01e991840c
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.3-porting@11422 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
819 lines
33 KiB
C++
819 lines
33 KiB
C++
//
|
|
// "$Id$"
|
|
//
|
|
// Portable drawing function header file for the Fast Light Tool Kit (FLTK).
|
|
//
|
|
// Copyright 1998-2011 by Bill Spitzak and others.
|
|
//
|
|
// This library is free software. Distribution and use rights are outlined in
|
|
// the file "COPYING" which should have been included with this file. If this
|
|
// file is missing or damaged, see the license at:
|
|
//
|
|
// http://www.fltk.org/COPYING.php
|
|
//
|
|
// Please report all bugs and problems on the following page:
|
|
//
|
|
// http://www.fltk.org/str.php
|
|
//
|
|
|
|
/**
|
|
\file fl_draw.H
|
|
\brief utility header to pull drawing functions together
|
|
*/
|
|
|
|
#ifndef fl_draw_H
|
|
#define fl_draw_H
|
|
|
|
#include <FL/Enumerations.H> // for the color names
|
|
#include <FL/Fl_Graphics_Driver.H> // for fl_graphics_driver + Fl_Region
|
|
|
|
// Image class...
|
|
class Fl_Image;
|
|
class Fl_Window;
|
|
|
|
// Label flags...
|
|
FL_EXPORT extern char fl_draw_shortcut;
|
|
|
|
/** \addtogroup fl_attributes
|
|
@{
|
|
*/
|
|
|
|
// Colors:
|
|
/**
|
|
Sets the color for all subsequent drawing operations.
|
|
For colormapped displays, a color cell will be allocated out of
|
|
\p fl_colormap the first time you use a color. If the colormap fills up
|
|
then a least-squares algorithm is used to find the closest color.
|
|
If no valid graphical context (fl_gc) is available,
|
|
the foreground is not set for the current window.
|
|
\param[in] c color
|
|
*/
|
|
inline void fl_color(Fl_Color c) {fl_graphics_driver->color(c); } // select indexed color
|
|
/** for back compatibility - use fl_color(Fl_Color c) instead */
|
|
inline void fl_color(int c) {fl_color((Fl_Color)c);}
|
|
/**
|
|
Sets the color for all subsequent drawing operations.
|
|
The closest possible match to the RGB color is used.
|
|
The RGB color is used directly on TrueColor displays.
|
|
For colormap visuals the nearest index in the gray
|
|
ramp or color cube is used.
|
|
If no valid graphical context (fl_gc) is available,
|
|
the foreground is not set for the current window.
|
|
\param[in] r,g,b color components
|
|
*/
|
|
inline void fl_color(uchar r, uchar g, uchar b) {fl_graphics_driver->color(r,g,b); } // select actual color
|
|
/**
|
|
Returns the last fl_color() that was set.
|
|
This can be used for state save/restore.
|
|
*/
|
|
inline Fl_Color fl_color() {return fl_graphics_driver->color();}
|
|
/** @} */
|
|
|
|
/** \addtogroup fl_drawings
|
|
@{
|
|
*/
|
|
// clip:
|
|
/**
|
|
Intersects the current clip region with a rectangle and pushes this
|
|
new region onto the stack.
|
|
\param[in] x,y,w,h position and size
|
|
*/
|
|
inline void fl_push_clip(int x, int y, int w, int h) {fl_graphics_driver->push_clip(x,y,w,h); }
|
|
/**
|
|
Intersects the current clip region with a rectangle and pushes this
|
|
new region onto the stack (deprecated).
|
|
\param[in] x,y,w,h position and size
|
|
\deprecated
|
|
fl_clip(int, int, int, int) is deprecated and will be removed from future releases.
|
|
Please use fl_push_clip(int x, int y, int w, int h) instead.
|
|
*/
|
|
#define fl_clip fl_push_clip
|
|
/**
|
|
Pushes an empty clip region onto the stack so nothing will be clipped.
|
|
*/
|
|
inline void fl_push_no_clip() {fl_graphics_driver->push_no_clip(); }
|
|
/**
|
|
Restores the previous clip region.
|
|
|
|
You must call fl_pop_clip() once for every time you call fl_push_clip().
|
|
Unpredictable results may occur if the clip stack is not empty when
|
|
you return to FLTK.
|
|
*/
|
|
inline void fl_pop_clip() {fl_graphics_driver->pop_clip(); }
|
|
/**
|
|
Does the rectangle intersect the current clip region?
|
|
\param[in] x,y,w,h position and size of rectangle
|
|
\returns non-zero if any of the rectangle intersects the current clip
|
|
region. If this returns 0 you don't have to draw the object.
|
|
|
|
\note
|
|
Under X this returns 2 if the rectangle is partially clipped,
|
|
and 1 if it is entirely inside the clip region.
|
|
*/
|
|
inline int fl_not_clipped(int x, int y, int w, int h) {return fl_graphics_driver->not_clipped(x,y,w,h); }
|
|
/**
|
|
Intersects the rectangle with the current clip region and returns the
|
|
bounding box of the result.
|
|
|
|
Returns non-zero if the resulting rectangle is different to the original.
|
|
This can be used to limit the necessary drawing to a rectangle.
