next = _Nodes;
# undef IM_POINT_PTR
_Nodes[0].Prev = _Nodes + points_count - 1;
_Nodes[points_count - 1].Next = _Nodes;
}
void ImTriangulator::BuildReflexes()
{
Node* node = _Nodes;
for (int i = 0; i < _TrianglesLeft; ++i, node = node->Next)
ImTriangulatorNode* n1 = _Nodes;
for (int i = _TrianglesLeft; i >= 0; i--, n1 = n1->Next)
{
const ImVec2& v0 = *node->Prev->Point;
const ImVec2& v1 = *node->Point;
const ImVec2& v2 = *node->Next->Point;
if (ImPathIsConvex(v0, v1, v2))
if (ImTriangleIsClockwise(n1->Prev->Pos, n1->Pos, n1->Next->Pos))
continue;
node->Type = Reflex;
_Reflexes.PushBack(node);
n1->Type = ImTriangulatorNodeType_Reflex;
_Reflexes.push_back(n1);
}
}
void ImTriangulator::BuildEars()
{
Node* node = _Nodes;
for (int i = 0; i < _TrianglesLeft; ++i, node = node->Next)
ImTriangulatorNode* n1 = _Nodes;
for (int i = _TrianglesLeft; i >= 0; i--, n1 = n1->Next)
{
if (node->Type != Convex)
if (n1->Type != ImTriangulatorNodeType_Convex)
continue;
const int i0 = node->Prev->Index;
const int i1 = node->Index;
const int i2 = node->Next->Index;
const ImVec2& v0 = *node->Prev->Point;
const ImVec2& v1 = *node->Point;
const ImVec2& v2 = *node->Next->Point;
if (!IsEar(node, i0, i1, i2, v0, v1, v2))
if (!IsEar(n1->Prev->Index, n1->Index, n1->Next->Index, n1->Prev->Pos, n1->Pos, n1->Next->Pos))
continue;
node->Type = Ear;
_Ears.PushBack(node);
n1->Type = ImTriangulatorNodeType_Ear;
_Ears.push_back(n1);
}
}
bool ImTriangulator::HasNext() const
void ImTriangulator::GetNextTriangle(unsigned int out_triangle[3])
{
return _TrianglesLeft > 0;
}
ImTriangulator::Triangle ImTriangulator::Next()
{
IM_ASSERT(_TrianglesLeft > 0 && "Do not call Next() until HasNext() return true");
if (_Ears.Size == 0)
{
FlipNodeList();
Node* node = _Nodes;
for (int i = 0; i < _TrianglesLeft; ++i, node = node->Next)
node->Type = Convex;
ImTriangulatorNode* node = _Nodes;
for (int i = _TrianglesLeft; i >= 0; i--, node = node->Next)
node->Type = ImTriangulatorNodeType_Convex;
_Reflexes.Size = 0;
BuildReflexes();
BuildEars();
@ -1903,59 +1833,34 @@ ImTriangulator::Triangle ImTriangulator::Next()
// If we still don't have ears, it means geometry is degenerated.
if (_Ears.Size == 0)
{
IM_ASSERT(_TrianglesLeft > 0 && "Geometry is degenerated");
// Return first triangle available, mimicking the behavior of convex fill.
IM_ASSERT(_TrianglesLeft > 0); // Geometry is degenerated
_Ears.Data[0] = _Nodes;
_Ears.Size = 1;
}
}
Node* ear = _Ears.Data[--_Ears.Size];
const int i0 = ear->Prev->Index;
const int i1 = ear->Index;
const int i2 = ear->Next->Index;
ImTriangulatorNode* ear = _Ears.Data[--_Ears.Size];
out_triangle[0] = ear->Prev->Index;
out_triangle[1] = ear->Index;
out_triangle[2] = ear->Next->Index;
ear->Unlink();
if (ear == _Nodes)
_Nodes = ear->Next;
ReclasifyNode(ear->Prev);
ReclasifyNode(ear->Next);
--_TrianglesLeft;
return Triangle{ { i0, i1, i2 } };
}
void ImTriangulator::Span::PushBack(Node* node)
{
Data[Size++] = node;
}
void ImTriangulator::Span::RemoveByIndex(int index)
{
for (int i = Size - 1; i >= 0; --i)
{
if (Data[i]->Index == index)
{
Data[i] = Data[Size - 1];
--Size;
break;
}
}
ReclassifyNode(ear->Prev);
ReclassifyNode(ear->Next);
_TrianglesLeft--;
}
void ImTriangulator::FlipNodeList()
{
