d9c8cebfbe
no code changes
1170 lines
41 KiB
C++
1170 lines
41 KiB
C++
//
|
|
// Portable drawing function header file for the Fast Light Tool Kit (FLTK).
|
|
//
|
|
// Copyright 1998-2023 by Bill Spitzak and others.
|
|
//
|
|
// This library is free software. Distribution and use rights are outlined in
|
|
// the file "COPYING" which should have been included with this file. If this
|
|
// file is missing or damaged, see the license at:
|
|
//
|
|
// https://www.fltk.org/COPYING.php
|
|
//
|
|
// Please see the following page on how to report bugs and issues:
|
|
//
|
|
// https://www.fltk.org/bugs.php
|
|
//
|
|
|
|
/**
|
|
\file fl_draw.H
|
|
\brief utility header to pull drawing functions together
|
|
*/
|
|
|
|
#ifndef fl_draw_H
|
|
#define fl_draw_H
|
|
|
|
#include <FL/Enumerations.H> // color names
|
|
#include <FL/Fl_Graphics_Driver.H> // fl_graphics_driver + Fl_Region
|
|
#include <FL/Fl_Rect.H>
|
|
|
|
// Image class...
|
|
class Fl_Image;
|
|
class Fl_Window;
|
|
|
|
// Label flags...
|
|
FL_EXPORT extern char fl_draw_shortcut;
|
|
|
|
/** \addtogroup fl_attributes
|
|
@{
|
|
*/
|
|
|
|
// Colors:
|
|
/**
|
|
Set the color for all subsequent drawing operations.
|
|
For color-mapped displays, a color cell will be allocated out of
|
|
\p fl_colormap the first time you use a color. If the colormap fills up
|
|
then a least-squares algorithm is used to find the closest color.
|
|
If no valid graphical context (fl_gc) is available,
|
|
the foreground is not set for the current window.
|
|
\param[in] c color
|
|
*/
|
|
inline void fl_color(Fl_Color c) {
|
|
fl_graphics_driver->color(c);
|
|
} // select indexed color
|
|
/** for back compatibility - use fl_color(Fl_Color c) instead */
|
|
inline void fl_color(int c) {
|
|
fl_color((Fl_Color)c);
|
|
}
|
|
/**
|
|
Set the color for all subsequent drawing operations.
|
|
The closest possible match to the RGB color is used.
|
|
The RGB color is used directly on TrueColor displays.
|
|
For colormap visuals the nearest index in the gray
|
|
ramp or color cube is used.
|
|
If no valid graphical context (fl_gc) is available,
|
|
the foreground is not set for the current window.
|
|
\param[in] r,g,b color components
|
|
*/
|
|
inline void fl_color(uchar r, uchar g, uchar b) {
|
|
fl_graphics_driver->color(r, g, b);
|
|
}
|
|
/**
|
|
Return the last fl_color() that was set.
|
|
This can be used for state save/restore.
|
|
*/
|
|
inline Fl_Color fl_color() {
|
|
return fl_graphics_driver->color();
|
|
}
|
|
/** @} */
|
|
|
|
/** \addtogroup fl_drawings
|
|
@{
|
|
*/
|
|
// clip:
|
|
/**
|
|
Intersect the current clip region with a rectangle and push this
|
|
new region onto the stack.
|
|
\param[in] x,y,w,h position and size
|
|
*/
|
|
inline void fl_push_clip(int x, int y, int w, int h) {
|
|
fl_graphics_driver->push_clip(x, y, w, h);
|
|
}
|
|
/**
|
|
Intersect the current clip region with a rectangle and push this
|
|
new region onto the stack (deprecated).
|
|
\param[in] x,y,w,h position and size
|
|
\deprecated
|
|
Please use fl_push_clip(int x, int y, int w, int h) instead.
|
|
fl_clip(int, int, int, int) will be removed in FLTK 1.5.
|
|
*/
|
|
inline void fl_clip(int x, int y, int w, int h) {
|
|
fl_graphics_driver->push_clip(x, y, w, h);
|
|
}
|
|
/**
|
|
Push an empty clip region onto the stack so nothing will be clipped.
|
|
*/
|
|
inline void fl_push_no_clip() {
|
|
fl_graphics_driver->push_no_clip();
|
|
}
|
|
/**
|
|
Restore the previous clip region.
|
|
|
|
You must call fl_pop_clip() once for every time you call fl_push_clip().
|
|
Unpredictable results may occur if the clip stack is not empty when
|
|
you return to FLTK.
|
|
*/
|
|
inline void fl_pop_clip() {
|
|
fl_graphics_driver->pop_clip();
|
|
}
|
|
|
|
/**
|
|
Does the rectangle intersect the current clip region?
|
|
|
|
\param[in] x,y,w,h position and size of rectangle
|
|
|
|
\returns non-zero if any of the rectangle intersects the current clip
|
|
region. If this returns 0 you don't have to draw the object.
|
|
|
|
\note Under X this returns 2 if the rectangle is partially clipped
|
|
and 1 if it is entirely inside the clip region.
|
|
|
|
\see fl_clip_box()
|
|
*/
|
|
inline int fl_not_clipped(int x, int y, int w, int h) {
|
|
return fl_graphics_driver->not_clipped(x, y, w, h);
|
|
}
|
|
|
|
/**
|
|
Intersect a rectangle with the current clip region and return the
|
|
bounding box of the result.
|
|
|
|
Returns non-zero if the resulting rectangle is different to the original.
|
|
The given rectangle <tt>(x, y, w, h)</tt> \e should be entirely inside its
|
|
window, otherwise the result may be unexpected, i.e. this function \e may
|
|
not clip the rectangle to the window coordinates and size. In particular
|
|
\p x and \p y \e should not be negative.
|
|
|
|
The resulting bounding box can be used to limit the necessary drawing to
|
|
this rectangle.