|
|
\p W and \p H are set to zero if the rectangle is completely outside the region.
|
|
\param[in] x,y,w,h position and size of rectangle
|
|
\param[out] X,Y,W,H position and size of resulting bounding box.
|
|
\returns Non-zero if the resulting rectangle is different to the original.
|
|
*/
|
|
inline int fl_clip_box(int x , int y, int w, int h, int& X, int& Y, int& W, int& H)
|
|
{return fl_graphics_driver->clip_box(x,y,w,h,X,Y,W,H); }
|
|
/** Undoes any clobbering of clip done by your program */
|
|
inline void fl_restore_clip() { fl_graphics_driver->restore_clip(); }
|
|
/**
|
|
Replaces the top of the clipping stack with a clipping region of any shape.
|
|
|
|
Fl_Region is an operating system specific type.
|
|
\param[in] r clipping region
|
|
*/
|
|
inline void fl_clip_region(Fl_Region r) { fl_graphics_driver->clip_region(r); }
|
|
/**
|
|
Returns the current clipping region.
|
|
*/
|
|
inline Fl_Region fl_clip_region() { return fl_graphics_driver->clip_region(); }
|
|
|
|
|
|
// points:
|
|
/**
|
|
Draws a single pixel at the given coordinates
|
|
*/
|
|
inline void fl_point(int x, int y) { fl_graphics_driver->point(x,y); }
|
|
|
|
// line type:
|
|
/**
|
|
Sets how to draw lines (the "pen").
|
|
If you change this it is your responsibility to set it back to the default
|
|
using \c fl_line_style(0).
|
|
|
|
\param[in] style A bitmask which is a bitwise-OR of a line style, a cap
|
|
style, and a join style. If you don't specify a dash type you
|
|
will get a solid line. If you don't specify a cap or join type
|
|
you will get a system-defined default of whatever value is
|
|
fastest.
|
|
\param[in] width The thickness of the lines in pixels. Zero results in the
|
|
system defined default, which on both X and Windows is somewhat
|
|
different and nicer than 1.
|
|
\param[in] dashes A pointer to an array of dash lengths, measured in pixels.
|
|
The first location is how long to draw a solid portion, the next
|
|
is how long to draw the gap, then the solid, etc. It is terminated
|
|
with a zero-length entry. A \c NULL pointer or a zero-length
|
|
array results in a solid line. Odd array sizes are not supported
|
|
and result in undefined behavior.
|
|
|
|
\note Because of how line styles are implemented on Win32 systems,
|
|
you \e must set the line style \e after setting the drawing
|
|
color. If you set the color after the line style you will lose
|
|
the line style settings.
|
|
\note The \p dashes array does not work under Windows 95, 98 or Me,
|
|
since those operating systems do not support complex line styles.
|
|
*/
|
|
inline void fl_line_style(int style, int width=0, char* dashes=0) {fl_graphics_driver->line_style(style,width,dashes); }
|
|
enum {
|
|
FL_SOLID = 0, ///< line style: <tt>___________</tt>
|
|
FL_DASH = 1, ///< line style: <tt>_ _ _ _ _ _</tt>
|
|
FL_DOT = 2, ///< line style: <tt>. . . . . .</tt>
|
|
FL_DASHDOT = 3, ///< line style: <tt>_ . _ . _ .</tt>
|
|
FL_DASHDOTDOT = 4, ///< line style: <tt>_ . . _ . .</tt>
|
|
|
|
FL_CAP_FLAT = 0x100, ///< cap style: end is flat
|
|
FL_CAP_ROUND = 0x200, ///< cap style: end is round
|
|
FL_CAP_SQUARE = 0x300, ///< cap style: end wraps end point
|
|
|
|
FL_JOIN_MITER = 0x1000, ///< join style: line join extends to a point
|
|
FL_JOIN_ROUND = 0x2000, ///< join style: line join is rounded
|
|
FL_JOIN_BEVEL = 0x3000 ///< join style: line join is tidied
|
|
};
|
|
|
|
// rectangles tweaked to exactly fill the pixel rectangle:
|
|
|
|
/**
|
|
Draws a 1-pixel border \e inside the given bounding box.
|
|
This function is meant for quick drawing of simple boxes. The behavior is
|
|
undefined for line widths that are not 1.
|
|
*/
|
|
inline void fl_rect(int x, int y, int w, int h) { fl_graphics_driver->rect(x,y,w,h); }
|
|
|
|
/**
|
|
Draw a dotted rectangle, used to indicate keyboard focus on a widget.
|
|
*/
|
|
inline void fl_focus_rect(int x, int y, int w, int h) { fl_graphics_driver->focus_rect(x, y, w, h); }
|
|
/** Draws with passed color a 1-pixel border \e inside the given bounding box */
|
|
inline void fl_rect(int x, int y, int w, int h, Fl_Color c) {fl_color(c); fl_rect(x,y,w,h);}
|
|
/** Colors with current color a rectangle that exactly fills the given bounding box */
|
|
inline void fl_rectf(int x, int y, int w, int h) { fl_graphics_driver->rectf(x,y,w,h); }
|
|
/** Colors with passed color a rectangle that exactly fills the given bounding box */
|
|
inline void fl_rectf(int x, int y, int w, int h, Fl_Color c) {fl_color(c); fl_rectf(x,y,w,h);}
|
|
|
|
/**
|
|
Colors a rectangle with "exactly" the passed <tt>r,g,b</tt> color.