Node* prev = _Nodes;
Node* temp = _Nodes;
Node* current = _Nodes->Next;
ImTriangulatorNode* prev = _Nodes;
ImTriangulatorNode* temp = _Nodes;
ImTriangulatorNode* current = _Nodes->Next;
prev->Next = prev;
prev->Prev = prev;
while (current != _Nodes)
{
temp = current->Next;
@ -1968,97 +1873,69 @@ void ImTriangulator::FlipNodeList()
prev = current;
current = temp;
}
_Nodes = prev;
}
bool ImTriangulator::IsEar(const Node* node, int i0, int i1, int i2, const ImVec2& v0, const ImVec2& v1, const ImVec2& v2) const
// A triangle is an ear is no other vertex is inside it. We can test reflexes vertices only (see reference algorithm)
bool ImTriangulator::IsEar(int i0, int i1, int i2, const ImVec2& v0, const ImVec2& v1, const ImVec2& v2) const
{
for (int i = 0; i < _Reflexes.Size; ++i)
ImTriangulatorNode** p_end = _Reflexes.Data + _Reflexes.Size;
for (ImTriangulatorNode** p = _Reflexes.Data; p < p_end; p++)
{
Node* reflex = _Reflexes.Data[i];
if (reflex->Index == i0 || reflex->Index == i1 || reflex->Index == i2)
continue;
if (ImTriangleContainsPoint(v0, v1, v2, *reflex->Point))
return false;
ImTriangulatorNode* reflex = *p;
if (reflex->Index != i0 && reflex->Index != i1 && reflex->Index != i2)
if (ImTriangleContainsPoint(v0, v1, v2, reflex->Pos))
return false;
}
return true;
}
ImTriangulator::Type ImTriangulator::ClassifyNode(const Node* node) const
void ImTriangulator::ReclassifyNode(ImTriangulatorNode* n1)
{
const int i0 = node->Prev->Index;
const int i1 = node->Index;
const int i2 = node->Next->Index;
const ImVec2& v0 = *node->Prev->Point;
const ImVec2& v1 = *node->Point;
const ImVec2& v2 = *node->Next->Point;
if (ImPathIsConvex(v0, v1, v2))
{
if (IsEar(node, i0, i1, i2, v0, v1, v2))
return Ear;
else
return Convex;
}
// Classify node
ImTriangulatorNodeType type;
const ImTriangulatorNode* n0 = n1->Prev;
const ImTriangulatorNode* n2 = n1->Next;
if (!ImTriangleIsClockwise(n0->Pos, n1->Pos, n2->Pos))
type = ImTriangulatorNodeType_Reflex;
else if (IsEar(n0->Index, n1->Index, n2->Index, n0->Pos, n1->Pos, n2->Pos))
type = ImTriangulatorNodeType_Ear;
else
{
return Reflex;
}
}
type = ImTriangulatorNodeType_Convex;
void ImTriangulator::ReclasifyNode(Node* node)
{
Type type = ClassifyNode(node);
if (type == node->Type)
// Update lists when a type changes
if (type == n1->Type)
return;
if (node->Type == Reflex)
_Reflexes.RemoveByIndex(node->Index);
else if (node->Type == Ear)
_Ears.RemoveByIndex(node->Index);
if (type == Reflex)
_Reflexes.PushBack(node);
else if (type == Ear)
_Ears.PushBack(node);
node->Type = type;
if (n1->Type == ImTriangulatorNodeType_Reflex)
_Reflexes.find_erase_unsorted(n1->Index);
else if (n1->Type == ImTriangulatorNodeType_Ear)
_Ears.find_erase_unsorted(n1->Index);
if (type == ImTriangulatorNodeType_Reflex)
_Reflexes.push_back(n1);
else if (type == ImTriangulatorNodeType_Ear)
_Ears.push_back(n1);
n1->Type = type;
}
// Use ear-clipping algorithm to triangulate a simple polygon (no self-interaction, no holes).
// (Reminder: we don't perform any coarse clipping/culling in ImDrawList layer!
// It is up to caller to ensure not making costly calls that will be outside of visible area.
// As concave fill is noticeably more expensive than other primitives, be mindful of this...
