fltk/test/animated.cxx

148 lines
3.7 KiB
C++

//
// Alpha rendering benchmark program for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2022 by Bill Spitzak and others.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// https://www.fltk.org/COPYING.php
//
// Please see the following page on how to report bugs and issues:
//
// https://www.fltk.org/bugs.php
//
#include <FL/Fl.H>
#include <FL/Fl_Double_Window.H>
#include <FL/Fl_Button.H>
#include <FL/Fl_Image.H>
#include <FL/platform.H>
#include <FL/fl_draw.H>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// These constants define the image dimensions and
// the number of frames of the animation
const unsigned int dim = 256;
const unsigned int frames = 48;
static Fl_RGB_Image *img[frames];
static uchar curframe;
static void make_images() {
unsigned i;
for (i = 0; i < frames; i++) {
const unsigned size = dim * dim * 4;
uchar *data = new uchar[size];
memset(data, 0, size);
// First a black box, 10x10 pixels in the top-left corner
int x, y;
for (x = 0; x < 10; x++) {
for (y = 0; y < 10; y++) {
data[y * dim * 4 + x * 4 + 3] = 255;
}
}
// A fading sphere
uchar alpha = 255;
if (i < frames / 2)
alpha = uchar(255 * (i / ((float) frames / 2)));
else
alpha = uchar(255 * (((frames / 2) - (i - frames / 2)) / ((float) frames / 2)));
const int spherew = 60;
const int spherex = (dim - spherew) / 2;
const int maxdist = (spherew / 2) * (spherew / 2);
for (x = spherex; x < spherex + spherew; x++) {
for (y = 20; y < 20 + spherew; y++) {
float distx = x - (spherex + (float) spherew / 2);
float disty = y - (20 + (float) spherew / 2);
float dist = distx * distx + disty * disty;
if (dist > maxdist)
continue;
const float fill = dist / maxdist;
const uchar grey = uchar(fill * 255);
uchar myalpha = alpha;
if (fill > 0.9)
myalpha *= uchar((1.0f - fill) * 10);
data[y * dim * 4 + x * 4 + 0] = grey;
data[y * dim * 4 + x * 4 + 1] = grey;
data[y * dim * 4 + x * 4 + 2] = grey;
data[y * dim * 4 + x * 4 + 3] = myalpha;
}
}
// A moving blob
const float pos = (i / (float) frames) * 2 - 0.5f;
const int xoffset = int(pos * dim);
const int yoffset = 2 * dim / 3;
const int w = dim / 4;
for (x = -w; x < w; x++) {
if (x + xoffset < 0 || x + xoffset >= (int)dim)
continue;
for (y = yoffset - w; y < yoffset + w; y++) {
const uchar grey = abs(y - yoffset);
data[y * dim * 4 + (x + xoffset) * 4 + 2] = grey;
data[y * dim * 4 + (x + xoffset) * 4 + 3] = 127;
}
}
img[i] = new Fl_RGB_Image(data, dim, dim, 4);
}
}
class window: public Fl_Double_Window {
public:
window(int X, int Y, const char *lbl): Fl_Double_Window(X, Y, lbl) {}
void draw() FL_OVERRIDE {
Fl_Double_Window::draw();
// Test both cx/cy offset and clipping. Both borders should have a 5-pixel edge,
// and the upper-left black box should not be visible.
fl_push_clip(5, 5, w() - 5, h() - 5);
img[curframe]->draw(0, 0, dim, dim, 5, 5);
fl_pop_clip();
}
};
static window *win;
static void cb(void *) {
win->redraw();
Fl::repeat_timeout(1.0f / 24, cb);
curframe++;
curframe %= frames;
}
int main(int argc, char **argv) {
win = new window(256, 256, "Alpha rendering benchmark, watch CPU use");
win->color(fl_rgb_color(142, 0, 0));
make_images();
win->end();
win->show(argc, argv);
Fl::add_timeout(1.0f / 24, cb);
return Fl::run();
}