mirror of
https://github.com/codeplea/genann
synced 2024-11-21 22:11:34 +03:00
fixed headings for github
This commit is contained in:
parent
a55180c2e4
commit
de04314b10
26
README.md
26
README.md
@ -2,14 +2,14 @@
|
||||
|
||||
<img alt="Genann logo" src="https://codeplea.com/public/content/genann_logo.png" align="right" />
|
||||
|
||||
#Genann
|
||||
# Genann
|
||||
|
||||
Genann is a minimal, well-tested library for training and using feedforward
|
||||
artificial neural networks (ANN) in C. Its primary focus is on being simple,
|
||||
fast, reliable, and hackable. It achieves this by providing only the necessary
|
||||
functions and little extra.
|
||||
|
||||
##Features
|
||||
## Features
|
||||
|
||||
- **ANSI C with no dependencies**.
|
||||
- Contained in a single source code and header file.
|
||||
@ -21,11 +21,11 @@ functions and little extra.
|
||||
- Includes examples and test suite.
|
||||
- Released under the zlib license - free for nearly any use.
|
||||
|
||||
##Building
|
||||
## Building
|
||||
|
||||
Genann is self-contained in two files: `genann.c` and `genann.h`. To use Genann, simply add those two files to your project.
|
||||
|
||||
##Example Code
|
||||
## Example Code
|
||||
|
||||
Four example programs are included with the source code.
|
||||
|
||||
@ -34,7 +34,7 @@ Four example programs are included with the source code.
|
||||
- [`example3.c`](./example3.c) - Loads and runs an ANN from a file.
|
||||
- [`example4.c`](./example4.c) - Trains an ANN on the [IRIS data-set](https://archive.ics.uci.edu/ml/datasets/Iris) using backpropagation.
|
||||
|
||||
##Quick Example
|
||||
## Quick Example
|
||||
|
||||
We create an ANN taking 2 inputs, having 1 layer of 3 hidden neurons, and
|
||||
providing 2 outputs. It has the following structure:
|
||||
@ -74,9 +74,9 @@ data in a random order. You would also want to monitor the learning to prevent
|
||||
over-fitting.
|
||||
|
||||
|
||||
##Usage
|
||||
## Usage
|
||||
|
||||
###Creating and Freeing ANNs
|
||||
### Creating and Freeing ANNs
|
||||
```C
|
||||
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs);
|
||||
genann *genann_copy(genann const *ann);
|
||||
@ -92,7 +92,7 @@ Calling `genann_copy()` will create a deep-copy of an existing `genann` struct.
|
||||
Call `genann_free()` when you're finished with an ANN returned by `genann_init()`.
|
||||
|
||||
|
||||
###Training ANNs
|
||||
### Training ANNs
|
||||
```C
|
||||
void genann_train(genann const *ann, double const *inputs,
|
||||
double const *desired_outputs, double learning_rate);
|
||||
@ -115,16 +115,16 @@ Every `genann` struct contains the members `int total_weights;` and
|
||||
size which contains all weights used by the ANN. See *example2.c* for
|
||||
an example of training using random hill climbing search.
|
||||
|
||||
###Saving and Loading ANNs
|
||||
### Saving and Loading ANNs
|
||||
|
||||
```C
|
||||
genann *genann_read(FILE *in);
|
||||
void genann_write(genann const *ann, FILE *out);
|
||||
```
|
||||
|
||||
|
||||
Genann provides the `genann_read()` and `genann_write()` functions for loading or saving an ANN in a text-based format.
|
||||
|
||||
###Evaluating
|
||||
### Evaluating
|
||||
|
||||
```C
|
||||
double const *genann_run(genann const *ann, double const *inputs);
|
||||
@ -134,12 +134,12 @@ Call `genann_run()` on a trained ANN to run a feed-forward pass on a given set o
|
||||
will provide a pointer to the array of predicted outputs (of `ann->outputs` length).
|
||||
|
||||
|
||||
##Hints
|
||||
## Hints
|
||||
|
||||
- All functions start with `genann_`.
|
||||
- The code is simple. Dig in and change things.
|
||||
|
||||
##Extra Resources
|
||||
## Extra Resources
|
||||
|
||||
The [comp.ai.neural-nets
|
||||
FAQ](http://www.faqs.org/faqs/ai-faq/neural-nets/part1/) is an excellent
|
||||
|
Loading…
Reference in New Issue
Block a user