// Caller can build AABB of points, and avoid filling if 'draw_list->_CmdHeader.ClipRect.Overlays(points_bb) == false')
void ImDrawList::AddConcavePolyFilled(const ImVec2* points, const int points_count, ImU32 col)
{
if (points_count < 3 || (col & IM_COL32_A_MASK) == 0)
return;
// coarse culling against viewport to avoid processing triangles outside of the visible area
ImVec2 bounds_min = ImVec2(FLT_MAX, FLT_MAX);
ImVec2 bounds_max = ImVec2(-FLT_MAX, -FLT_MAX);
for (int i = 0; i < points_count; ++i)
{
const ImVec2& pos = points[i];
bounds_min = ImMin(bounds_min, pos);
bounds_max = ImMax(bounds_max, pos);
}
if (!ImRect(_ClipRectStack.back()).Overlaps(ImRect(bounds_min, bounds_max)))
return;
const ImVec2 uv = _Data->TexUvWhitePixel;
ImTriangulator triangulator;
unsigned int triangle[3];
if (Flags & ImDrawListFlags_AntiAliasedFill)
{
// Anti-aliased Fill
const float AA_SIZE = _FringeScale;
const ImU32 col_trans = col & ~IM_COL32_A_MASK;
const int idx_count = (points_count - 2)*3 + points_count * 6;
const int idx_count = (points_count - 2) * 3 + points_count * 6;
const int vtx_count = (points_count * 2);
PrimReserve(idx_count, vtx_count);
@ -2067,11 +1944,11 @@ void ImDrawList::AddConcavePolyFilled(const ImVec2* points, const int points_cou
unsigned int vtx_outer_idx = _VtxCurrentIdx + 1;
_Data->TempBuffer.reserve_discard((ImTriangulator::EstimateScratchBufferSize(points_count) + sizeof(ImVec2)) / sizeof(ImVec2));
ImTriangulator triangulator = ImTriangulator(points, points_count, _Data->TempBuffer.Data);
while (triangulator.HasNext())
triangulator.Init(points, points_count, _Data->TempBuffer.Data);
while (triangulator._TrianglesLeft > 0)
{
ImTriangulator::Triangle triangle = triangulator.Next();
_IdxWritePtr[0] = (ImDrawIdx)(vtx_inner_idx + (triangle.Index[0] << 1)); _IdxWritePtr[1] = (ImDrawIdx)(vtx_inner_idx + (triangle.Index[1] << 1)); _IdxWritePtr[2] = (ImDrawIdx)(vtx_inner_idx + (triangle.Index[2] << 1));
triangulator.GetNextTriangle(triangle);
_IdxWritePtr[0] = (ImDrawIdx)(vtx_inner_idx + (triangle[0] << 1)); _IdxWritePtr[1] = (ImDrawIdx)(vtx_inner_idx + (triangle[1] << 1)); _IdxWritePtr[2] = (ImDrawIdx)(vtx_inner_idx + (triangle[2] << 1));
_IdxWritePtr += 3;
}
@ -2115,7 +1992,7 @@ void ImDrawList::AddConcavePolyFilled(const ImVec2* points, const int points_cou
else
{
// Non Anti-aliased Fill
const int idx_count = (points_count - 2)*3;
const int idx_count = (points_count - 2) * 3;
const int vtx_count = points_count;
PrimReserve(idx_count, vtx_count);
for (int i = 0; i < vtx_count; i++)
@ -2124,11 +2001,11 @@ void ImDrawList::AddConcavePolyFilled(const ImVec2* points, const int points_cou
_VtxWritePtr++;
}
_Data->TempBuffer.reserve_discard((ImTriangulator::EstimateScratchBufferSize(points_count) + sizeof(ImVec2)) / sizeof(ImVec2));
ImTriangulator triangulator = ImTriangulator(points, points_count, _Data->TempBuffer.Data);
while (triangulator.HasNext())
triangulator.Init(points, points_count, _Data->TempBuffer.Data);
while (triangulator._TrianglesLeft > 0)
{
ImTriangulator::Triangle triangle = triangulator.Next();
_IdxWritePtr[0] = (ImDrawIdx)(_VtxCurrentIdx + triangle.Index[0]); _IdxWritePtr[1] = (ImDrawIdx)(_VtxCurrentIdx + triangle.Index[1]); _IdxWritePtr[2] = (ImDrawIdx)(_VtxCurrentIdx + triangle.Index[2]);
triangulator.GetNextTriangle(triangle);
_IdxWritePtr[0] = (ImDrawIdx)(_VtxCurrentIdx + triangle[0]); _IdxWritePtr[1] = (ImDrawIdx)(_VtxCurrentIdx + triangle[1]); _IdxWritePtr[2] = (ImDrawIdx)(_VtxCurrentIdx + triangle[2]);
_IdxWritePtr += 3;
}
_VtxCurrentIdx += (ImDrawIdx)vtx_count;

View File

@ -498,7 +498,8 @@ IMGUI_API ImVec2 ImLineClosestPoint(const ImVec2& a, const ImVec2& b, const
IMGUI_API bool ImTriangleContainsPoint(const ImVec2& a, const ImVec2& b, const ImVec2& c, const ImVec2& p);
IMGUI_API ImVec2 ImTriangleClosestPoint(const ImVec2& a, const ImVec2& b, const ImVec2& c, const ImVec2& p);
IMGUI_API void ImTriangleBarycentricCoords(const ImVec2& a, const ImVec2& b, const ImVec2& c, const ImVec2& p, float& out_u, float& out_v, float& out_w);
inline float ImTriangleArea(const ImVec2& a, const ImVec2& b, const ImVec2& c) { return ImFabs((a.x * (b.y - c.y)) + (b.x * (c.y - a.y)) + (c.x * (a.y - b.y))) * 0.5f; }
inline float ImTriangleArea(const ImVec2& a, const ImVec2& b, const ImVec2& c) { return ImFabs((a.x * (b.y - c.y)) + (b.x * (c.y - a.y)) + (c.x * (a.y - b.y))) * 0.5f; }
inline bool ImTriangleIsClockwise(const ImVec2& a, const ImVec2& b, const ImVec2& c) { return ((b.x - a.x) * (c.y - b.y)) - ((c.x - b.x) * (b.y - a.y)) > 0.0f; }
// Helper: ImVec1 (1D vector)
// (this odd construct is used to facilitate the transition between 1D and 2D, and the maintenance of some branches/patches)