|
|
On screens with less than 24 bits of color this is done by drawing a
|
|
solid-colored block using fl_draw_image() so that the correct color
|
|
shade is produced.
|
|
*/
|
|
/* note: doxygen comment here to avoid triplication in os-speciic files */
|
|
FL_EXPORT void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b);
|
|
|
|
// line segments:
|
|
/**
|
|
Draws a line from (x,y) to (x1,y1)
|
|
*/
|
|
inline void fl_line(int x, int y, int x1, int y1) {fl_graphics_driver->line(x,y,x1,y1); }
|
|
/**
|
|
Draws a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2)
|
|
*/
|
|
inline void fl_line(int x, int y, int x1, int y1, int x2, int y2) {fl_graphics_driver->line(x,y,x1,y1,x2,y2); }
|
|
|
|
// closed line segments:
|
|
/**
|
|
Outlines a 3-sided polygon with lines
|
|
*/
|
|
inline void fl_loop(int x, int y, int x1, int y1, int x2, int y2) {fl_graphics_driver->loop(x,y,x1,y1,x2,y2); }
|
|
/**
|
|
Outlines a 4-sided polygon with lines
|
|
*/
|
|
inline void fl_loop(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
|
|
{fl_graphics_driver->loop(x,y,x1,y1,x2,y2,x3,y3); }
|
|
|
|
// filled polygons
|
|
/**
|
|
Fills a 3-sided polygon. The polygon must be convex.
|
|
*/
|
|
inline void fl_polygon(int x, int y, int x1, int y1, int x2, int y2) {fl_graphics_driver->polygon(x,y,x1,y1,x2,y2); }
|
|
/**
|
|
Fills a 4-sided polygon. The polygon must be convex.
|
|
*/
|
|
inline void fl_polygon(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)
|
|
{ fl_graphics_driver->polygon(x,y,x1,y1,x2,y2,x3,y3); }
|
|
|
|
// draw rectilinear lines, horizontal segment first:
|
|
/**
|
|
Draws a horizontal line from (x,y) to (x1,y)
|
|
*/
|
|
inline void fl_xyline(int x, int y, int x1) {fl_graphics_driver->xyline(x,y,x1);}
|
|
/**
|
|
Draws a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2)
|
|
*/
|
|
inline void fl_xyline(int x, int y, int x1, int y2) {fl_graphics_driver->xyline(x,y,x1,y2);}
|
|
/**
|
|
Draws a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2)
|
|
and then another horizontal from (x1,y2) to (x3,y2)
|
|
*/
|
|
inline void fl_xyline(int x, int y, int x1, int y2, int x3) {fl_graphics_driver->xyline(x,y,x1,y2,x3);}
|
|
|
|
// draw rectilinear lines, vertical segment first:
|
|
/**
|
|
Draws a vertical line from (x,y) to (x,y1)
|
|
*/
|
|
inline void fl_yxline(int x, int y, int y1) {fl_graphics_driver->yxline(x,y,y1);}
|
|
/**
|
|
Draws a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1)
|
|
*/
|
|
inline void fl_yxline(int x, int y, int y1, int x2) {fl_graphics_driver->yxline(x,y,y1,x2);}
|
|
/**
|
|
Draws a vertical line from (x,y) to (x,y1) then a horizontal from (x,y1)
|
|
to (x2,y1), then another vertical from (x2,y1) to (x2,y3)
|
|
*/
|
|
inline void fl_yxline(int x, int y, int y1, int x2, int y3) {fl_graphics_driver->yxline(x,y,y1,x2,y3);}
|
|
|
|
// circular lines and pie slices (code in fl_arci.C):
|
|
/**
|
|
Draw ellipse sections using integer coordinates.
|
|
|
|
These functions match the rather limited circle drawing code provided by X
|
|
and WIN32. The advantage over using fl_arc with floating point coordinates
|
|
is that they are faster because they often use the hardware, and they draw
|
|
much nicer small circles, since the small sizes are often hard-coded bitmaps.
|
|
|
|
If a complete circle is drawn it will fit inside the passed bounding box.
|
|
The two angles are measured in degrees counter-clockwise from 3 o'clock and
|
|
are the starting and ending angle of the arc, \p a2 must be greater or equal
|
|
to \p a1.
|
|
|
|
fl_arc() draws a series of lines to approximate the arc. Notice that the
|
|
integer version of fl_arc() has a different number of arguments than the
|
|
double version fl_arc(double x, double y, double r, double start, double end)
|
|
|
|
\param[in] x,y,w,h bounding box of complete circle
|
|
\param[in] a1,a2 start and end angles of arc measured in degrees
|
|
counter-clockwise from 3 o'clock. \p a2 must be greater
|
|
than or equal to \p a1.
|
|
*/
|
|
inline void fl_arc(int x, int y, int w, int h, double a1, double a2) {fl_graphics_driver->arc(x,y,w,h,a1,a2); }
|
|
/**
|
|
Draw filled ellipse sections using integer coordinates.
|
|
|
|
Like fl_arc(), but fl_pie() draws a filled-in pie slice.
