e454f97acc
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.3@7903 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
504 lines
15 KiB
C++
504 lines
15 KiB
C++
//
|
|
// "$Id$"
|
|
//
|
|
// X11 image reading routines for the Fast Light Tool Kit (FLTK).
|
|
//
|
|
// Copyright 1998-2010 by Bill Spitzak and others.
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Library General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Library General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Library General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
// USA.
|
|
//
|
|
// Please report all bugs and problems on the following page:
|
|
//
|
|
// http://www.fltk.org/str.php
|
|
//
|
|
|
|
#include <FL/x.H>
|
|
#include <FL/Fl.H>
|
|
#include <FL/fl_draw.H>
|
|
#include "flstring.h"
|
|
|
|
#ifdef DEBUG
|
|
# include <stdio.h>
|
|
#endif // DEBUG
|
|
|
|
#ifdef WIN32
|
|
# include "fl_read_image_win32.cxx"
|
|
#elif defined(__APPLE__)
|
|
# include "fl_read_image_mac.cxx"
|
|
#else
|
|
# include <X11/Xutil.h>
|
|
# ifdef __sgi
|
|
# include <X11/extensions/readdisplay.h>
|
|
# else
|
|
# include <stdlib.h>
|
|
# endif // __sgi
|
|
|
|
// Defined in fl_color.cxx
|
|
extern uchar fl_redmask, fl_greenmask, fl_bluemask;
|
|
extern int fl_redshift, fl_greenshift, fl_blueshift, fl_extrashift;
|
|
|
|
//
|
|
// 'fl_subimage_offsets()' - Calculate subimage offsets for an axis
|
|
static inline int
|
|
fl_subimage_offsets(int a, int aw, int b, int bw, int &obw)
|
|
{
|
|
int off;
|
|
int ob;
|
|
|
|
if (b >= a) {
|
|
ob = b;
|
|
off = 0;
|
|
} else {
|
|
ob = a;
|
|
off = a - b;
|
|
}
|
|
|
|
bw -= off;
|
|
|
|
if (ob + bw <= a + aw) {
|
|
obw = bw;
|
|
} else {
|
|
obw = (a + aw) - ob;
|
|
}
|
|
|
|
return off;
|
|
}
|
|
|
|
// this handler will catch and ignore exceptions during XGetImage
|
|
// to avoid an application crash
|
|
static int xgetimageerrhandler(Display *display, XErrorEvent *error) {
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// 'fl_read_image()' - Read an image from the current window.
|
|
//
|
|
|
|
uchar * // O - Pixel buffer or NULL if failed
|
|
fl_read_image(uchar *p, // I - Pixel buffer or NULL to allocate
|
|
int X, // I - Left position
|
|
int Y, // I - Top position
|
|
int w, // I - Width of area to read
|
|
int h, // I - Height of area to read
|
|
int alpha) { // I - Alpha value for image (0 for none)
|
|
XImage *image; // Captured image
|
|
int i, maxindex; // Looping vars
|
|
int x, y; // Current X & Y in image
|
|
int d; // Depth of image
|
|
unsigned char *line, // Array to hold image row
|
|
*line_ptr; // Pointer to current line image
|
|
unsigned char *pixel; // Current color value
|
|
XColor colors[4096]; // Colors from the colormap...
|
|
unsigned char cvals[4096][3]; // Color values from the colormap...
|
|
unsigned index_mask,
|
|
index_shift,
|
|
red_mask,
|
|
red_shift,
|
|
green_mask,
|
|
green_shift,
|
|
blue_mask,
|
|
blue_shift;
|
|
|
|
|
|
//
|
|
// Under X11 we have the option of the XGetImage() interface or SGI's
|
|
// ReadDisplay extension which does all of the really hard work for
|
|
// us...