|
|
|
|
Example:
|
|
\code
|
|
void MyGroup::draw() {
|
|
int X = 0, Y = 0, W = 0, H = 0;
|
|
int ret = fl_clip_box(x(), y(), w(), h(), X, Y, W, H);
|
|
if (ret == 0) { // entire group is visible (not clipped)
|
|
// full drawing code here
|
|
} else { // parts of this group are clipped
|
|
// partial drawing code here (uses X, Y, W, and H to test)
|
|
}
|
|
}
|
|
\endcode
|
|
|
|
\p W and \p H are set to zero if the rectangle is completely outside the
|
|
clipping region. In this case \p X and \p Y are undefined and should
|
|
not be used. Possible values are <tt>(0, 0)</tt>, <tt>(x, y)</tt>,
|
|
or anything else (platform dependent).
|
|
|
|
\note This function is platform-dependent. If the given rectangle is not
|
|
entirely inside the window, the results are not guaranteed to be the
|
|
same on all platforms.
|
|
|
|
\param[in] x,y,w,h position and size of rectangle
|
|
\param[out] X,Y,W,H position and size of resulting bounding box.
|
|
|
|
\returns Non-zero if the resulting rectangle is different to the original.
|
|
|
|
\see fl_not_clipped()
|
|
*/
|
|
inline int fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H) {
|
|
return fl_graphics_driver->clip_box(x, y, w, h, X, Y, W, H);
|
|
}
|
|
|
|
/** Undo any clobbering of the clip region done by your program. */
|
|
inline void fl_restore_clip() {
|
|
fl_graphics_driver->restore_clip();
|
|
}
|
|
|
|
/**
|
|
Replace the top of the clipping stack with a clipping region of any shape.
|
|
|
|
Fl_Region is an operating system specific type.
|
|
\note This function is mostly intended for internal use by the FLTK library
|
|
when drawing to the display.
|
|
Its effect can be null if the current drawing surface is not the display.
|
|
\param[in] r clipping region
|
|
*/
|
|
inline void fl_clip_region(Fl_Region r) {
|
|
fl_graphics_driver->clip_region(r);
|
|
}
|
|
|
|
/**
|
|
Return the current clipping region.
|
|
\note This function is mostly intended for internal use by the FLTK library
|
|
when drawing to the display.
|
|
Its return value can be always NULL if the current drawing surface is not the display.
|
|
*/
|
|
inline Fl_Region fl_clip_region() {
|
|
return fl_graphics_driver->clip_region();
|
|
}
|
|
|
|
|
|
// points:
|
|
/**
|
|
Draw a single pixel at the given coordinates
|
|
*/
|
|
inline void fl_point(int x, int y) {
|
|
fl_graphics_driver->point(x, y);
|
|
}
|
|
|
|
// line type:
|
|
/**
|
|
Set how to draw lines (the "pen").
|
|
|
|
If you change this it is your responsibility to set it back to the default
|
|
using \c fl_line_style(0).
|
|
|
|
\param[in] style A bitmask which is a bitwise-OR of a line style, a cap
|
|
style, and a join style. If you don't specify a dash type you
|
|
will get a solid line. If you don't specify a cap or join type
|
|
you will get a system-defined default of whatever value is fastest.
|
|
\param[in] width The thickness of the lines in pixels. Zero results in the
|
|
system defined default, which on both X and Windows is somewhat
|
|
different and nicer than 1.
|
|
\param[in] dashes A pointer to an array of dash lengths, measured in pixels.
|
|
The first location is how long to draw a solid portion, the next
|
|
is how long to draw the gap, then the solid, etc. It is terminated
|
|
with a zero-length entry. A \c NULL pointer or a zero-length
|
|
array results in a solid line. Odd array sizes are not supported
|
|
and result in undefined behavior.
|
|
|
|
\note Because of how line styles are implemented on Win32 systems,
|
|
you \e must set the line style \e after setting the drawing
|
|
color. If you set the color after the line style you will lose
|
|
the line style settings.
|
|
|
|
\note The \p dashes array does not work under the (unsupported!) operating
|
|
systems Windows 95, 98 or Me, since those operating systems do not
|
|
support complex line styles.
|
|
*/
|
|
inline void fl_line_style(int style, int width = 0, char *dashes = 0) {
|
|
fl_graphics_driver->line_style(style, width, dashes);
|
|
}
|
|
enum {
|
|
FL_SOLID = 0, ///< line style: <tt>___________</tt>
|
|
FL_DASH = 1, ///< line style: <tt>_ _ _ _ _ _</tt>
|
|
FL_DOT = 2, ///< line style: <tt>. . . . . .</tt>
|
|
FL_DASHDOT = 3, ///< line style: <tt>_ . _ . _ .</tt>
|
|
FL_DASHDOTDOT = 4, ///< line style: <tt>_ . . _ . .</tt>
|
|
|
|
FL_CAP_FLAT = 0x100, ///< cap style: end is flat
|
|
FL_CAP_ROUND = 0x200, ///< cap style: end is round
|
|
FL_CAP_SQUARE = 0x300, ///< cap style: end wraps end point
|
|
|
|
FL_JOIN_MITER = 0x1000, ///< join style: line join extends to a point
|
|
FL_JOIN_ROUND = 0x2000, ///< join style: line join is rounded
|
|
FL_JOIN_BEVEL = 0x3000 ///< join style: line join is tidied
|
|
};
|
|
|
|
/**
|
|
Turn antialiased line drawings ON or OFF, if supported by platform.
|
|
Currently, only the Windows platform allows to change whether line drawings
|
|
are antialiased. Turning it OFF may accelerate heavy drawing operations.
|
|
*/
|
|
inline void fl_antialias(int state) {
|
|
fl_graphics_driver->antialias(state);
|
|
}
|
|
|
|
/** Return whether line drawings are currently antialiased. */
|
|
inline int fl_antialias() {
|
|
return fl_graphics_driver->antialias();
|
|
}
|
|
|
|
// rectangles tweaked to exactly fill the pixel rectangle:
|
|
|
|
/**
|
|
Draw a border \e inside the given bounding box.