|
|
This slice may extend outside the line drawn by fl_arc();
|
|
to avoid this use w - 1 and h - 1.
|
|
|
|
\param[in] x,y,w,h bounding box of complete circle
|
|
\param[in] a1,a2 start and end angles of arc measured in degrees
|
|
counter-clockwise from 3 o'clock. \p a2 must be greater
|
|
than or equal to \p a1.
|
|
*/
|
|
inline void fl_pie(int x, int y, int w, int h, double a1, double a2) {fl_graphics_driver->pie(x,y,w,h,a1,a2); }
|
|
/** fl_chord declaration is a place holder - the function does not yet exist */
|
|
FL_EXPORT void fl_chord(int x, int y, int w, int h, double a1, double a2); // nyi
|
|
|
|
// scalable drawing code (code in fl_vertex.C and fl_arc.C):
|
|
/**
|
|
Saves the current transformation matrix on the stack.
|
|
The maximum depth of the stack is 32.
|
|
*/
|
|
inline void fl_push_matrix() { fl_graphics_driver->push_matrix(); }
|
|
/**
|
|
Restores the current transformation matrix from the stack.
|
|
*/
|
|
inline void fl_pop_matrix() { fl_graphics_driver->pop_matrix(); }
|
|
/**
|
|
Concatenates scaling transformation onto the current one.
|
|
\param[in] x,y scale factors in x-direction and y-direction
|
|
*/
|
|
inline void fl_scale(double x, double y) { fl_graphics_driver->scale(x, y); }
|
|
/**
|
|
Concatenates scaling transformation onto the current one.
|
|
\param[in] x scale factor in both x-direction and y-direction
|
|
*/
|
|
inline void fl_scale(double x) { fl_graphics_driver->scale(x, x); }
|
|
/**
|
|
Concatenates translation transformation onto the current one.
|
|
\param[in] x,y translation factor in x-direction and y-direction
|
|
*/
|
|
inline void fl_translate(double x, double y) { fl_graphics_driver->translate(x, y); }
|
|
/**
|
|
Concatenates rotation transformation onto the current one.
|
|
\param[in] d - rotation angle, counter-clockwise in degrees (not radians)
|
|
*/
|
|
inline void fl_rotate(double d) { fl_graphics_driver->rotate(d); }
|
|
/**
|
|
Concatenates another transformation onto the current one.
|
|
|
|
\param[in] a,b,c,d,x,y transformation matrix elements such that
|
|
<tt> X' = aX + cY + x </tt> and <tt> Y' = bX +dY + y </tt>
|
|
*/
|
|
inline void fl_mult_matrix(double a, double b, double c, double d, double x,double y)
|
|
{ fl_graphics_driver->mult_matrix(a, b, c, d, x, y); }
|
|
/**
|
|
Starts drawing a list of points. Points are added to the list with fl_vertex()
|
|
*/
|
|
inline void fl_begin_points() {fl_graphics_driver->begin_points(); }
|
|
/**
|
|
Starts drawing a list of lines.
|
|
*/
|
|
inline void fl_begin_line() {fl_graphics_driver->begin_line(); }
|
|
/**
|
|
Starts drawing a closed sequence of lines.
|
|
*/
|
|
inline void fl_begin_loop() {fl_graphics_driver->begin_loop(); }
|
|
/**
|
|
Starts drawing a convex filled polygon.
|
|
*/
|
|
inline void fl_begin_polygon() {fl_graphics_driver->begin_polygon(); }
|
|
/**
|
|
Adds a single vertex to the current path.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline void fl_vertex(double x, double y) {fl_graphics_driver->vertex(x,y); }
|
|
/**
|
|
Adds a series of points on a Bezier curve to the path.
|
|
The curve ends (and two of the points) are at X0,Y0 and X3,Y3.
|
|
\param[in] X0,Y0 curve start point
|
|
\param[in] X1,Y1 curve control point
|
|
\param[in] X2,Y2 curve control point
|
|
\param[in] X3,Y3 curve end point
|
|
*/
|
|
inline void fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3)
|
|
{fl_graphics_driver->curve(X0,Y0,X1,Y1,X2,Y2,X3,Y3); }
|
|
/**
|
|
Adds a series of points to the current path on the arc of a circle.
|
|
You can get elliptical paths by using scale and rotate before calling fl_arc().
|
|
\param[in] x,y,r center and radius of circular arc
|
|
\param[in] start,end angles of start and end of arc measured in degrees
|
|
counter-clockwise from 3 o'clock. If \p end is less than \p start
|
|
then it draws the arc in a clockwise direction.
|
|
|
|
Examples:
|
|
\code
|
|
// Draw an arc of points
|
|
fl_begin_points();
|
|
fl_arc(100.0, 100.0, 50.0, 0.0, 180.0);
|
|
fl_end_points();
|
|
|
|
// Draw arc with a line
|
|
fl_begin_line();
|
|
fl_arc(200.0, 100.0, 50.0, 0.0, 180.0);
|
|
fl_end_line();
|
|
|
|
// Draw filled arc
|
|
fl_begin_polygon();
|
|
fl_arc(300.0, 100.0, 50.0, 0.0, 180.0);
|
|
fl_end_polygon();
|
|
\endcode
|
|
*/
|
|
inline void fl_arc(double x, double y, double r, double start, double end) {fl_graphics_driver->arc(x,y,r,start,end); }
|
|
/**
|
|
fl_circle() is equivalent to fl_arc(x,y,r,0,360), but may be faster.
