fltk/src/Fl_Tree_Item_Array.cxx

283 lines
9.0 KiB
C++

//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <FL/Fl_Tree_Item_Array.H>
#include <FL/Fl_Tree_Item.H>
//////////////////////
// Fl_Tree_Item_Array.cxx
//////////////////////
//
// Fl_Tree -- This file is part of the Fl_Tree widget for FLTK
// Copyright (C) 2009-2010 by Greg Ercolano.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// https://www.fltk.org/COPYING.php
//
// Please see the following page on how to report bugs and issues:
//
// https://www.fltk.org/bugs.php
//
/// Constructor; creates an empty array.
///
/// The optional 'chunksize' can be specified to optimize
/// memory allocation for potentially large arrays. Default chunksize is 10.
///
Fl_Tree_Item_Array::Fl_Tree_Item_Array(int new_chunksize) {
_items = 0;
_total = 0;
_size = 0;
_flags = 0;
_chunksize = new_chunksize;
}
/// Destructor. Calls each item's destructor, destroys internal _items array.
Fl_Tree_Item_Array::~Fl_Tree_Item_Array() {
clear();
}
/// Copy constructor. Makes new copy of array, with new instances of each item.
Fl_Tree_Item_Array::Fl_Tree_Item_Array(const Fl_Tree_Item_Array* o) {
_items = (Fl_Tree_Item**)malloc(o->_size * sizeof(Fl_Tree_Item*));
_total = 0;
_size = o->_size;
_chunksize = o->_chunksize;
_flags = o->_flags;
for ( int t=0; t<o->_total; t++ ) {
if ( _flags & MANAGE_ITEM ) {
_items[t] = new Fl_Tree_Item(o->_items[t]); // make new copy of item
++_total;
_items[t]->update_prev_next(t); // update uses _total's current value
} else {
_items[t] = o->_items[t]; // copy ptr only
++_total;
}
}
}
/// Clear the entire array.
///
/// Each item will be deleted (destructors will be called),
/// and the array will be cleared. total() will return 0.
///
void Fl_Tree_Item_Array::clear() {
if ( _items ) {
for ( int t=0; t<_total; t++ ) {
if ( _flags & MANAGE_ITEM )
{
delete _items[t];
_items[t] = 0;
}
}
free((void*)_items); _items = 0;
}
_total = _size = 0;
}
// Internal: Enlarge the items array.
//
// Adjusts size/items memory allocation as needed.
// Does NOT change total.
//
void Fl_Tree_Item_Array::enlarge(int count) {
int newtotal = _total + count; // new total
if ( newtotal >= _size ) { // more than we have allocated?
if ( (newtotal/150) > _chunksize ) _chunksize *= 10;
// Increase size of array
int newsize = _size + _chunksize;
Fl_Tree_Item **newitems = (Fl_Tree_Item**)malloc(newsize * sizeof(Fl_Tree_Item*));
if ( _items ) {
// Copy old array -> new, delete old
memmove(newitems, _items, _size * sizeof(Fl_Tree_Item*));
free((void*)_items); _items = 0;
}
// Adjust items/sizeitems
_items = newitems;
_size = newsize;
}
}
/// Insert an item at index position \p pos.
///
/// Handles enlarging array if needed, total increased by 1.
/// If \p pos \>= total(), the item is appended to the array.
/// If \p pos \< 0, the item is prepended (works like pos == 0).
///
void Fl_Tree_Item_Array::insert(int pos, Fl_Tree_Item *new_item) {
if (pos < 0)
pos = 0;
else if (pos > _total)
pos = _total;
enlarge(1);
// printf("*** POS=%d TOTAL-1=%d NITEMS=%d\n", pos, _total-1, (_total-pos));
if ( pos <= (_total - 1) ) { // need to move memory around?
int nitems = _total - pos;
memmove(&_items[pos+1], &_items[pos], sizeof(Fl_Tree_Item*) * nitems);
}
_items[pos] = new_item;
_total++;
if ( _flags & MANAGE_ITEM )
{
_items[pos]->update_prev_next(pos); // adjust item's prev/next and its neighbors
}
}
/// Add an item* to the end of the array.
///
/// Assumes the item was created with 'new', and will remain
/// allocated.. Fl_Tree_Item_Array will handle calling the
/// item's destructor when the array is cleared or the item remove()'ed.
///
void Fl_Tree_Item_Array::add(Fl_Tree_Item *val) {
insert(_total, val);
}
/// Replace the item at \p index with \p newitem.
///
/// Old item at index position will be destroyed,
/// and the new item will take it's place, and stitched into the linked list.