|
|
This function is meant for quick drawing of simple boxes. The behavior is
|
|
undefined for line widths that are not 1.
|
|
*/
|
|
inline void fl_rect(int x, int y, int w, int h) {
|
|
fl_graphics_driver->rect(x, y, w, h);
|
|
}
|
|
|
|
/**
|
|
Draw a rounded border \e inside the given bounding box.
|
|
The radius code is optimized for speed and works best for values between
|
|
5 and 15 units.
|
|
*/
|
|
inline void fl_rounded_rect(int x, int y, int w, int h, int r) {
|
|
fl_graphics_driver->rounded_rect(x, y, w, h, r);
|
|
}
|
|
|
|
/**
|
|
Draw a border \e inside the given bounding box.
|
|
This is the same as fl_rect(int x, int y, int w, int h) but with
|
|
Fl_Rect \p r as input argument.
|
|
*/
|
|
inline void fl_rect(Fl_Rect r) {
|
|
fl_rect(r.x(), r.y(), r.w(), r.h());
|
|
}
|
|
|
|
/** Draw a dotted rectangle, used to indicate keyboard focus on a widget.
|
|
|
|
This method draws the rectangle in the current color and independent of
|
|
the Fl::visible_focus() option. You may need to set the current color
|
|
with fl_color() before you call this.
|
|
*/
|
|
inline void fl_focus_rect(int x, int y, int w, int h) {
|
|
fl_graphics_driver->focus_rect(x, y, w, h);
|
|
}
|
|
|
|
/** Draw with passed color a border \e inside the given bounding box.
|
|
\warning The current color is changed to \p c upon return.
|
|
*/
|
|
inline void fl_rect(int x, int y, int w, int h, Fl_Color c) {
|
|
fl_color(c);
|
|
fl_rect(x, y, w, h);
|
|
}
|
|
|
|
/** Color with current color a rectangle that exactly fills the given bounding box. */
|
|
inline void fl_rectf(int x, int y, int w, int h) {
|
|
fl_graphics_driver->rectf(x, y, w, h);
|
|
}
|
|
|
|
/** Color with current color a rounded rectangle that exactly fills the given bounding box.
|
|
The radius code is optimized for speed and works best for values between
|
|
5 and 15 units.
|
|
*/
|
|
inline void fl_rounded_rectf(int x, int y, int w, int h, int r) {
|
|
fl_graphics_driver->rounded_rectf(x, y, w, h, r);
|
|
}
|
|
|
|
/** Color with passed color a rectangle that exactly fills the given bounding box.
|
|
\warning The current color is changed to \p c upon return.
|
|
*/
|
|
inline void fl_rectf(int x, int y, int w, int h, Fl_Color c) {
|
|
fl_color(c);
|
|
fl_rectf(x, y, w, h);
|
|
}
|
|
|
|
/** Color with current color a rectangle that exactly fills the given bounding box. */
|
|
inline void fl_rectf(Fl_Rect r) {
|
|
fl_graphics_driver->rectf(r.x(), r.y(), r.w(), r.h());
|
|
}
|
|
|
|
/** Color with passed color a rectangle that exactly fills the given bounding box.
|
|
\warning The current color is changed to \p c upon return.
|
|
*/
|
|
inline void fl_rectf(Fl_Rect r, Fl_Color c) {
|
|
fl_color(c);
|
|
fl_rectf(r);
|
|
}
|
|
|
|
/**
|
|
Color a rectangle with "exactly" the passed <tt>r,g,b</tt> color.
|
|
On screens with less than 24 bits of color this is done by drawing a
|
|
solid-colored block using fl_draw_image() so that the correct color
|
|
shade is produced. On other screens, the current color is changed
|
|
to \p fl_color(r,g,b) upon return.
|
|
*/
|
|
inline void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b) {
|
|
fl_graphics_driver->colored_rectf(x, y, w, h, r, g, b);
|
|
}
|
|
|
|
/**
|
|
Color a rectangle with "exactly" the passed <tt>r,g,b</tt> color.
|
|
This is the same as fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)
|
|
but with Fl_Rect \p bb (bounding box) as argument instead of (x, y, w, h).
|
|
\see fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)
|
|
*/
|
|
inline void fl_rectf(Fl_Rect bb, uchar r, uchar g, uchar b) {
|
|
fl_graphics_driver->colored_rectf(bb.x(), bb.y(), bb.w(), bb.h(), r, g, b);
|
|
}
|
|
|
|
// line segments:
|
|
/**
|
|
Draw a line from (x,y) to (x1,y1)
|
|
*/
|
|
inline void fl_line(int x, int y, int x1, int y1) {
|
|
fl_graphics_driver->line(x, y, x1, y1);
|
|
}
|
|
/**
|
|
Draw a line from (x,y) to (x1,y1) and another from (x1,y1) to (x2,y2)
|
|
*/
|
|
inline void fl_line(int x, int y, int x1, int y1, int x2, int y2) {
|
|
fl_graphics_driver->line(x, y, x1, y1, x2, y2);
|
|
}
|
|
|
|
// closed line segments:
|
|
/**
|
|
Outline a 3-sided polygon with lines
|
|
*/
|
|
inline void fl_loop(int x, int y, int x1, int y1, int x2, int y2) {
|
|
fl_graphics_driver->loop(x, y, x1, y1, x2, y2);
|
|
}
|
|
/**
|
|
Outline a 4-sided polygon with lines
|
|
*/
|
|
inline void fl_loop(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3) {
|
|
fl_graphics_driver->loop(x, y, x1, y1, x2, y2, x3, y3);
|
|
}
|
|
|
|
// filled polygons
|
|
/**
|
|
Fill a 3-sided polygon. The polygon must be convex.
