fltk/src/fl_read_image.cxx
Matthias Melcher e454f97acc Fixed Copyright to 2010.
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.3@7903 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
2010-11-28 21:06:39 +00:00

504 lines
15 KiB
C++

//
// "$Id$"
//
// X11 image reading routines for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2010 by Bill Spitzak and others.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
#include <FL/x.H>
#include <FL/Fl.H>
#include <FL/fl_draw.H>
#include "flstring.h"
#ifdef DEBUG
# include <stdio.h>
#endif // DEBUG
#ifdef WIN32
# include "fl_read_image_win32.cxx"
#elif defined(__APPLE__)
# include "fl_read_image_mac.cxx"
#else
# include <X11/Xutil.h>
# ifdef __sgi
# include <X11/extensions/readdisplay.h>
# else
# include <stdlib.h>
# endif // __sgi
// Defined in fl_color.cxx
extern uchar fl_redmask, fl_greenmask, fl_bluemask;
extern int fl_redshift, fl_greenshift, fl_blueshift, fl_extrashift;
//
// 'fl_subimage_offsets()' - Calculate subimage offsets for an axis
static inline int
fl_subimage_offsets(int a, int aw, int b, int bw, int &obw)
{
int off;
int ob;
if (b >= a) {
ob = b;
off = 0;
} else {
ob = a;
off = a - b;
}
bw -= off;
if (ob + bw <= a + aw) {
obw = bw;
} else {
obw = (a + aw) - ob;
}
return off;
}
// this handler will catch and ignore exceptions during XGetImage
// to avoid an application crash
static int xgetimageerrhandler(Display *display, XErrorEvent *error) {
return 0;
}
//
// 'fl_read_image()' - Read an image from the current window.
//
uchar * // O - Pixel buffer or NULL if failed
fl_read_image(uchar *p, // I - Pixel buffer or NULL to allocate
int X, // I - Left position
int Y, // I - Top position
int w, // I - Width of area to read
int h, // I - Height of area to read
int alpha) { // I - Alpha value for image (0 for none)
XImage *image; // Captured image
int i, maxindex; // Looping vars
int x, y; // Current X & Y in image
int d; // Depth of image
unsigned char *line, // Array to hold image row
*line_ptr; // Pointer to current line image
unsigned char *pixel; // Current color value
XColor colors[4096]; // Colors from the colormap...
unsigned char cvals[4096][3]; // Color values from the colormap...
unsigned index_mask,
index_shift,
red_mask,
red_shift,
green_mask,
green_shift,
blue_mask,
blue_shift;
//
// Under X11 we have the option of the XGetImage() interface or SGI's
// ReadDisplay extension which does all of the really hard work for
// us...
//
# ifdef __sgi
if (XReadDisplayQueryExtension(fl_display, &i, &i)) {
image = XReadDisplay(fl_display, fl_window, X, Y, w, h, 0, NULL);
} else
# else
image = 0;
# endif // __sgi
if (!image) {
// fetch absolute coordinates
int dx, dy, sx, sy, sw, sh;
Window child_win;
Fl_Window *win = fl_find(fl_window);
if (win) {
XTranslateCoordinates(fl_display, fl_window,
RootWindow(fl_display, fl_screen), X, Y, &dx, &dy, &child_win);
// screen dimensions
Fl::screen_xywh(sx, sy, sw, sh, fl_screen);
}
if (!win || (dx >= sx && dy >= sy && dx + w <= sw && dy + h <= sh)) {
// the image is fully contained, we can use the traditional method
// however, if the window is obscured etc. the function will still fail. Make sure we
// catch the error and continue, otherwise an exception will be thrown.
