fltk/FL/Fl_Window.H
Fabien Costantini d55dfeb5e9 Doxygen documentation. Fixed somes typos and also H4 remanent misplaced tags and comments.
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.3@6258 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
2008-09-15 17:46:42 +00:00

388 lines
15 KiB
C++

//
// "$Id$"
//
// Window header file for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2005 by Bill Spitzak and others.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
#ifndef Fl_Window_H
#define Fl_Window_H
#include "Fl_Group.H"
#define FL_WINDOW 0xF0 // all subclasses have type() >= this
#define FL_DOUBLE_WINDOW 0xF1
class Fl_X;
/**
This widget produces an actual window. This can either be a main
window, with a border and title and all the window management controls,
or a "subwindow" inside a window. This is controlled by whether or not
the window has a parent().
<P>Once you create a window, you usually add children Fl_Widget
's to it by using window-&gt;add(child) for each new widget. See Fl_Group for more information
on how to add and remove children. </P>
<P>There are several subclasses of Fl_Window that provide
double-buffering, overlay, menu, and OpenGL support. </P>
<P>The window's callback is done if the user tries to close a window
using the window manager and
Fl::modal() is zero or equal to the window. Fl_Window
has a default callback that calls Fl_Window::hide().
*/
class FL_EXPORT Fl_Window : public Fl_Group {
friend class Fl_X;
Fl_X *i; // points at the system-specific stuff
const char* iconlabel_;
const char* xclass_;
const void* icon_;
// size_range stuff:
int minw, minh, maxw, maxh;
int dw, dh, aspect;
uchar size_range_set;
// cursor stuff
Fl_Cursor cursor_default;
Fl_Color cursor_fg, cursor_bg;
void size_range_();
// values for flags():
enum {
FL_MODAL = 64,
FL_NOBORDER = 8,
FL_FORCE_POSITION = 16,
FL_NON_MODAL = 32,
FL_OVERRIDE = 256
};
void _Fl_Window(); // constructor innards
// unimplemented copy ctor and assignment operator
Fl_Window(const Fl_Window&);
Fl_Window& operator=(const Fl_Window&);
protected:
static Fl_Window *current_;
virtual void draw();
/** Forces the window to be drawn, this window is also made current and calls draw(). */
virtual void flush();
public:
/**
Creates a window from the given size and title.
If Fl_Group::current() is not NULL, the window is created as a
subwindow of the parent window.</p>
<p>The first form of the constructor creates a top-level window
and asks the window manager to position the window. The second
form of the constructor either creates a subwindow or a
top-level window at the specified location (x,y) , subject to window
manager configuration. If you do not specify the position of the
window, the window manager will pick a place to show the window
or allow the user to pick a location. Use position(x,y)
or hotspot() before calling show() to request a
position on the screen. See Fl_Window::resize()
for some more details on positioning windows.</p>
<p>Top-level windows initially have visible() set to 0
and parent() set to NULL. Subwindows initially
have visible() set to 1 and parent() set to
the parent window pointer.</p>
<P>Fl_Widget::box() defaults to FL_FLAT_BOX. If you
plan to completely fill the window with children widgets you should
change this to FL_NO_BOX. If you turn the window border off
you may want to change this to FL_UP_BOX.
*/
Fl_Window(int w, int h, const char* title= 0);
/** Creates a window from the given position, size and title.
See Fl_Window::Fl_Window(int w, int h, const char *title = 0)
*/
Fl_Window(int x, int y, int w, int h, const char* title = 0);
/**
The destructor <I>also deletes all the children</I>. This allows a
whole tree to be deleted at once, without having to keep a pointer to
all the children in the user code. A kludge has been done so the
Fl_Window and all of it's children can be automatic (local)
variables, but you must declare the Fl_Window <I>first</I> so
that it is destroyed last.
*/
virtual ~Fl_Window();
virtual int handle(int);
/**
Changes the size and position of the window. If shown() is
true, these changes are communicated to the window server (which may
refuse that size and cause a further resize). If shown() is
false, the size and position are used when show() is called.
See Fl_Group for the effect
of resizing on the child widgets.
<P>You can also call the Fl_Widget methods size(x,y)
and position(w,h), which are inline wrappers for this virtual
function. </P>
<P>A top-level window can not force, but merely suggest a position and
size to the operating system. The window manager may not be willing or
able to display a window at the desired position or with the given
dimensions. It is up to the application developer to verify window
parameters after the resize request.