|
|
*/
|
|
inline void fl_polygon(int x, int y, int x1, int y1, int x2, int y2) {
|
|
fl_graphics_driver->polygon(x, y, x1, y1, x2, y2);
|
|
}
|
|
/**
|
|
Fill a 4-sided polygon. The polygon must be convex.
|
|
*/
|
|
inline void fl_polygon(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3) {
|
|
fl_graphics_driver->polygon(x, y, x1, y1, x2, y2, x3, y3);
|
|
}
|
|
|
|
// draw rectilinear lines, horizontal segment first:
|
|
/**
|
|
Draw a horizontal line from (x,y) to (x1,y).
|
|
*/
|
|
inline void fl_xyline(int x, int y, int x1) {
|
|
fl_graphics_driver->xyline(x, y, x1);
|
|
}
|
|
/**
|
|
Draw a horizontal line from (x,y) to (x1,y), then vertical from (x1,y) to (x1,y2).
|
|
*/
|
|
inline void fl_xyline(int x, int y, int x1, int y2) {
|
|
fl_graphics_driver->xyline(x, y, x1, y2);
|
|
}
|
|
/**
|
|
Draw a horizontal line from (x,y) to (x1,y), then a vertical from (x1,y) to (x1,y2)
|
|
and then another horizontal from (x1,y2) to (x3,y2).
|
|
*/
|
|
inline void fl_xyline(int x, int y, int x1, int y2, int x3) {
|
|
fl_graphics_driver->xyline(x, y, x1, y2, x3);
|
|
}
|
|
|
|
// draw rectilinear lines, vertical segment first:
|
|
/**
|
|
Draw a vertical line from (x,y) to (x,y1)
|
|
*/
|
|
inline void fl_yxline(int x, int y, int y1) {
|
|
fl_graphics_driver->yxline(x, y, y1);
|
|
}
|
|
/**
|
|
Draw a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1) to (x2,y1).
|
|
*/
|
|
inline void fl_yxline(int x, int y, int y1, int x2) {
|
|
fl_graphics_driver->yxline(x, y, y1, x2);
|
|
}
|
|
/**
|
|
Draw a vertical line from (x,y) to (x,y1), then a horizontal from (x,y1)
|
|
to (x2,y1), then another vertical from (x2,y1) to (x2,y3).
|
|
*/
|
|
inline void fl_yxline(int x, int y, int y1, int x2, int y3) {
|
|
fl_graphics_driver->yxline(x, y, y1, x2, y3);
|
|
}
|
|
|
|
// circular lines and pie slices (code in fl_arci.C):
|
|
/**
|
|
Draw ellipse sections using integer coordinates.
|
|
|
|
These functions match the rather limited circle drawing code provided by X
|
|
and Windows. The advantage over using fl_arc with floating point coordinates
|
|
is that they are faster because they often use the hardware, and they draw
|
|
much nicer small circles, since the small sizes are often hard-coded bitmaps.
|
|
|
|
If a complete circle is drawn it will fit inside the passed bounding box.
|
|
The two angles are measured in degrees counter-clockwise from 3 o'clock and
|
|
are the starting and ending angle of the arc, \p a2 must be greater or equal
|
|
to \p a1.
|
|
|
|
fl_arc() draws a series of lines to approximate the arc. Notice that the
|
|
integer version of fl_arc() has a different number of arguments than the
|
|
double version fl_arc(double x, double y, double r, double start, double end)
|
|
|
|
\param[in] x,y,w,h bounding box of complete circle
|
|
\param[in] a1,a2 start and end angles of arc measured in degrees
|
|
counter-clockwise from 3 o'clock. \p a2 must be greater
|
|
than or equal to \p a1.
|
|
|
|
\image html fl_pie_arc_diagram.png "fl_pie() and fl_arc()"
|
|
\image latex fl_pie_arc_diagram.png "fl_pie() and fl_arc()" width=4cm
|
|
*/
|
|
inline void fl_arc(int x, int y, int w, int h, double a1, double a2) {
|
|
fl_graphics_driver->arc(x, y, w, h, a1, a2);
|
|
}
|
|
/**
|
|
Draw filled ellipse sections using integer coordinates.
|
|
|
|
Like fl_arc(), but fl_pie() draws a filled-in pie slice.
|
|
This slice may extend outside the line drawn by fl_arc();
|
|
to avoid this use w - 1 and h - 1.
|
|
|
|
\param[in] x,y,w,h bounding box of complete circle
|
|
\param[in] a1,a2 start and end angles of arc measured in degrees
|
|
counter-clockwise from 3 o'clock. \p a2 must be greater
|
|
than or equal to \p a1.
|
|
|
|
\image html fl_pie_arc_diagram.png "fl_pie() and fl_arc()"
|
|
\image latex fl_pie_arc_diagram.png "fl_pie() and fl_arc()" width=4cm
|
|
*/
|
|
inline void fl_pie(int x, int y, int w, int h, double a1, double a2) {
|
|
fl_graphics_driver->pie(x, y, w, h, a1, a2);
|
|
}
|
|
/** fl_chord declaration is a place holder - the function does not yet exist */
|
|
FL_EXPORT void fl_chord(int x, int y, int w, int h, double a1, double a2); // nyi
|
|
|
|
// scalable drawing code (code in fl_vertex.cxx and fl_arc.cxx):
|
|
/**
|
|
Save the current transformation matrix on the stack.
|
|
The maximum depth of the stack is 32.
|
|
*/
|
|
inline void fl_push_matrix() {
|
|
fl_graphics_driver->push_matrix();
|
|
}
|
|
/**
|
|
Restore the current transformation matrix from the stack.
|
|
*/
|
|
inline void fl_pop_matrix() {
|
|
fl_graphics_driver->pop_matrix();
|
|
}
|
|
/**
|
|
Concatenate scaling transformation onto the current one.