XErrorHandler old_handler = XSetErrorHandler(xgetimageerrhandler);
image = XGetImage(fl_display, fl_window, X, Y, w, h, AllPlanes, ZPixmap);
XSetErrorHandler(old_handler);
} else {
// image is crossing borders, determine visible region
int nw, nh, noffx, noffy;
noffx = fl_subimage_offsets(sx, sw, dx, w, nw);
noffy = fl_subimage_offsets(sy, sh, dy, h, nh);
if (nw <= 0 || nh <= 0) return 0;
// allocate the image
int bpp = fl_visual->depth + ((fl_visual->depth / 8) % 2) * 8;
char* buf = (char*)malloc(bpp / 8 * w * h);
image = XCreateImage(fl_display, fl_visual->visual,
fl_visual->depth, ZPixmap, 0, buf, w, h, bpp, 0);
if (!image) {
if (buf) free(buf);
return 0;
}
XErrorHandler old_handler = XSetErrorHandler(xgetimageerrhandler);
XImage *subimg = XGetSubImage(fl_display, fl_window, X + noffx, Y + noffy,
nw, nh, AllPlanes, ZPixmap, image, noffx, noffy);
XSetErrorHandler(old_handler);
if (!subimg) {
XDestroyImage(image);
return 0;
}
}
}
if (!image) return 0;
#ifdef DEBUG
printf("width = %d\n", image->width);
printf("height = %d\n", image->height);
printf("xoffset = %d\n", image->xoffset);
printf("format = %d\n", image->format);
printf("data = %p\n", image->data);
printf("byte_order = %d\n", image->byte_order);
printf("bitmap_unit = %d\n", image->bitmap_unit);
printf("bitmap_bit_order = %d\n", image->bitmap_bit_order);
printf("bitmap_pad = %d\n", image->bitmap_pad);
printf("depth = %d\n", image->depth);
printf("bytes_per_line = %d\n", image->bytes_per_line);
printf("bits_per_pixel = %d\n", image->bits_per_pixel);
printf("red_mask = %08x\n", image->red_mask);
printf("green_mask = %08x\n", image->green_mask);
printf("blue_mask = %08x\n", image->blue_mask);
printf("map_entries = %d\n", fl_visual->visual->map_entries);
#endif // DEBUG
d = alpha ? 4 : 3;
// Allocate the image data array as needed...
if (!p) p = new uchar[w * h * d];
// Initialize the default colors/alpha in the whole image...
memset(p, alpha, w * h * d);
// Check that we have valid mask/shift values...
if (!image->red_mask && image->bits_per_pixel > 12) {
// Greater than 12 bits must be TrueColor...
image->red_mask = fl_visual->visual->red_mask;
image->green_mask = fl_visual->visual->green_mask;
image->blue_mask = fl_visual->visual->blue_mask;
#ifdef DEBUG
puts("\n---- UPDATED ----");
printf("fl_redmask = %08x\n", fl_redmask);
printf("fl_redshift = %d\n", fl_redshift);
printf("fl_greenmask = %08x\n", fl_greenmask);
printf("fl_greenshift = %d\n", fl_greenshift);
printf("fl_bluemask = %08x\n", fl_bluemask);
printf("fl_blueshift = %d\n", fl_blueshift);
printf("red_mask = %08x\n", image->red_mask);
printf("green_mask = %08x\n", image->green_mask);
printf("blue_mask = %08x\n", image->blue_mask);
#endif // DEBUG
}
// Check if we have colormap image...
if (!image->red_mask) {
// Get the colormap entries for this window...
maxindex = fl_visual->visual->map_entries;
for (i = 0; i < maxindex; i ++) colors[i].pixel = i;
XQueryColors(fl_display, fl_colormap, colors, maxindex);
for (i = 0; i < maxindex; i ++) {
cvals[i][0] = colors[i].red >> 8;
cvals[i][1] = colors[i].green >> 8;
cvals[i][2] = colors[i].blue >> 8;
}
// Read the pixels and output an RGB image...