///
void Fl_Tree_Item_Array::replace(int index, Fl_Tree_Item *newitem) {
if ( _items[index] ) { // delete if non-zero
if ( _flags & MANAGE_ITEM )
// Destroy old item
delete _items[index];
}
_items[index] = newitem; // install new item
if ( _flags & MANAGE_ITEM )
{
// Restitch into linked list
_items[index]->update_prev_next(index);
}
}
/// Remove the item at \param[in] index from the array.
///
/// The item will be delete'd (if non-NULL), so its destructor will be called.
///
void Fl_Tree_Item_Array::remove(int index) {
if ( _items[index] ) { // delete if non-zero
if ( _flags & MANAGE_ITEM )
delete _items[index];
}
_items[index] = 0;
_total--;
for ( int i=index; i<_total; i++ ) { // reshuffle the array
_items[i] = _items[i+1];
}
if ( _flags & MANAGE_ITEM )
{
if ( index < _total ) { // removed item not last?
_items[index]->update_prev_next(index); // update next item's prev/next and neighbors
} else if ( ((index-1) >= 0) && // removed item IS last?
((index-1) < _total)) {
_items[index-1]->update_prev_next(index-1);// update prev item's prev/next and neighbors
}
}
}
/// Remove the item from the array.
///
/// \returns 0 if removed, or -1 if the item was not in the array.
///
int Fl_Tree_Item_Array::remove(Fl_Tree_Item *item) {
for ( int t=0; t<_total; t++ ) {
if ( item == _items[t] ) {
remove(t);
return(0);
}
}
return(-1);
}
/// Swap the two items at index positions \p ax and \p bx.
void Fl_Tree_Item_Array::swap(int ax, int bx) {
Fl_Tree_Item *asave = _items[ax];
_items[ax] = _items[bx];
_items[bx] = asave;
if ( _flags & MANAGE_ITEM )
{
// Adjust prev/next ptrs
_items[ax]->update_prev_next(ax);
_items[bx]->update_prev_next(bx);
}
}
/// Move item at 'from' to new position 'to' in the array.
/// Due to how the moving an item shuffles the array around,
/// a positional 'move' implies things that may not be obvious:
/// - When 'from' moved lower in tree, appears BELOW item that was at 'to'.
/// - When 'from' moved higher in tree, appears ABOVE item that was at 'to'.
///
/// \returns 0 on success, -1 on range error (e.g. if \p 'to' or \p 'from' out of range)
///
int Fl_Tree_Item_Array::move(int to, int from) {
if ( from == to ) return 0; // nop
if ( to<0 || to>=_total || from<0 || from>=_total ) return -1;
Fl_Tree_Item *item = _items[from];
// Remove item..
if ( from < to )
for ( int t=from; t<to && t<(_total+1); t++ )
_items[t] = _items[t+1];
else
for ( int t=from; t>to && t>0; t-- )
_items[t] = _items[t-1];
// Move to new position
_items[to] = item;
// Update all children
for ( int r=0; r<_total; r++ ) // XXX: excessive to do all children,
_items[r]->update_prev_next(r); // XXX: but avoids weird boundary issues
return 0;
}
/// Deparent item at \p 'pos' from our list of children.
/// Similar to a remove() without the destruction of the item.
/// This creates an orphaned item (still allocated, has no parent)
/// which soon after is typically reparented elsewhere.
///
/// \returns 0 on success, -1 on error (e.g. if \p 'pos' out of range)
///
int Fl_Tree_Item_Array::deparent(int pos) {
if ( pos>=_total || pos<0 ) return -1;
// Save item being deparented, and its two nearest siblings
Fl_Tree_Item *item = _items[pos];
Fl_Tree_Item *prev = item->prev_sibling();
Fl_Tree_Item *next = item->next_sibling();
// Remove from parent's list of children
_total -= 1;
for ( int t=pos; t<_total; t++ )
_items[t] = _items[t+1]; // delete, no destroy
// Now an orphan: remove association with old parent and siblings
item->update_prev_next(-1); // become an orphan
// Adjust bereaved siblings
if ( prev ) prev->update_prev_next(pos-1);
if ( next ) next->update_prev_next(pos);
return 0;
}
/// Reparent specified item as a child of ourself.
/// Typically 'newchild' was recently orphaned with deparent().
///
/// \returns 0 on success, -1 on error (e.g. if \p 'pos' out of range)
///
int Fl_Tree_Item_Array::reparent(Fl_Tree_Item *item, Fl_Tree_Item* newparent, int pos) {
if ( pos<0 || pos>_total ) return -1;
// Add item to new parent
enlarge(1);
_total += 1;
for ( int t=_total-1; t>pos; --t ) // shuffle array to make room for new entry
_items[t] = _items[t-1];
_items[pos] = item; // insert new entry
// Attach to new parent and siblings
_items[pos]->parent(newparent); // reparent (update_prev_next() needs this)
_items[pos]->update_prev_next(pos); // find new siblings
return 0;
}