|
|
|
|
It must be the \e only thing in the path: if you want a circle as part of
|
|
a complex polygon you must use fl_arc()
|
|
\param[in] x,y,r center and radius of circle
|
|
*/
|
|
inline void fl_circle(double x, double y, double r) {fl_graphics_driver->circle(x,y,r); }
|
|
/**
|
|
Ends list of points, and draws.
|
|
*/
|
|
inline void fl_end_points() {fl_graphics_driver->end_points(); }
|
|
/**
|
|
Ends list of lines, and draws.
|
|
*/
|
|
inline void fl_end_line() {fl_graphics_driver->end_line(); }
|
|
/**
|
|
Ends closed sequence of lines, and draws.
|
|
*/
|
|
inline void fl_end_loop() {fl_graphics_driver->end_loop(); }
|
|
/**
|
|
Ends convex filled polygon, and draws.
|
|
*/
|
|
inline void fl_end_polygon() {fl_graphics_driver->end_polygon(); }
|
|
/**
|
|
Starts drawing a complex filled polygon.
|
|
|
|
The polygon may be concave, may have holes in it, or may be several
|
|
disconnected pieces. Call fl_gap() to separate loops of the path.
|
|
|
|
To outline the polygon, use fl_begin_loop() and replace each fl_gap()
|
|
with fl_end_loop();fl_begin_loop() pairs.
|
|
|
|
\note
|
|
For portability, you should only draw polygons that appear the same
|
|
whether "even/odd" or "non-zero" winding rules are used to fill them.
|
|
Holes should be drawn in the opposite direction to the outside loop.
|
|
*/
|
|
inline void fl_begin_complex_polygon() {fl_graphics_driver->begin_complex_polygon(); }
|
|
/**
|
|
Call fl_gap() to separate loops of the path.
|
|
|
|
It is unnecessary but harmless to call fl_gap() before the first vertex,
|
|
after the last vertex, or several times in a row.
|
|
*/
|
|
inline void fl_gap() {fl_graphics_driver->gap(); }
|
|
/**
|
|
Ends complex filled polygon, and draws.
|
|
*/
|
|
inline void fl_end_complex_polygon() {fl_graphics_driver->end_complex_polygon(); }
|
|
// get and use transformed positions:
|
|
/**
|
|
Transforms coordinate using the current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_x(double x, double y) {return fl_graphics_driver->transform_x(x, y); }
|
|
/**
|
|
Transforms coordinate using the current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_y(double x, double y) {return fl_graphics_driver->transform_y(x, y); }
|
|
/**
|
|
Transforms distance using current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_dx(double x, double y) {return fl_graphics_driver->transform_dx(x, y); }
|
|
/**
|
|
Transforms distance using current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_dy(double x, double y) {return fl_graphics_driver->transform_dy(x, y); }
|
|
/**
|
|
Adds coordinate pair to the vertex list without further transformations.
|
|
\param[in] xf,yf transformed coordinate
|
|
*/
|
|
inline void fl_transformed_vertex(double xf, double yf) {fl_graphics_driver->transformed_vertex(xf,yf); }
|
|
|
|
/** Copy a rectangular area of the given offscreen buffer into the current drawing destination.
|
|
\param x,y position where to draw the copied rectangle
|
|
\param w,h size of the copied rectangle
|
|
\param pixmap offscreen buffer containing the rectangle to copy
|
|
\param srcx,srcy origin in offscreen buffer of rectangle to copy
|
|
*/
|
|
inline void fl_copy_offscreen(int x, int y, int w, int h, Fl_Offscreen pixmap, int srcx, int srcy) {
|
|
fl_graphics_driver->copy_offscreen(x, y, w, h, pixmap, srcx, srcy);
|
|
}
|
|
|
|
FL_EXPORT Fl_Offscreen fl_create_offscreen(int w, int h);
|
|
FL_EXPORT void fl_begin_offscreen(Fl_Offscreen b);
|
|
FL_EXPORT void fl_end_offscreen(void);
|
|
FL_EXPORT void fl_delete_offscreen(Fl_Offscreen bitmap);
|
|
|
|
/** @} */
|
|
|
|
/** \addtogroup fl_attributes
|
|
@{ */
|
|
/* NOTE: doxygen comments here to avoid triplication in os-specific sources */
|
|
|
|
// Fonts:
|
|
/**
|
|
Sets the current font, which is then used in various drawing routines.
|
|
You may call this outside a draw context if necessary to call fl_width(),
|
|
but on X this will open the display.
|
|
|
|
The font is identified by a \p face and a \p size.
|
|
The size of the font is measured in pixels and not "points".
|
|
Lines should be spaced \p size pixels apart or more.
|
|
*/
|
|
inline void fl_font(Fl_Font face, Fl_Fontsize fsize) { fl_graphics_driver->font(face,fsize); }
|
|
|
|
/**
|
|
Returns the \p face set by the most recent call to fl_font().