|
|
//
|
|
|
|
# ifdef __sgi
|
|
if (XReadDisplayQueryExtension(fl_display, &i, &i)) {
|
|
image = XReadDisplay(fl_display, fl_window, X, Y, w, h, 0, NULL);
|
|
} else
|
|
# else
|
|
image = 0;
|
|
# endif // __sgi
|
|
|
|
if (!image) {
|
|
// fetch absolute coordinates
|
|
int dx, dy, sx, sy, sw, sh;
|
|
Window child_win;
|
|
Fl_Window *win = fl_find(fl_window);
|
|
if (win) {
|
|
XTranslateCoordinates(fl_display, fl_window,
|
|
RootWindow(fl_display, fl_screen), X, Y, &dx, &dy, &child_win);
|
|
// screen dimensions
|
|
Fl::screen_xywh(sx, sy, sw, sh, fl_screen);
|
|
}
|
|
if (!win || (dx >= sx && dy >= sy && dx + w <= sw && dy + h <= sh)) {
|
|
// the image is fully contained, we can use the traditional method
|
|
// however, if the window is obscured etc. the function will still fail. Make sure we
|
|
// catch the error and continue, otherwise an exception will be thrown.
|
|
XErrorHandler old_handler = XSetErrorHandler(xgetimageerrhandler);
|
|
image = XGetImage(fl_display, fl_window, X, Y, w, h, AllPlanes, ZPixmap);
|
|
XSetErrorHandler(old_handler);
|
|
} else {
|
|
// image is crossing borders, determine visible region
|
|
int nw, nh, noffx, noffy;
|
|
noffx = fl_subimage_offsets(sx, sw, dx, w, nw);
|
|
noffy = fl_subimage_offsets(sy, sh, dy, h, nh);
|
|
if (nw <= 0 || nh <= 0) return 0;
|
|
|
|
// allocate the image
|
|
int bpp = fl_visual->depth + ((fl_visual->depth / 8) % 2) * 8;
|
|
char* buf = (char*)malloc(bpp / 8 * w * h);
|
|
image = XCreateImage(fl_display, fl_visual->visual,
|
|
fl_visual->depth, ZPixmap, 0, buf, w, h, bpp, 0);
|
|
if (!image) {
|
|
if (buf) free(buf);
|
|
return 0;
|
|
}
|
|
|
|
XErrorHandler old_handler = XSetErrorHandler(xgetimageerrhandler);
|
|
XImage *subimg = XGetSubImage(fl_display, fl_window, X + noffx, Y + noffy,
|
|
nw, nh, AllPlanes, ZPixmap, image, noffx, noffy);
|
|
XSetErrorHandler(old_handler);
|
|
if (!subimg) {
|
|
XDestroyImage(image);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!image) return 0;
|
|
|
|
#ifdef DEBUG
|
|
printf("width = %d\n", image->width);
|
|
printf("height = %d\n", image->height);
|
|
printf("xoffset = %d\n", image->xoffset);
|
|
printf("format = %d\n", image->format);
|
|
printf("data = %p\n", image->data);
|
|
printf("byte_order = %d\n", image->byte_order);
|
|
printf("bitmap_unit = %d\n", image->bitmap_unit);
|
|
printf("bitmap_bit_order = %d\n", image->bitmap_bit_order);
|
|
printf("bitmap_pad = %d\n", image->bitmap_pad);
|
|
printf("depth = %d\n", image->depth);
|
|
printf("bytes_per_line = %d\n", image->bytes_per_line);
|
|
printf("bits_per_pixel = %d\n", image->bits_per_pixel);
|
|
printf("red_mask = %08x\n", image->red_mask);
|
|
printf("green_mask = %08x\n", image->green_mask);
|
|
printf("blue_mask = %08x\n", image->blue_mask);
|
|
printf("map_entries = %d\n", fl_visual->visual->map_entries);
|
|
#endif // DEBUG
|
|
|
|
d = alpha ? 4 : 3;
|
|
|
|
// Allocate the image data array as needed...
|
|
if (!p) p = new uchar[w * h * d];
|
|
|
|
// Initialize the default colors/alpha in the whole image...
|
|
memset(p, alpha, w * h * d);
|
|
|
|
// Check that we have valid mask/shift values...