|
|
\param[in] x,y scale factors in x-direction and y-direction
|
|
*/
|
|
inline void fl_scale(double x, double y) {
|
|
fl_graphics_driver->mult_matrix(x, 0, 0, y, 0, 0);
|
|
}
|
|
/**
|
|
Concatenate scaling transformation onto the current one.
|
|
\param[in] x scale factor in both x-direction and y-direction
|
|
*/
|
|
inline void fl_scale(double x) {
|
|
fl_graphics_driver->mult_matrix(x, 0, 0, x, 0, 0);
|
|
}
|
|
/**
|
|
Concatenate translation transformation onto the current one.
|
|
\param[in] x,y translation factor in x-direction and y-direction
|
|
*/
|
|
inline void fl_translate(double x, double y) {
|
|
fl_graphics_driver->translate(x, y);
|
|
}
|
|
/**
|
|
Concatenate rotation transformation onto the current one.
|
|
\param[in] d - rotation angle, counter-clockwise in degrees (not radians)
|
|
*/
|
|
inline void fl_rotate(double d) {
|
|
fl_graphics_driver->rotate(d);
|
|
}
|
|
/**
|
|
Set the transformation matrix to identity.
|
|
*/
|
|
inline void fl_load_identity() {
|
|
fl_graphics_driver->load_identity();
|
|
}
|
|
/**
|
|
Set the current transformation matrix.
|
|
\param[in] a,b,c,d,x,y transformation matrix elements
|
|
*/
|
|
inline void fl_load_matrix(double a, double b, double c, double d, double x, double y) {
|
|
fl_graphics_driver->load_matrix(a, b, c, d, x, y);
|
|
}
|
|
/**
|
|
Concatenate another transformation onto the current one.
|
|
|
|
\param[in] a,b,c,d,x,y transformation matrix elements such that
|
|
<tt> X' = aX + cY + x </tt> and <tt> Y' = bX +dY + y </tt>
|
|
*/
|
|
inline void fl_mult_matrix(double a, double b, double c, double d, double x, double y) {
|
|
fl_graphics_driver->mult_matrix(a, b, c, d, x, y);
|
|
}
|
|
/**
|
|
Start drawing a list of points. Points are added to the list with fl_vertex().
|
|
*/
|
|
inline void fl_begin_points() {
|
|
fl_graphics_driver->begin_points();
|
|
}
|
|
/**
|
|
Start drawing a list of lines.
|
|
*/
|
|
inline void fl_begin_line() {
|
|
fl_graphics_driver->begin_line();
|
|
}
|
|
/**
|
|
Start drawing a closed sequence of lines.
|
|
*/
|
|
inline void fl_begin_loop() {
|
|
fl_graphics_driver->begin_loop();
|
|
}
|
|
/**
|
|
Start drawing a convex filled polygon.
|
|
*/
|
|
inline void fl_begin_polygon() {
|
|
fl_graphics_driver->begin_polygon();
|
|
}
|
|
/**
|
|
Add a single vertex to the current path.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline void fl_vertex(double x, double y) {
|
|
fl_graphics_driver->vertex(x, y);
|
|
}
|
|
/**
|
|
Add a series of points on a Bézier curve to the path.
|
|
The curve ends (and two of the points) are at X0,Y0 and X3,Y3.
|
|
\param[in] X0,Y0 curve start point
|
|
\param[in] X1,Y1 curve control point
|
|
\param[in] X2,Y2 curve control point
|
|
\param[in] X3,Y3 curve end point
|
|
*/
|
|
inline void fl_curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3) {
|
|
fl_graphics_driver->curve(X0, Y0, X1, Y1, X2, Y2, X3, Y3);
|
|
}
|
|
/**
|
|
Add a series of points to the current path on the arc of a circle.
|
|
|
|
The arc is drawn counter-clockwise from 3 o'clock. If \p end is less than
|
|
\p start then it draws the arc in a clockwise direction. To draw an arc across
|
|
the 3 o'clock line, \p start and \p end can be greater than 360 or less than 0.
|
|
For example, to draw a counter-clockwise arc from 6 to 12 o'clock, \p start
|
|
would be -90 deg, and \p end would be at +90 deg.
|
|
|
|
You can get elliptical paths by using scale and rotate before calling fl_arc().
|
|
|
|
\param[in] x, y, r center and radius of circular arc
|
|
\param[in] start, end angles of start and end of arc measured in degrees
|
|
|
|
\image html fl_arc_xyr_diagram.png "fl_arc(x,y,r,a1,a2)"
|
|
\image latex fl_arc_xyr_diagram.png "fl_arc(x,y,r,a1,a2)" width=6cm
|
|
|
|
Examples:
|
|
\code
|
|
// Draw an arc of points
|
|
fl_begin_points();
|
|
fl_arc(100.0, 100.0, 50.0, 0.0, 180.0);
|
|
fl_end_points();
|
|
|
|
// Draw arc with a line
|
|
fl_begin_line();
|
|
fl_arc(200.0, 100.0, 50.0, 0.0, 180.0);
|
|
fl_end_line();
|
|
|
|
// Draw filled arc
|
|
fl_begin_polygon();
|
|
fl_arc(300.0, 100.0, 50.0, 0.0, 180.0);
|
|
fl_end_polygon();
|
|
\endcode
|
|
*/
|
|
inline void fl_arc(double x, double y, double r, double start, double end) {
|
|
fl_graphics_driver->arc(x, y, r, start, end);
|
|
}
|
|
/**
|
|
fl_circle(x,y,r) is equivalent to fl_arc(x,y,r,0,360), but may be faster.
|
|
\param[in] x,y,r center and radius of circle
|
|
|
|
\note fl_circle() is best used as part of the \ref drawing_complex API, that is,
|
|
flanked by fl_begin_XXX() and fl_end_XXX() calls where XXX can be 'loop' or 'polygon'
|
|
to draw, respectively a circle or a disk. Transformation functions (e.g., fl_scale(double, double))
|
|
can be also used for fl_circle() to draw empty of filled ellipses.