|
|
This can be used to save/restore the font.
|
|
*/
|
|
inline Fl_Font fl_font() {return fl_graphics_driver->font();}
|
|
/**
|
|
Returns the \p size set by the most recent call to fl_font().
|
|
This can be used to save/restore the font.
|
|
*/
|
|
inline Fl_Fontsize fl_size() {return fl_graphics_driver->size();}
|
|
|
|
// information you can get about the current font:
|
|
/**
|
|
Returns the recommended minimum line spacing for the current font.
|
|
You can also use the value of \p size passed to fl_font()
|
|
*/
|
|
inline int fl_height() {return fl_graphics_driver->height();}
|
|
FL_EXPORT int fl_height(int font, int size);
|
|
/**
|
|
Returns the recommended distance above the bottom of a fl_height() tall box to
|
|
draw the text at so it looks centered vertically in that box.
|
|
*/
|
|
inline int fl_descent() {return fl_graphics_driver->descent();}
|
|
/** Returns the typographical width of a nul-terminated string
|
|
using the current font face and size. */
|
|
FL_EXPORT double fl_width(const char* txt);
|
|
/** Returns the typographical width of a sequence of \p n characters
|
|
using the current font face and size. */
|
|
inline double fl_width(const char* txt, int n) {return fl_graphics_driver->width(txt, n);}
|
|
/** Returns the typographical width of a single character
|
|
using the current font face and size.
|
|
\note if a valid fl_gc is NOT found then it uses the first window gc,
|
|
or the screen gc if no fltk window is available when called. */
|
|
inline double fl_width(unsigned int c) {return fl_graphics_driver->width(c);}
|
|
/** Determines the minimum pixel dimensions of a nul-terminated string.
|
|
|
|
Usage: given a string "txt" drawn using fl_draw(txt, x, y) you would determine
|
|
its pixel extents on the display using fl_text_extents(txt, dx, dy, wo, ho)
|
|
such that a bounding box that exactly fits around the text could be drawn with
|
|
fl_rect(x+dx, y+dy, wo, ho). Note the dx, dy values hold the offset of the first
|
|
"colored in" pixel of the string, from the draw origin.
|
|
|
|
No FLTK symbol expansion will be performed.
|
|
*/
|
|
FL_EXPORT void fl_text_extents(const char*, int& dx, int& dy, int& w, int& h); // NO fltk symbol expansion will be performed
|
|
/** Determines the minimum pixel dimensions of a sequence of \p n characters.
|
|
\see fl_text_extents(const char*, int& dx, int& dy, int& w, int& h)
|
|
*/
|
|
inline void fl_text_extents(const char *t, int n, int& dx, int& dy, int& w, int& h)
|
|
{fl_graphics_driver->text_extents(t, n, dx, dy, w, h);}
|
|
|
|
// font encoding:
|
|
// Note: doxygen comments here to avoid duplication for os-sepecific cases
|
|
/**
|
|
Converts text from Windows/X11 latin1 character set to local encoding.
|
|
\param[in] t character string (latin1 encoding)
|
|
\param[in] n optional number of characters to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_latin1_to_local(const char *t, int n=-1);
|
|
/**
|
|
Converts text from local encoding to Windowx/X11 latin1 character set.
|
|
\param[in] t character string (local encoding)
|
|
\param[in] n optional number of characters to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_local_to_latin1(const char *t, int n=-1);
|
|
/**
|
|
Converts text from Mac Roman character set to local encoding.
|
|
\param[in] t character string (Mac Roman encoding)
|
|
\param[in] n optional number of characters to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_mac_roman_to_local(const char *t, int n=-1);
|
|
/**
|
|
Converts text from local encoding to Mac Roman character set.
|
|
\param[in] t character string (local encoding)
|
|
\param[in] n optional number of characters to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_local_to_mac_roman(const char *t, int n=-1);
|
|
/** @} */
|
|
|
|
/** \addtogroup fl_drawings
|
|
@{ */
|
|
/**
|
|
Draws a nul-terminated UTF-8 string starting at the given \p x, \p y location.
|
|
|
|
Text is aligned to the left and to the baseline of the font.
|
|
To align to the bottom, subtract fl_descent() from \p y.
|
|
To align to the top, subtract fl_descent() and add fl_height().
|
|
This version of fl_draw provides direct access to the text drawing
|
|
function of the underlying OS. It does not apply any special handling
|
|
to control characters.
|
|
*/
|
|
FL_EXPORT void fl_draw(const char* str, int x, int y);
|
|
/**
|
|
Draws a nul-terminated UTF-8 string starting at the given \p x, \p y location and
|
|
rotating \p angle degrees counter-clockwise.
|
|
This version of fl_draw provides direct access to the text drawing
|
|
function of the underlying OS and is supported by Xft, Win32 and MacOS
|
|
fltk subsets.
|
|
*/
|
|
FL_EXPORT void fl_draw(int angle, const char* str, int x, int y);
|
|
/**
|
|
Draws starting at the given \p x, \p y location a UTF-8 string of length \p n bytes.
|
|
*/
|
|
inline void fl_draw(const char* str, int n, int x, int y) {fl_graphics_driver->draw(str,n,x,y); }
|
|
/**
|
|
Draws at the given \p x, \p y location a UTF-8 string of length \p n bytes
|
|
rotating \p angle degrees counter-clockwise.