|
|
if (!image->red_mask && image->bits_per_pixel > 12) {
|
|
// Greater than 12 bits must be TrueColor...
|
|
image->red_mask = fl_visual->visual->red_mask;
|
|
image->green_mask = fl_visual->visual->green_mask;
|
|
image->blue_mask = fl_visual->visual->blue_mask;
|
|
|
|
#ifdef DEBUG
|
|
puts("\n---- UPDATED ----");
|
|
printf("fl_redmask = %08x\n", fl_redmask);
|
|
printf("fl_redshift = %d\n", fl_redshift);
|
|
printf("fl_greenmask = %08x\n", fl_greenmask);
|
|
printf("fl_greenshift = %d\n", fl_greenshift);
|
|
printf("fl_bluemask = %08x\n", fl_bluemask);
|
|
printf("fl_blueshift = %d\n", fl_blueshift);
|
|
printf("red_mask = %08x\n", image->red_mask);
|
|
printf("green_mask = %08x\n", image->green_mask);
|
|
printf("blue_mask = %08x\n", image->blue_mask);
|
|
#endif // DEBUG
|
|
}
|
|
|
|
// Check if we have colormap image...
|
|
if (!image->red_mask) {
|
|
// Get the colormap entries for this window...
|
|
maxindex = fl_visual->visual->map_entries;
|
|
|
|
for (i = 0; i < maxindex; i ++) colors[i].pixel = i;
|
|
|
|
XQueryColors(fl_display, fl_colormap, colors, maxindex);
|
|
|
|
for (i = 0; i < maxindex; i ++) {
|
|
cvals[i][0] = colors[i].red >> 8;
|
|
cvals[i][1] = colors[i].green >> 8;
|
|
cvals[i][2] = colors[i].blue >> 8;
|
|
}
|
|
|
|
// Read the pixels and output an RGB image...
|
|
for (y = 0; y < image->height; y ++) {
|
|
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
|
|
line = p + y * w * d;
|
|
|
|
switch (image->bits_per_pixel) {
|
|
case 1 :
|
|
for (x = image->width, line_ptr = line, index_mask = 128;
|
|
x > 0;
|
|
x --, line_ptr += d) {
|
|
if (*pixel & index_mask) {
|
|
line_ptr[0] = cvals[1][0];
|
|
line_ptr[1] = cvals[1][1];
|
|
line_ptr[2] = cvals[1][2];
|
|
} else {
|
|
line_ptr[0] = cvals[0][0];
|
|
line_ptr[1] = cvals[0][1];
|
|
line_ptr[2] = cvals[0][2];
|
|
}
|
|
|
|
if (index_mask > 1) {
|
|
index_mask >>= 1;
|
|
} else {
|
|
index_mask = 128;
|
|
pixel ++;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 2 :
|
|
for (x = image->width, line_ptr = line, index_shift = 6;
|
|
x > 0;
|
|
x --, line_ptr += d) {
|
|
i = (*pixel >> index_shift) & 3;
|
|
|
|
line_ptr[0] = cvals[i][0];
|
|
line_ptr[1] = cvals[i][1];
|
|
line_ptr[2] = cvals[i][2];
|
|
|
|
if (index_shift > 0) {
|
|
index_mask >>= 2;
|
|
index_shift -= 2;
|
|
} else {
|
|
index_mask = 192;
|
|
index_shift = 6;
|
|
pixel ++;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 4 :
|
|
for (x = image->width, line_ptr = line, index_shift = 4;
|
|
x > 0;
|
|
x --, line_ptr += d) {
|
|
if (index_shift == 4) i = (*pixel >> 4) & 15;
|
|
else i = *pixel & 15;
|
|
|
|
line_ptr[0] = cvals[i][0];
|
|
line_ptr[1] = cvals[i][1];
|
|
line_ptr[2] = cvals[i][2];
|
|
|
|
if (index_shift > 0) {
|
|
index_shift = 0;
|
|
} else {
|
|
index_shift = 4;
|
|
pixel ++;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 8 :
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel ++) {
|
|
line_ptr[0] = cvals[*pixel][0];
|
|
line_ptr[1] = cvals[*pixel][1];
|
|
line_ptr[2] = cvals[*pixel][2];
|
|
}
|
|
break;
|
|
|
|
case 12 :
|
|
for (x = image->width, line_ptr = line, index_shift = 0;
|
|
x > 0;
|
|
x --, line_ptr += d) {
|
|
if (index_shift == 0) {
|
|
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
|
|
} else {
|
|
i = ((pixel[1] << 8) | pixel[2]) & 4095;
|
|
}
|
|
|
|
line_ptr[0] = cvals[i][0];
|
|
line_ptr[1] = cvals[i][1];
|
|
line_ptr[2] = cvals[i][2];
|
|
|
|
if (index_shift == 0) {
|
|
index_shift = 4;
|
|
} else {
|
|
index_shift = 0;
|
|
pixel += 3;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// RGB(A) image, so figure out the shifts & masks...
