mirror of
https://github.com/codeplea/genann
synced 2024-11-24 23:40:02 +03:00
406 lines
12 KiB
C
406 lines
12 KiB
C
/*
|
|
* GENANN - Minimal C Artificial Neural Network
|
|
*
|
|
* Copyright (c) 2015-2018 Lewis Van Winkle
|
|
*
|
|
* http://CodePlea.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgement in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
*/
|
|
|
|
#include "genann.h"
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifndef genann_act
|
|
#define genann_act_hidden genann_act_hidden_indirect
|
|
#define genann_act_output genann_act_output_indirect
|
|
#else
|
|
#define genann_act_hidden genann_act
|
|
#define genann_act_output genann_act
|
|
#endif
|
|
|
|
#define LOOKUP_SIZE 4096
|
|
|
|
double genann_act_hidden_indirect(const struct genann *ann, double a) {
|
|
return ann->activation_hidden(ann, a);
|
|
}
|
|
|
|
double genann_act_output_indirect(const struct genann *ann, double a) {
|
|
return ann->activation_output(ann, a);
|
|
}
|
|
|
|
const double sigmoid_dom_min = -15.0;
|
|
const double sigmoid_dom_max = 15.0;
|
|
double interval;
|
|
double lookup[LOOKUP_SIZE];
|
|
|
|
#ifdef __GNUC__
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#define unused __attribute__((unused))
|
|
#else
|
|
#define likely(x) x
|
|
#define unlikely(x) x
|
|
#define unused
|
|
#pragma warning(disable : 4996) /* For fscanf */
|
|
#endif
|
|
|
|
|
|
double genann_act_sigmoid(const genann *ann unused, double a) {
|
|
if (a < -45.0) return 0;
|
|
if (a > 45.0) return 1;
|
|
return 1.0 / (1 + exp(-a));
|
|
}
|
|
|
|
void genann_init_sigmoid_lookup(const genann *ann) {
|
|
const double f = (sigmoid_dom_max - sigmoid_dom_min) / LOOKUP_SIZE;
|
|
int i;
|
|
|
|
interval = LOOKUP_SIZE / (sigmoid_dom_max - sigmoid_dom_min);
|
|
for (i = 0; i < LOOKUP_SIZE; ++i) {
|
|
lookup[i] = genann_act_sigmoid(ann, sigmoid_dom_min + f * i);
|
|
}
|
|
}
|
|
|
|
double genann_act_sigmoid_cached(const genann *ann unused, double a) {
|
|
assert(!isnan(a));
|
|
|
|
if (a < sigmoid_dom_min) return lookup[0];
|
|
if (a >= sigmoid_dom_max) return lookup[LOOKUP_SIZE - 1];
|
|
|
|
size_t j = (size_t)((a-sigmoid_dom_min)*interval+0.5);
|
|
|
|
/* Because floating point... */
|
|
if (unlikely(j >= LOOKUP_SIZE)) return lookup[LOOKUP_SIZE - 1];
|
|
|
|
return lookup[j];
|
|
}
|
|
|
|
double genann_act_linear(const struct genann *ann unused, double a) {
|
|
return a;
|
|
}
|
|
|
|
double genann_act_threshold(const struct genann *ann unused, double a) {
|
|
return a > 0;
|
|
}
|
|
|
|
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs) {
|
|
if (hidden_layers < 0) return 0;
|
|
if (inputs < 1) return 0;
|
|
if (outputs < 1) return 0;
|
|
if (hidden_layers > 0 && hidden < 1) return 0;
|
|
|
|
|
|
const int hidden_weights = hidden_layers ? (inputs+1) * hidden + (hidden_layers-1) * (hidden+1) * hidden : 0;
|
|
const int output_weights = (hidden_layers ? (hidden+1) : (inputs+1)) * outputs;
|
|
const int total_weights = (hidden_weights + output_weights);
|
|
|
|
const int total_neurons = (inputs + hidden * hidden_layers + outputs);
|
|
|
|
/* Allocate extra size for weights, outputs, and deltas. */
|
|
const int size = sizeof(genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs));
|
|
genann *ret = malloc(size);
|
|
if (!ret) return 0;
|
|
|
|
ret->inputs = inputs;
|
|
ret->hidden_layers = hidden_layers;
|
|
ret->hidden = hidden;
|
|
ret->outputs = outputs;
|
|
|
|
ret->total_weights = total_weights;
|
|
ret->total_neurons = total_neurons;
|
|
|
|
/* Set pointers. */
|
|
ret->weight = (double*)((char*)ret + sizeof(genann));
|
|
ret->output = ret->weight + ret->total_weights;