*/
virtual void resize(int,int,int,int);
/**
Gets or sets whether or not the window manager border is around the
window. The default value is true. border(n) can be used to
turn the border on and off, and returns non-zero if the value has been
changed. <I>Under most X window managers this does not work after
show() has been called, although SGI's 4DWM does work.</I>
*/
void border(int b);
/**
Fast inline function to turn the border
off. It only works before show() is called.
*/
void clear_border() {set_flag(FL_NOBORDER);}
/**
See int Fl_Window::border(int)
*/
int border() const {return !(flags() & FL_NOBORDER);}
/** Activate the flags FL_NOBORDER|FL_OVERRIDE */
void set_override() {set_flag(FL_NOBORDER|FL_OVERRIDE);}
/** Returns non zero if FL_OVERRIDE flag is set, 0 otherwise. */
int override() const { return flags()&FL_OVERRIDE; }
/**
A &quot;modal&quot; window, when shown(), will prevent any events from
being delivered to other windows in the same program, and will also
remain on top of the other windows (if the X window manager supports
the &quot;transient for&quot; property). Several modal windows may be shown at
once, in which case only the last one shown gets events. You can See
which window (if any) is modal by calling
Fl::modal().
*/
void set_modal() {set_flag(FL_MODAL);}
/**
Returns true if this window is modal.
*/
int modal() const {return flags() & FL_MODAL;}
/**
A &quot;non-modal&quot; window (terminology borrowed from Microsoft Windows)
acts like a modal() one in that it remains on top, but it has
no effect on event delivery. There are <I>three</I> states for a
window: modal, non-modal, and normal.
*/
void set_non_modal() {set_flag(FL_NON_MODAL);}
/**
Returns true if this window is modal or non-modal.
*/
int non_modal() const {return flags() & (FL_NON_MODAL|FL_MODAL);}
/**
Position the window so that the mouse is pointing at the
given position, or at the center of the given widget, which may be the
window itself. If the optional offscreen parameter is
non-zero, then the window is allowed to extend off the screen (this
does not work with some X window managers). \see position()
*/
void hotspot(int x, int y, int offscreen = 0);
/**
See void Fl_Window::hotspot(int x, int y, int offscreen = 0)
*/
void hotspot(const Fl_Widget*, int offscreen = 0);
/**
See void Fl_Window::hotspot(int x, int y, int offscreen = 0)
*/
void hotspot(const Fl_Widget& p, int offscreen = 0) {hotspot(&p,offscreen);}
/**
Undoes the effect of a previous resize() or show()
so that the next time show() is called the window manager is
free to position the window.
*/
void free_position() {clear_flag(FL_FORCE_POSITION);}
/**
Set the allowable range the user can resize this window to. This only
works for top-level windows.
<UL>
<LI>minw and minh are the smallest the window can
be. Either value must be greater than 0.</LI>
<LI>maxw and maxh are the largest the window can be.
If either is <I>equal</I> to the minimum then you cannot resize in
that direction. If either is zero then FLTK picks a maximum size in
that direction such that the window will fill the screen. </LI>
<LI>dw and dh are size increments. The window will
be constrained to widths of minw + N * dw, where N
is any non-negative integer. If these are less or equal to 1 they
are ignored. (this is ignored on WIN32)</LI>
<LI>aspect is a flag that indicates that the window should
preserve it's aspect ratio. This only works if both the maximum and
minimum have the same aspect ratio. (ignored on WIN32 and by many X
window managers)</LI>
</UL>
If this function is not called, FLTK tries to figure out the range
from the setting of resizable():
<UL>
<LI>If resizable() is NULL (this is the default)
then the window cannot be resized and the resize border and max-size
control will not be displayed for the window. </LI>
<LI>If either dimension of resizable() is less than 100,
then that is considered the minimum size. Otherwise the
resizable() has a minimum size of 100. </LI>
<LI>If either dimension of resizable() is zero, then that is
also the maximum size (so the window cannot resize in that direction). </LI>
</UL>
It is undefined what happens if the current size does not fit in the
constraints passed to size_range().