|
|
red_mask = image->red_mask;
|
|
red_shift = 0;
|
|
|
|
while ((red_mask & 1) == 0) {
|
|
red_mask >>= 1;
|
|
red_shift ++;
|
|
}
|
|
|
|
green_mask = image->green_mask;
|
|
green_shift = 0;
|
|
|
|
while ((green_mask & 1) == 0) {
|
|
green_mask >>= 1;
|
|
green_shift ++;
|
|
}
|
|
|
|
blue_mask = image->blue_mask;
|
|
blue_shift = 0;
|
|
|
|
while ((blue_mask & 1) == 0) {
|
|
blue_mask >>= 1;
|
|
blue_shift ++;
|
|
}
|
|
|
|
// Read the pixels and output an RGB image...
|
|
for (y = 0; y < image->height; y ++) {
|
|
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
|
|
line = p + y * w * d;
|
|
|
|
switch (image->bits_per_pixel) {
|
|
case 8 :
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel ++) {
|
|
i = *pixel;
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
break;
|
|
|
|
case 12 :
|
|
for (x = image->width, line_ptr = line, index_shift = 0;
|
|
x > 0;
|
|
x --, line_ptr += d) {
|
|
if (index_shift == 0) {
|
|
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
|
|
} else {
|
|
i = ((pixel[1] << 8) | pixel[2]) & 4095;
|
|
}
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
|
|
if (index_shift == 0) {
|
|
index_shift = 4;
|
|
} else {
|
|
index_shift = 0;
|
|
pixel += 3;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 16 :
|
|
if (image->byte_order == LSBFirst) {
|
|
// Little-endian...
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel += 2) {
|
|
i = (pixel[1] << 8) | pixel[0];
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
} else {
|
|
// Big-endian...
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel += 2) {
|
|
i = (pixel[0] << 8) | pixel[1];
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 24 :
|
|
if (image->byte_order == LSBFirst) {
|
|
// Little-endian...
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel += 3) {
|
|
i = (((pixel[2] << 8) | pixel[1]) << 8) | pixel[0];
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
} else {
|
|
// Big-endian...
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel += 3) {
|
|
i = (((pixel[0] << 8) | pixel[1]) << 8) | pixel[2];
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 32 :
|
|
if (image->byte_order == LSBFirst) {
|
|
// Little-endian...
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel += 4) {
|
|
i = (((((pixel[3] << 8) | pixel[2]) << 8) | pixel[1]) << 8) | pixel[0];
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
} else {
|
|
// Big-endian...
|
|
for (x = image->width, line_ptr = line;
|
|
x > 0;
|
|
x --, line_ptr += d, pixel += 4) {
|
|
i = (((((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]) << 8) | pixel[3];
|
|
|
|
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
|
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
|
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Destroy the X image we've read and return the RGB(A) image...
|
|
XDestroyImage(image);
|
|
|
|
return p;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// End of "$Id$".
|
|
//
|