|
|
*/
|
|
inline void fl_draw(int angle, const char* str, int n, int x, int y) {fl_graphics_driver->draw(angle,str,n,x,y); }
|
|
/**
|
|
Draws a UTF-8 string of length \p n bytes right to left starting at the given \p x, \p y location.
|
|
*/
|
|
inline void fl_rtl_draw(const char* str, int n, int x, int y) {fl_graphics_driver->rtl_draw(str,n,x,y); }
|
|
FL_EXPORT void fl_measure(const char* str, int& x, int& y,
|
|
int draw_symbols = 1);
|
|
FL_EXPORT void fl_draw(const char* str, int x, int y, int w, int h,
|
|
Fl_Align align,
|
|
Fl_Image* img=0, int draw_symbols = 1);
|
|
FL_EXPORT void fl_draw(const char* str, int x, int y, int w, int h,
|
|
Fl_Align align,
|
|
void (*callthis)(const char *,int,int,int),
|
|
Fl_Image* img=0, int draw_symbols = 1);
|
|
|
|
// boxtypes:
|
|
FL_EXPORT void fl_frame(const char* s, int x, int y, int w, int h);
|
|
FL_EXPORT void fl_frame2(const char* s, int x, int y, int w, int h);
|
|
FL_EXPORT void fl_draw_box(Fl_Boxtype, int x, int y, int w, int h, Fl_Color);
|
|
|
|
// images:
|
|
|
|
/**
|
|
Draws an 8-bit per color RGB or luminance image.
|
|
\param[in] buf points at the "r" data of the top-left pixel.
|
|
Color data must be in <tt>r,g,b</tt> order.
|
|
Luminance data is only one <tt>gray</tt> byte.
|
|
\param[in] X,Y position where to put top-left corner of image
|
|
\param[in] W,H size of the image
|
|
\param[in] D delta to add to the pointer between pixels. It may be
|
|
any value greater than or equal to 1, or it can be
|
|
negative to flip the image horizontally
|
|
\param[in] L delta to add to the pointer between lines (if 0 is
|
|
passed it uses \p W * \p D), and may be larger than
|
|
\p W * \p D to crop data, or negative to flip the
|
|
image vertically
|
|
|
|
It is highly recommended that you put the following code before the
|
|
first <tt>show()</tt> of \e any window in your program to get rid of
|
|
the dithering if possible:
|
|
\code
|
|
Fl::visual(FL_RGB);
|
|
\endcode
|
|
|
|
Gray scale (1-channel) images may be drawn. This is done if
|
|
<tt>abs(D)</tt> is less than 3, or by calling fl_draw_image_mono().
|
|
Only one 8-bit sample is used for each pixel, and on screens with
|
|
different numbers of bits for red, green, and blue only gray colors
|
|
are used. Setting \p D greater than 1 will let you display one channel
|
|
of a color image.
|
|
|
|
\par Note:
|
|
The X version does not support all possible visuals. If FLTK cannot
|
|
draw the image in the current visual it will abort. FLTK supports
|
|
any visual of 8 bits or less, and all common TrueColor visuals up
|
|
to 32 bits.
|
|
*/
|
|
inline void fl_draw_image(const uchar* buf, int X,int Y,int W,int H, int D=3, int L=0)
|
|
{ fl_graphics_driver->draw_image(buf, X, Y, W, H, D, L); }
|
|
|
|
/**
|
|
Draws a gray-scale (1 channel) image.
|
|
\see fl_draw_image(const uchar* buf, int X,int Y,int W,int H, int D, int L)
|
|
*/
|
|
inline void fl_draw_image_mono(const uchar* buf, int X,int Y,int W,int H, int D=1, int L=0)
|
|
{ fl_graphics_driver->draw_image_mono(buf, X, Y, W, H, D, L); }
|
|
|
|
/**
|
|
Draws an image using a callback function to generate image data.
|
|
|
|
You can generate the image as it is being drawn, or do arbitrary
|
|
decompression of stored data, provided it can be decompressed to
|
|
individual scan lines easily.
|
|
\param[in] cb callback function to generate scan line data
|
|
\param[in] data user data passed to callback function
|
|
\param[in] X,Y screen position of top left pixel
|
|
\param[in] W,H image width and height
|
|
\param[in] D data size in bytes (must be greater than 0)
|
|
\see fl_draw_image(const uchar* buf, int X,int Y,int W,int H, int D, int L)
|
|
|
|
The callback function \p cb is called with the <tt>void*</tt> \p data
|
|
user data pointer to allow access to a structure of information about
|
|
the image, and the \p x, \p y, and \p w of the scan line desired from
|
|
the image. 0,0 is the upper-left corner of the image, not \p x, \p y.
|
|
A pointer to a buffer to put the data into is passed. You must copy
|
|
\p w pixels from scanline \p y, starting at pixel \p x, to this buffer.
|
|
|
|
Due to cropping, less than the whole image may be requested. So \p x
|
|
may be greater than zero, the first \p y may be greater than zero,
|
|
and \p w may be less than \p W. The buffer is long enough to store
|
|
the entire \p W * \p D pixels, this is for convenience with some
|
|
decompression schemes where you must decompress the entire line at
|
|
once: decompress it into the buffer, and then if \p x is not zero,
|
|
copy the data over so the \p x'th pixel is at the start of the buffer.