|
|
ret->delta = ret->output + ret->total_neurons;
|
|
|
|
genann_randomize(ret);
|
|
|
|
ret->activation_hidden = genann_act_sigmoid_cached;
|
|
ret->activation_output = genann_act_sigmoid_cached;
|
|
|
|
genann_init_sigmoid_lookup(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
genann *genann_read(FILE *in) {
|
|
int inputs, hidden_layers, hidden, outputs;
|
|
int rc;
|
|
|
|
errno = 0;
|
|
rc = fscanf(in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs);
|
|
if (rc < 4 || errno != 0) {
|
|
perror("fscanf");
|
|
return NULL;
|
|
}
|
|
|
|
genann *ann = genann_init(inputs, hidden_layers, hidden, outputs);
|
|
|
|
int i;
|
|
for (i = 0; i < ann->total_weights; ++i) {
|
|
errno = 0;
|
|
rc = fscanf(in, " %le", ann->weight + i);
|
|
if (rc < 1 || errno != 0) {
|
|
perror("fscanf");
|
|
genann_free(ann);
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return ann;
|
|
}
|
|
|
|
|
|
genann *genann_copy(genann const *ann) {
|
|
const int size = sizeof(genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs));
|
|
genann *ret = malloc(size);
|
|
if (!ret) return 0;
|
|
|
|
memcpy(ret, ann, size);
|
|
|
|
/* Set pointers. */
|
|
ret->weight = (double*)((char*)ret + sizeof(genann));
|
|
ret->output = ret->weight + ret->total_weights;
|
|
ret->delta = ret->output + ret->total_neurons;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
void genann_randomize(genann *ann) {
|
|
int i;
|
|
for (i = 0; i < ann->total_weights; ++i) {
|
|
double r = GENANN_RANDOM();
|
|
/* Sets weights from -0.5 to 0.5. */
|
|
ann->weight[i] = r - 0.5;
|
|
}
|
|
}
|
|
|
|
|
|
void genann_free(genann *ann) {
|
|
/* The weight, output, and delta pointers go to the same buffer. */
|
|
free(ann);
|
|
}
|
|
|
|
|
|
double const *genann_run(genann const *ann, double const *inputs) {
|
|
double const *w = ann->weight;
|
|
double *o = ann->output + ann->inputs;
|
|
double const *i = ann->output;
|
|
|
|
/* Copy the inputs to the scratch area, where we also store each neuron's
|
|
* output, for consistency. This way the first layer isn't a special case. */
|
|
memcpy(ann->output, inputs, sizeof(double) * ann->inputs);
|
|
|
|
int h, j, k;
|
|
|
|
if (!ann->hidden_layers) {
|
|
double *ret = o;
|
|
for (j = 0; j < ann->outputs; ++j) {
|
|
double sum = *w++ * -1.0;
|
|
for (k = 0; k < ann->inputs; ++k) {
|
|
sum += *w++ * i[k];
|
|
}
|
|
*o++ = genann_act_output(ann, sum);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Figure input layer */
|
|
for (j = 0; j < ann->hidden; ++j) {
|
|
double sum = *w++ * -1.0;
|
|
for (k = 0; k < ann->inputs; ++k) {
|
|
sum += *w++ * i[k];
|
|
}
|
|
*o++ = genann_act_hidden(ann, sum);
|
|
}
|
|
|
|
i += ann->inputs;
|
|
|
|
/* Figure hidden layers, if any. */
|
|
for (h = 1; h < ann->hidden_layers; ++h) {
|
|
for (j = 0; j < ann->hidden; ++j) {
|
|
double sum = *w++ * -1.0;
|
|
for (k = 0; k < ann->hidden; ++k) {
|
|
sum += *w++ * i[k];
|
|
}
|
|
*o++ = genann_act_hidden(ann, sum);
|
|
}
|
|
|
|
i += ann->hidden;
|
|
}
|
|
|
|
double const *ret = o;
|
|
|
|
/* Figure output layer. */
|
|
for (j = 0; j < ann->outputs; ++j) {
|
|
double sum = *w++ * -1.0;
|
|
for (k = 0; k < ann->hidden; ++k) {
|
|
sum += *w++ * i[k];
|
|
}
|
|
*o++ = genann_act_output(ann, sum);
|
|
}
|
|
|
|
/* Sanity check that we used all weights and wrote all outputs. */
|
|
assert(w - ann->weight == ann->total_weights);
|
|
assert(o - ann->output == ann->total_neurons);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate) {
|
|
/* To begin with, we must run the network forward. */
|
|
genann_run(ann, inputs);
|
|
|
|
int h, j, k;