|
|
It must be the \e only thing in the path: if you want a circle as part of
|
|
a complex polygon you must use fl_arc().
|
|
<br>Nevertheless, fl_circle() can also be used by itself to draw circles.
|
|
*/
|
|
inline void fl_circle(double x, double y, double r) {
|
|
fl_graphics_driver->circle(x, y, r);
|
|
}
|
|
/**
|
|
End list of points, and draw.
|
|
*/
|
|
inline void fl_end_points() {
|
|
fl_graphics_driver->end_points();
|
|
}
|
|
/**
|
|
End list of lines, and draw.
|
|
*/
|
|
inline void fl_end_line() {
|
|
fl_graphics_driver->end_line();
|
|
}
|
|
/**
|
|
End closed sequence of lines, and draw.
|
|
*/
|
|
inline void fl_end_loop() {
|
|
fl_graphics_driver->end_loop();
|
|
}
|
|
/**
|
|
End convex filled polygon, and draw.
|
|
*/
|
|
inline void fl_end_polygon() {
|
|
fl_graphics_driver->end_polygon();
|
|
}
|
|
/**
|
|
Start drawing a complex filled polygon.
|
|
|
|
The polygon may be concave, may have holes in it, or may be several
|
|
disconnected pieces. Call fl_gap() to separate loops of the path.
|
|
|
|
To outline the polygon, use fl_begin_loop() and replace each fl_gap()
|
|
with fl_end_loop();fl_begin_loop() pairs.
|
|
|
|
\note For portability, you should only draw polygons that appear the same
|
|
whether "even/odd" or "non-zero" winding rules are used to fill them.
|
|
Holes should be drawn in the opposite direction to the outside loop.
|
|
*/
|
|
inline void fl_begin_complex_polygon() {
|
|
fl_graphics_driver->begin_complex_polygon();
|
|
}
|
|
/**
|
|
Separate loops of the path.
|
|
|
|
It is unnecessary but harmless to call fl_gap() before the first vertex,
|
|
after the last vertex, or several times in a row.
|
|
*/
|
|
inline void fl_gap() {
|
|
fl_graphics_driver->gap();
|
|
}
|
|
/**
|
|
End complex filled polygon, and draw.
|
|
*/
|
|
inline void fl_end_complex_polygon() {
|
|
fl_graphics_driver->end_complex_polygon();
|
|
}
|
|
// get and use transformed positions:
|
|
/**
|
|
Transform coordinate using the current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_x(double x, double y) {
|
|
return fl_graphics_driver->transform_x(x, y);
|
|
}
|
|
/**
|
|
Transform coordinate using the current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_y(double x, double y) {
|
|
return fl_graphics_driver->transform_y(x, y);
|
|
}
|
|
/**
|
|
Transform distance using current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_dx(double x, double y) {
|
|
return fl_graphics_driver->transform_dx(x, y);
|
|
}
|
|
/**
|
|
Transform distance using current transformation matrix.
|
|
\param[in] x,y coordinate
|
|
*/
|
|
inline double fl_transform_dy(double x, double y) {
|
|
return fl_graphics_driver->transform_dy(x, y);
|
|
}
|
|
/**
|
|
Add coordinate pair to the vertex list without further transformations.
|
|
\param[in] xf,yf transformed coordinate
|
|
*/
|
|
inline void fl_transformed_vertex(double xf, double yf) {
|
|
fl_graphics_driver->transformed_vertex(xf, yf);
|
|
}
|
|
|
|
/** Copy a rectangular area of the given offscreen buffer into the current drawing destination.
|
|
\param x,y position where to draw the copied rectangle
|
|
\param w,h size of the copied rectangle
|
|
\param pixmap offscreen buffer containing the rectangle to copy
|
|
\param srcx,srcy origin in offscreen buffer of rectangle to copy
|
|
*/
|
|
inline void fl_copy_offscreen(int x, int y, int w, int h, Fl_Offscreen pixmap, int srcx, int srcy) {
|
|
fl_graphics_driver->copy_offscreen(x, y, w, h, pixmap, srcx, srcy);
|
|
}
|
|
|
|
FL_EXPORT Fl_Offscreen fl_create_offscreen(int w, int h);
|
|
FL_EXPORT void fl_begin_offscreen(Fl_Offscreen b);
|
|
FL_EXPORT void fl_end_offscreen(void);
|
|
FL_EXPORT void fl_delete_offscreen(Fl_Offscreen bitmap);
|
|
FL_EXPORT void fl_rescale_offscreen(Fl_Offscreen &ctx);
|
|
|
|
/** @} */
|
|
|
|
/** \addtogroup fl_attributes
|
|
@{ */
|
|
/* NOTE: doxygen comments here to avoid triplication in os-specific sources */
|
|
|
|
// Fonts:
|
|
/*
|
|
Set the current font, which is then used in various drawing routines.
|
|
Implemented and documented in src/fl_draw.cxx
|
|
*/
|
|
FL_EXPORT void fl_font(Fl_Font face, Fl_Fontsize fsize);
|
|
|
|
/**
|
|
Return the \p face set by the most recent call to fl_font().
|
|
This can be used to save/restore the font.
|
|
*/
|
|
inline Fl_Font fl_font() {
|
|
return fl_graphics_driver->font();
|
|
}
|
|
/**
|
|
Return the \p size set by the most recent call to fl_font().
|
|
This can be used to save/restore the font.
|
|
*/
|
|
inline Fl_Fontsize fl_size() {
|
|
return fl_graphics_driver->size();
|
|
}
|
|
|
|
// Information you can get about the current font:
|
|
/**
|
|
Return the recommended minimum line spacing for the current font.
|
|
You can also use the value of \p size passed to fl_font().
