2016-02-10 02:53:54 +03:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include "genann.h"
|
|
|
|
|
|
|
|
/* This example is to illustrate how to use GENANN.
|
|
|
|
* It is NOT an example of good machine learning techniques.
|
|
|
|
*/
|
|
|
|
|
|
|
|
const char *iris_data = "example/iris.data";
|
|
|
|
|
|
|
|
double *input, *class;
|
|
|
|
int samples;
|
|
|
|
const char *class_names[] = {"Iris-setosa", "Iris-versicolor", "Iris-virginica"};
|
|
|
|
|
|
|
|
void load_data() {
|
|
|
|
/* Load the iris data-set. */
|
|
|
|
FILE *in = fopen("example/iris.data", "r");
|
|
|
|
if (!in) {
|
|
|
|
printf("Could not open file: %s\n", iris_data);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Loop through the data to get a count. */
|
|
|
|
char line[1024];
|
|
|
|
while (!feof(in) && fgets(line, 1024, in)) {
|
|
|
|
++samples;
|
|
|
|
}
|
|
|
|
fseek(in, 0, SEEK_SET);
|
|
|
|
|
|
|
|
printf("Loading %d data points from %s\n", samples, iris_data);
|
|
|
|
|
|
|
|
/* Allocate memory for input and output data. */
|
|
|
|
input = malloc(sizeof(double) * samples * 4);
|
|
|
|
class = malloc(sizeof(double) * samples * 3);
|
|
|
|
|
|
|
|
/* Read the file into our arrays. */
|
|
|
|
int i, j;
|
|
|
|
for (i = 0; i < samples; ++i) {
|
|
|
|
double *p = input + i * 4;
|
|
|
|
double *c = class + i * 3;
|
|
|
|
c[0] = c[1] = c[2] = 0.0;
|
|
|
|
|
|
|
|
fgets(line, 1024, in);
|
|
|
|
|
|
|
|
char *split = strtok(line, ",");
|
|
|
|
for (j = 0; j < 4; ++j) {
|
|
|
|
p[j] = atof(split);
|
|
|
|
split = strtok(0, ",");
|
|
|
|
}
|
|
|
|
|
|
|
|
split[strlen(split)-1] = 0;
|
|
|
|
if (strcmp(split, class_names[0]) == 0) {c[0] = 1.0;}
|
|
|
|
else if (strcmp(split, class_names[1]) == 0) {c[1] = 1.0;}
|
|
|
|
else if (strcmp(split, class_names[2]) == 0) {c[2] = 1.0;}
|
|
|
|
else {
|
|
|
|
printf("Unknown class %s.\n", split);
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* printf("Data point %d is %f %f %f %f -> %f %f %f\n", i, p[0], p[1], p[2], p[3], c[0], c[1], c[2]); */
|
|
|
|
}
|
|
|
|
|
|
|
|
fclose(in);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
|
|
{
|
|
|
|
printf("GENANN example 4.\n");
|
|
|
|
printf("Train an ANN on the IRIS dataset using backpropagation.\n");
|
|
|
|
|
|
|
|
/* Load the data from file. */
|
|
|
|
load_data();
|
|
|
|
|
|
|
|
/* 4 inputs.
|
|
|
|
* 1 hidden layer(s) of 4 neurons.
|
|
|
|
* 3 outputs (1 per class)
|
|
|
|
*/
|
2016-02-11 23:38:42 +03:00
|
|
|
genann *ann = genann_init(4, 1, 4, 3);
|
2016-02-10 02:53:54 +03:00
|
|
|
|
|
|
|
int i, j;
|
|
|
|
int loops = 5000;
|
|
|
|
|
|
|
|
/* Train the network with backpropagation. */
|
|
|
|
printf("Training for %d loops over data.\n", loops);
|
|
|
|
for (i = 0; i < loops; ++i) {
|
|
|
|
for (j = 0; j < samples; ++j) {
|
|
|
|
genann_train(ann, input + j*4, class + j*3, .01);
|
|
|
|
}
|
|
|
|
/* printf("%1.2f ", xor_score(ann)); */
|
|
|
|
}
|
|
|
|
|
|
|
|
int correct = 0;
|
|
|
|
for (j = 0; j < samples; ++j) {
|
|
|
|
const double *guess = genann_run(ann, input + j*4);
|
|
|
|
if (class[j*3+0] == 1.0) {if (guess[0] > guess[1] && guess[0] > guess[2]) ++correct;}
|
|
|
|
else if (class[j*3+1] == 1.0) {if (guess[1] > guess[0] && guess[1] > guess[2]) ++correct;}
|
|
|
|
else if (class[j*3+2] == 1.0) {if (guess[2] > guess[0] && guess[2] > guess[1]) ++correct;}
|
|
|
|
else {printf("Logic error.\n"); exit(1);}
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("%d/%d correct (%0.1f%%).\n", correct, samples, (double)correct / samples * 100.0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
genann_free(ann);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|