|
|
|
|
You can assume the \p y's will be consecutive, except the first one
|
|
may be greater than zero.
|
|
|
|
If \p D is 4 or more, you must fill in the unused bytes with zero.
|
|
*/
|
|
inline void fl_draw_image(Fl_Draw_Image_Cb cb, void* data, int X,int Y,int W,int H, int D=3)
|
|
{ fl_graphics_driver->draw_image(cb, data, X, Y, W, H, D); }
|
|
|
|
/**
|
|
Draws a gray-scale image using a callback function to generate image data.
|
|
\see fl_draw_image(Fl_Draw_Image_Cb cb, void* data, int X,int Y,int W,int H, int D)
|
|
*/
|
|
inline void fl_draw_image_mono(Fl_Draw_Image_Cb cb, void* data, int X,int Y,int W,int H, int D=1)
|
|
{ fl_graphics_driver->draw_image_mono(cb, data, X, Y, W, H, D); }
|
|
|
|
/**
|
|
Checks whether platform supports true alpha blending for RGBA images.
|
|
\returns 1 if true alpha blending supported by platform
|
|
\returns 0 not supported so FLTK will use screen door transparency
|
|
*/
|
|
inline char fl_can_do_alpha_blending() {return Fl_Display_Device::display_device()->driver()->can_do_alpha_blending();}
|
|
|
|
/**
|
|
Reads an RGB(A) image from the current window or off-screen buffer.
|
|
\param[in] p pixel buffer, or NULL to allocate one
|
|
\param[in] X,Y position of top-left of image to read
|
|
\param[in] W,H width and height of image to read
|
|
\param[in] alpha alpha value for image (0 for none)
|
|
\returns pointer to pixel buffer, or NULL if allocation failed.
|
|
|
|
The \p p argument points to a buffer that can hold the image and must
|
|
be at least \p W*H*3 bytes when reading RGB images, or \p W*H*4 bytes
|
|
when reading RGBA images. If NULL, fl_read_image() will create an
|
|
array of the proper size which can be freed using <tt>delete[]</tt>.
|
|
|
|
The \p alpha parameter controls whether an alpha channel is created
|
|
and the value that is placed in the alpha channel. If 0, no alpha
|
|
channel is generated.
|
|
*/
|
|
/* note: doxygen comment here to avoid triplication in os-speciic files */
|
|
FL_EXPORT uchar *fl_read_image(uchar *p,int X,int Y,int W,int H,int alpha=0);
|
|
|
|
// pixmaps:
|
|
FL_EXPORT int fl_draw_pixmap(/*const*/ char* const* data, int x,int y,Fl_Color=FL_GRAY);
|
|
FL_EXPORT int fl_draw_pixmap(const char* const* cdata, int x,int y,Fl_Color=FL_GRAY);
|
|
FL_EXPORT int fl_measure_pixmap(/*const*/ char* const* data, int &w, int &h);
|
|
FL_EXPORT int fl_measure_pixmap(const char* const* cdata, int &w, int &h);
|
|
|
|
// other:
|
|
FL_EXPORT void fl_scroll(int X, int Y, int W, int H, int dx, int dy,
|
|
void (*draw_area)(void*, int,int,int,int), void* data);
|
|
FL_EXPORT const char* fl_shortcut_label(unsigned int shortcut);
|
|
FL_EXPORT const char* fl_shortcut_label(unsigned int shortcut, const char **eom);
|
|
FL_EXPORT unsigned int fl_old_shortcut(const char* s);
|
|
FL_EXPORT void fl_overlay_rect(int x,int y,int w,int h);
|
|
FL_EXPORT void fl_overlay_clear();
|
|
FL_EXPORT void fl_cursor(Fl_Cursor);
|
|
FL_EXPORT void fl_cursor(Fl_Cursor, Fl_Color fg, Fl_Color bg=FL_WHITE);
|
|
FL_EXPORT const char* fl_expand_text(const char* from, char* buf, int maxbuf,
|
|
double maxw, int& n, double &width,
|
|
int wrap, int draw_symbols = 0);
|
|
|
|
// XIM:
|
|
/** \todo provide user documentation for fl_set_status function */
|
|
FL_EXPORT void fl_set_status(int X, int Y, int W, int H);
|
|
/** \todo provide user documentation for fl_set_spot function */
|
|
FL_EXPORT void fl_set_spot(int font, int size, int X, int Y, int W, int H, Fl_Window *win=0);
|
|
/** \todo provide user documentation for fl_reset_spot function*/
|
|
FL_EXPORT void fl_reset_spot(void);
|
|
|
|
|
|
|
|
// XForms symbols:
|
|
FL_EXPORT int fl_draw_symbol(const char* label,int x,int y,int w,int h, Fl_Color);
|
|
FL_EXPORT int fl_add_symbol(const char* name, void (*drawit)(Fl_Color), int scalable);
|
|
/** @} */
|
|
|
|
#endif
|
|
|
|
//
|
|
// End of "$Id$".
|
|
//
|