for (y = 0; y < image->height; y ++) {
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
line = p + y * w * d;
switch (image->bits_per_pixel) {
case 1 :
for (x = image->width, line_ptr = line, index_mask = 128;
x > 0;
x --, line_ptr += d) {
if (*pixel & index_mask) {
line_ptr[0] = cvals[1][0];
line_ptr[1] = cvals[1][1];
line_ptr[2] = cvals[1][2];
} else {
line_ptr[0] = cvals[0][0];
line_ptr[1] = cvals[0][1];
line_ptr[2] = cvals[0][2];
}
if (index_mask > 1) {
index_mask >>= 1;
} else {
index_mask = 128;
pixel ++;
}
}
break;
case 2 :
for (x = image->width, line_ptr = line, index_shift = 6;
x > 0;
x --, line_ptr += d) {
i = (*pixel >> index_shift) & 3;
line_ptr[0] = cvals[i][0];
line_ptr[1] = cvals[i][1];
line_ptr[2] = cvals[i][2];
if (index_shift > 0) {
index_mask >>= 2;
index_shift -= 2;
} else {
index_mask = 192;
index_shift = 6;
pixel ++;
}
}
break;
case 4 :
for (x = image->width, line_ptr = line, index_shift = 4;
x > 0;
x --, line_ptr += d) {
if (index_shift == 4) i = (*pixel >> 4) & 15;
else i = *pixel & 15;
line_ptr[0] = cvals[i][0];
line_ptr[1] = cvals[i][1];
line_ptr[2] = cvals[i][2];
if (index_shift > 0) {
index_shift = 0;
} else {
index_shift = 4;
pixel ++;
}
}
break;
case 8 :
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel ++) {
line_ptr[0] = cvals[*pixel][0];
line_ptr[1] = cvals[*pixel][1];
line_ptr[2] = cvals[*pixel][2];
}
break;
case 12 :
for (x = image->width, line_ptr = line, index_shift = 0;
x > 0;
x --, line_ptr += d) {
if (index_shift == 0) {
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
} else {
i = ((pixel[1] << 8) | pixel[2]) & 4095;
}
line_ptr[0] = cvals[i][0];
line_ptr[1] = cvals[i][1];
line_ptr[2] = cvals[i][2];
if (index_shift == 0) {
index_shift = 4;
} else {
index_shift = 0;
pixel += 3;
}
}
break;
}
}
} else {
// RGB(A) image, so figure out the shifts & masks...
red_mask = image->red_mask;
red_shift = 0;
while ((red_mask & 1) == 0) {
red_mask >>= 1;
red_shift ++;
}
green_mask = image->green_mask;
green_shift = 0;
while ((green_mask & 1) == 0) {
green_mask >>= 1;
green_shift ++;
}
blue_mask = image->blue_mask;
blue_shift = 0;
while ((blue_mask & 1) == 0) {
blue_mask >>= 1;
blue_shift ++;
}
// Read the pixels and output an RGB image...
for (y = 0; y < image->height; y ++) {
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
line = p + y * w * d;
switch (image->bits_per_pixel) {
case 8 :
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel ++) {
i = *pixel;
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
break;
case 12 :
for (x = image->width, line_ptr = line, index_shift = 0;
x > 0;
x --, line_ptr += d) {
if (index_shift == 0) {
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
} else {
i = ((pixel[1] << 8) | pixel[2]) & 4095;
}
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
if (index_shift == 0) {
index_shift = 4;
} else {
index_shift = 0;
pixel += 3;
}
}
break;
case 16 :
if (image->byte_order == LSBFirst) {
// Little-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 2) {
i = (pixel[1] << 8) | pixel[0];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
} else {
// Big-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 2) {
i = (pixel[0] << 8) | pixel[1];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
}
break;
case 24 :
if (image->byte_order == LSBFirst) {
// Little-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 3) {
i = (((pixel[2] << 8) | pixel[1]) << 8) | pixel[0];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
} else {
// Big-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 3) {
i = (((pixel[0] << 8) | pixel[1]) << 8) | pixel[2];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
}
break;
case 32 :
if (image->byte_order == LSBFirst) {
// Little-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 4) {
i = (((((pixel[3] << 8) | pixel[2]) << 8) | pixel[1]) << 8) | pixel[0];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
} else {
// Big-endian...
for (x = image->width, line_ptr = line;
x > 0;
x --, line_ptr += d, pixel += 4) {
i = (((((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]) << 8) | pixel[3];
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
}
}
break;
}
}
}
// Destroy the X image we've read and return the RGB(A) image...
XDestroyImage(image);
return p;
}
#endif
//
// End of "$Id$".
//