*/
void size_range(int a, int b, int c=0, int d=0, int e=0, int f=0, int g=0) {
minw=a; minh=b; maxw=c; maxh=d; dw=e; dh=f; aspect=g; size_range_();}
/**
See void Fl_Window::label(const char*)
*/
const char* label() const {return Fl_Widget::label();}
/**
See void Fl_Window::iconlabel(const char*)
*/
const char* iconlabel() const {return iconlabel_;}
/**
Gets or sets the window title bar label.
*/
void label(const char*);
/**
Gets or sets the icon label.
*/
void iconlabel(const char*);
void label(const char* label, const char* iconlabel);
void copy_label(const char* a);
/**
See void Fl_Window::xclass(const char*)
*/
const char* xclass() const {return xclass_;}
/**
A string used to tell the system what type of window this is. Mostly
this identifies the picture to draw in the icon. <I>Under X, this is
turned into a XA_WM_CLASS pair by truncating at the first
non-alphanumeric character and capitalizing the first character, and
the second one if the first is 'x'. Thus &quot;foo&quot; turns into &quot;foo, Foo&quot;,
and &quot;xprog.1&quot; turns into &quot;xprog, XProg&quot;.</I> This only works if called <I>
before</I> calling show().
<P>Under Microsoft Windows this string is used as the name of the
WNDCLASS structure, though it is not clear if this can have any
visible effect. The passed pointer is stored unchanged. The string
is not copied.
*/
void xclass(const char* c) {xclass_ = c;}
/** Gets the current icon window target dependent data */
const void* icon() const {return icon_;}
/** Sets the current icon window target dependent data */
void icon(const void * ic) {icon_ = ic;}
/**
Returns non-zero if show() has been called (but not hide()
). You can tell if a window is iconified with (w-&gt;shown()
&!w-&gt;visible()).
*/
int shown() {return i != 0;}
/**
Put the window on the screen. Usually this has the side effect of
opening the display. The second form is used for top-level
windows and allow standard arguments to be parsed from the
command-line.
<P>If the window is already shown then it is restored and raised to the
top. This is really convenient because your program can call show()
at any time, even if the window is already up. It also means that
show() serves the purpose of raise() in other toolkits.
*/
virtual void show();
/**
Remove the window from the screen. If the window is already hidden or
has not been shown then this does nothing and is harmless.
*/
virtual void hide();
/**
See virtual void Fl_Window::show()
*/
void show(int, char**);
/**
Makes the window completely fill the screen, without any window
manager border visible. You must use fullscreen_off() to undo
this. This may not work with all window managers.
*/
void fullscreen();
/**
Turns off any side effects of fullscreen() and does
resize(x,y,w,h).
*/
void fullscreen_off(int,int,int,int);
/**
Iconifies the window. If you call this when shown() is false
it will show() it as an icon. If the window is already
iconified this does nothing.
<P>Call show() to restore the window. </P>
<P>When a window is iconified/restored (either by these calls or by the
user) the handle() method is called with FL_HIDE and
FL_SHOW events and visible() is turned on and off. </P>
<P>There is no way to control what is drawn in the icon except with the
string passed to Fl_Window::xclass(). You should not rely on
window managers displaying the icons.
*/
void iconize();
int x_root() const ;
int y_root() const ;
static Fl_Window *current();
/**
Sets things up so that the drawing functions in &lt;FL/fl_draw.H&gt; will go into this
window. This is useful for incremental update of windows, such as in an
idle callback, which will make your program behave much better if it
draws a slow graphic. <B>Danger: incremental update is very hard to
debug and maintain!</B>
<P>This method only works for the Fl_Window and
Fl_Gl_Window classes.
*/
void make_current();
// for back-compatibility only:
/**
Changes the cursor for this window. This always calls the system, if
you are changing the cursor a lot you may want to keep track of how
you set it in a static varaible and call this only if the new cursor
is different.
<P>The type Fl_Cursor is an enumeration defined in &lt;Enumerations.H&gt;.
(Under X you can get any XC_cursor value by passing
Fl_Cursor((XC_foo/2)+1)). The colors only work on X, they are
not implemented on WIN32.
*/
void cursor(Fl_Cursor, Fl_Color=FL_BLACK, Fl_Color=FL_WHITE);
void default_cursor(Fl_Cursor, Fl_Color=FL_BLACK, Fl_Color=FL_WHITE);
static void default_callback(Fl_Window*, void* v);
};
#endif
//
// End of "$Id$".
//