|
|
*/
|
|
inline int fl_height() {
|
|
return fl_graphics_driver->height();
|
|
}
|
|
FL_EXPORT int fl_height(int font, int size);
|
|
/**
|
|
Return the recommended distance above the bottom of a fl_height() tall
|
|
box to draw the text at so it looks centered vertically in that box.
|
|
*/
|
|
inline int fl_descent() {
|
|
return fl_graphics_driver->descent();
|
|
}
|
|
/** Return the typographical width of a nul-terminated string
|
|
using the current font face and size.
|
|
*/
|
|
FL_EXPORT double fl_width(const char *txt);
|
|
|
|
/** Return the typographical width of a sequence of \p n characters
|
|
using the current font face and size.
|
|
*/
|
|
inline double fl_width(const char *txt, int n) {
|
|
return fl_graphics_driver->width(txt, n);
|
|
}
|
|
/** Return the typographical width of a single character
|
|
using the current font face and size.
|
|
|
|
\note If a valid fl_gc is NOT found then it uses the first window gc,
|
|
or the screen gc if no fltk window is available when called.
|
|
*/
|
|
inline double fl_width(unsigned int c) {
|
|
return fl_graphics_driver->width(c);
|
|
}
|
|
/** Determine the minimum pixel dimensions of a nul-terminated string
|
|
using the current fl_font().
|
|
|
|
Usage: given a string "txt" drawn using fl_draw(txt, x, y) you would determine
|
|
its pixel extents on the display using fl_text_extents(txt, dx, dy, wo, ho)
|
|
such that a bounding box that exactly fits around the text could be drawn with
|
|
fl_rect(x+dx, y+dy, wo, ho). Note the dx, dy values hold the offset of the first
|
|
"colored in" pixel of the string, from the draw origin.
|
|
|
|
Note the desired font and font size must be set with fl_font() before calling
|
|
this function.
|
|
|
|
This differs slightly from fl_measure() in that the dx/dy values are also
|
|
returned.
|
|
|
|
No FLTK symbol expansion will be performed.
|
|
|
|
Example use:
|
|
\code
|
|
int dx,dy,W,H;
|
|
fl_font(FL_HELVETICA, 12); // set font face+size first
|
|
fl_text_extents("Some text", dx, dy, W, H); // get width and height of string
|
|
printf("text's width=%d, height=%d\n", W, H);
|
|
\endcode
|
|
*/
|
|
FL_EXPORT void fl_text_extents(const char *, int &dx, int &dy, int &w, int &h);
|
|
|
|
/** Determine the minimum pixel dimensions of a sequence of \p n characters
|
|
(bytes) using the current fl_font().
|
|
|
|
\note The string length is measured in bytes, not (UTF-8) characters.
|
|
\see fl_text_extents(const char*, int& dx, int& dy, int& w, int& h)
|
|
*/
|
|
inline void fl_text_extents(const char *t, int n, int &dx, int &dy, int &w, int &h) {
|
|
fl_graphics_driver->text_extents(t, n, dx, dy, w, h);
|
|
}
|
|
|
|
// font encoding:
|
|
// Note: doxygen comments here to avoid duplication for os-specific cases
|
|
/**
|
|
Convert text from Windows/X11 latin1 character set to local encoding.
|
|
\param[in] t character string (latin1 encoding)
|
|
\param[in] n optional number of characters (bytes) to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_latin1_to_local(const char *t, int n = -1);
|
|
/**
|
|
Convert text from local encoding to Windows/X11 latin1 character set.
|
|
\param[in] t character string (local encoding)
|
|
\param[in] n optional number of characters (bytes) to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_local_to_latin1(const char *t, int n = -1);
|
|
/**
|
|
Convert text from Mac Roman character set to local encoding.
|
|
\param[in] t character string (Mac Roman encoding)
|
|
\param[in] n optional number of characters to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_mac_roman_to_local(const char *t, int n = -1);
|
|
/**
|
|
Convert text from local encoding to Mac Roman character set.
|
|
\param[in] t character string (local encoding)
|
|
\param[in] n optional number of characters to convert (default is all)
|
|
\returns pointer to internal buffer containing converted characters
|
|
*/
|
|
FL_EXPORT const char *fl_local_to_mac_roman(const char *t, int n = -1);
|
|
/** @} */
|
|
|
|
/** \addtogroup fl_drawings
|
|
@{ */
|
|
|
|
FL_EXPORT float fl_override_scale();
|
|
|
|
FL_EXPORT void fl_restore_scale(float s);
|
|
|
|
/**
|
|
Draw a nul-terminated UTF-8 string starting at the given \p x, \p y location.
|
|
|
|
Text is aligned to the left and to the baseline of the font.
|
|
To align to the bottom, subtract fl_descent() from \p y.
|
|
To align to the top, subtract fl_descent() and add fl_height().
|
|
This version of fl_draw provides direct access to the text drawing
|
|
function of the underlying OS. It does not apply any special handling
|
|
to control characters.
|
|
*/
|
|
FL_EXPORT void fl_draw(const char *str, int x, int y);
|
|
/**
|
|
Draw a nul-terminated UTF-8 string starting at the given \p x, \p y
|
|
location and rotating \p angle degrees counter-clockwise.
|
|
This version of fl_draw provides direct access to the text drawing
|
|
function of the underlying OS and is supported by all fltk platforms except
|
|
X11 without Xft.
|
|
*/
|
|
FL_EXPORT void fl_draw(int angle, const char *str, int x, int y);
|
|
/**
|
|
Draws starting at the given \p x, \p y location a UTF-8 string of length \p n bytes.
|
|
*/
|
|
inline void fl_draw(const char *str, int n, int x, int y) {
|
|
fl_graphics_driver->draw(str, n, x, y);
|
|
}
|
|
/**
|
|
Draw at the given \p x, \p y location a UTF-8 string of length \p n bytes
|
|
rotating \p angle degrees counter-clockwise.