|
|
|
|
/* First set the output layer deltas. */
|
|
{
|
|
double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers; /* First output. */
|
|
double *d = ann->delta + ann->hidden * ann->hidden_layers; /* First delta. */
|
|
double const *t = desired_outputs; /* First desired output. */
|
|
|
|
|
|
/* Set output layer deltas. */
|
|
if (genann_act_output == genann_act_linear ||
|
|
ann->activation_output == genann_act_linear) {
|
|
for (j = 0; j < ann->outputs; ++j) {
|
|
*d++ = *t++ - *o++;
|
|
}
|
|
} else {
|
|
for (j = 0; j < ann->outputs; ++j) {
|
|
*d++ = (*t - *o) * *o * (1.0 - *o);
|
|
++o; ++t;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Set hidden layer deltas, start on last layer and work backwards. */
|
|
/* Note that loop is skipped in the case of hidden_layers == 0. */
|
|
for (h = ann->hidden_layers - 1; h >= 0; --h) {
|
|
|
|
/* Find first output and delta in this layer. */
|
|
double const *o = ann->output + ann->inputs + (h * ann->hidden);
|
|
double *d = ann->delta + (h * ann->hidden);
|
|
|
|
/* Find first delta in following layer (which may be hidden or output). */
|
|
double const * const dd = ann->delta + ((h+1) * ann->hidden);
|
|
|
|
/* Find first weight in following layer (which may be hidden or output). */
|
|
double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h));
|
|
|
|
for (j = 0; j < ann->hidden; ++j) {
|
|
|
|
double delta = 0;
|
|
|
|
for (k = 0; k < (h == ann->hidden_layers-1 ? ann->outputs : ann->hidden); ++k) {
|
|
const double forward_delta = dd[k];
|
|
const int windex = k * (ann->hidden + 1) + (j + 1);
|
|
const double forward_weight = ww[windex];
|
|
delta += forward_delta * forward_weight;
|
|
}
|
|
|
|
*d = *o * (1.0-*o) * delta;
|
|
++d; ++o;
|
|
}
|
|
}
|
|
|
|
|
|
/* Train the outputs. */
|
|
{
|
|
/* Find first output delta. */
|
|
double const *d = ann->delta + ann->hidden * ann->hidden_layers; /* First output delta. */
|
|
|
|
/* Find first weight to first output delta. */
|
|
double *w = ann->weight + (ann->hidden_layers
|
|
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1))
|
|
: (0));
|
|
|
|
/* Find first output in previous layer. */
|
|
double const * const i = ann->output + (ann->hidden_layers
|
|
? (ann->inputs + (ann->hidden) * (ann->hidden_layers-1))
|
|
: 0);
|
|
|
|
/* Set output layer weights. */
|
|
for (j = 0; j < ann->outputs; ++j) {
|
|
*w++ += *d * learning_rate * -1.0;
|
|
for (k = 1; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k) {
|
|
*w++ += *d * learning_rate * i[k-1];
|
|
}
|
|
|
|
++d;
|
|
}
|
|
|
|
assert(w - ann->weight == ann->total_weights);
|
|
}
|
|
|
|
|
|
/* Train the hidden layers. */
|
|
for (h = ann->hidden_layers - 1; h >= 0; --h) {
|
|
|
|
/* Find first delta in this layer. */
|
|
double const *d = ann->delta + (h * ann->hidden);
|
|
|
|
/* Find first input to this layer. */
|
|
double const *i = ann->output + (h
|
|
? (ann->inputs + ann->hidden * (h-1))
|
|
: 0);
|
|
|
|
/* Find first weight to this layer. */
|
|
double *w = ann->weight + (h
|
|
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1))
|
|
: 0);
|
|
|
|
|
|
for (j = 0; j < ann->hidden; ++j) {
|
|
*w++ += *d * learning_rate * -1.0;
|
|
for (k = 1; k < (h == 0 ? ann->inputs : ann->hidden) + 1; ++k) {
|
|
*w++ += *d * learning_rate * i[k-1];
|
|
}
|
|
++d;
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void genann_write(genann const *ann, FILE *out) {
|
|
fprintf(out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs);
|
|
|
|
int i;
|
|
for (i = 0; i < ann->total_weights; ++i) {
|
|
fprintf(out, " %.20e", ann->weight[i]);
|
|
}
|
|
}
|
|
|
|
|