|
|
|
|
\note When using X11 (Unix, Linux, Cygwin et al.) this needs Xft to work.
|
|
Under plain X11 (w/o Xft) rotated text is not supported by FLTK.
|
|
A warning will be issued to stderr at runtime (only once) if you
|
|
use this method with an angle other than 0.
|
|
*/
|
|
inline void fl_draw(int angle, const char *str, int n, int x, int y) {
|
|
fl_graphics_driver->draw(angle, str, n, x, y);
|
|
}
|
|
/**
|
|
Draw a UTF-8 string of length \p n bytes right to left starting at the given \p x, \p y location.
|
|
*/
|
|
inline void fl_rtl_draw(const char *str, int n, int x, int y) {
|
|
fl_graphics_driver->rtl_draw(str, n, x, y);
|
|
}
|
|
FL_EXPORT void fl_measure(const char *str, int &x, int &y, int draw_symbols = 1);
|
|
FL_EXPORT void fl_draw(const char *str, int x, int y, int w, int h, Fl_Align align, Fl_Image *img = 0,
|
|
int draw_symbols = 1);
|
|
FL_EXPORT void fl_draw(const char *str, int x, int y, int w, int h, Fl_Align align,
|
|
void (*callthis)(const char *, int, int, int), Fl_Image *img = 0, int draw_symbols = 1);
|
|
|
|
// boxtypes:
|
|
|
|
FL_EXPORT void fl_frame(const char *s, int x, int y, int w, int h);
|
|
FL_EXPORT void fl_frame2(const char *s, int x, int y, int w, int h);
|
|
FL_EXPORT void fl_draw_box(Fl_Boxtype, int x, int y, int w, int h, Fl_Color);
|
|
FL_EXPORT void fl_draw_box_focus(Fl_Boxtype, int x, int y, int w, int h, Fl_Color, Fl_Color);
|
|
|
|
// basic GUI objects (check marks, arrows, more to come ...):
|
|
|
|
// Draw a check mark in the given color inside the bounding box bb.
|
|
void fl_draw_check(Fl_Rect bb, Fl_Color col);
|
|
|
|
// Draw one or more "arrows" (triangles)
|
|
FL_EXPORT void fl_draw_arrow(Fl_Rect bb, Fl_Arrow_Type t, Fl_Orientation o, Fl_Color color);
|
|
|
|
// Draw a potentially small, filled circle
|
|
FL_EXPORT void fl_draw_circle(int x, int y, int d, Fl_Color color);
|
|
|
|
// Draw the full "radio button" of a radio menu entry or radio button
|
|
// This requires scheme specific handling (particularly gtk+ scheme)
|
|
FL_EXPORT void fl_draw_radio(int x, int y, int d, Fl_Color color);
|
|
|
|
// images:
|
|
|
|
/**
|
|
Draw an 8-bit per color RGB or luminance image.
|
|
\param[in] buf points at the "r" data of the top-left pixel.
|
|
Color data must be in <tt>r,g,b</tt> order.
|
|
Luminance data is only one <tt>gray</tt> byte.
|
|
\param[in] X,Y position where to put top-left corner of image
|
|
\param[in] W,H size of the image
|
|
\param[in] D delta to add to the pointer between pixels. It may be
|
|
any value greater than or equal to 1, or it can be
|
|
negative to flip the image horizontally
|
|
\param[in] L delta to add to the pointer between lines (if 0 is
|
|
passed it uses \p W * \p D), and may be larger than
|
|
\p W * \p D to crop data, or negative to flip the
|
|
image vertically
|
|
|
|
It is highly recommended that you put the following code before the
|
|
first <tt>show()</tt> of \e any window in your program to get rid of
|
|
the dithering if possible:
|
|
\code
|
|
Fl::visual(FL_RGB);
|
|
\endcode
|
|
|
|
Gray scale (1-channel) images may be drawn. This is done if
|
|
<tt>abs(D)</tt> is less than 3, or by calling fl_draw_image_mono().
|
|
Only one 8-bit sample is used for each pixel, and on screens with
|
|
different numbers of bits for red, green, and blue only gray colors
|
|
are used. Setting \p D greater than 1 will let you display one channel
|
|
of a color image.
|
|
|
|
\par Note:
|
|
The X version does not support all possible visuals. If FLTK cannot
|
|
draw the image in the current visual it will abort. FLTK supports
|
|
any visual of 8 bits or less, and all common TrueColor visuals up
|
|
to 32 bits.
|
|
*/
|
|
inline void fl_draw_image(const uchar *buf, int X, int Y, int W, int H, int D = 3, int L = 0) {
|
|
fl_graphics_driver->draw_image(buf, X, Y, W, H, D, L);
|
|
}
|
|
|
|
/**
|
|
Draw a gray-scale (1 channel) image.
|
|
\see fl_draw_image(const uchar* buf, int X,int Y,int W,int H, int D, int L)
|
|
*/
|
|
inline void fl_draw_image_mono(const uchar *buf, int X, int Y, int W, int H, int D = 1, int L = 0) {
|
|
fl_graphics_driver->draw_image_mono(buf, X, Y, W, H, D, L);
|
|
}
|
|
|
|
/**
|
|
Draw an image using a callback function to generate image data.
|
|
|
|
You can generate the image as it is being drawn, or do arbitrary
|
|
decompression of stored data, provided it can be decompressed to
|
|
individual scan lines.
|
|
|
|
\param[in] cb callback function to generate scan line data
|
|
\param[in] data user data passed to callback function
|
|
\param[in] X,Y screen position of top left pixel
|
|
\param[in] W,H image width and height
|
|
\param[in] D data size per pixel in bytes (must be greater than 0)
|
|
|
|
\see fl_draw_image(const uchar* buf, int X, int Y, int W, int H, int D, int L)
|
|
|
|
The callback function \p cb is called with the <tt>void*</tt> \p data
|
|
user data pointer to allow access to a structure of information about
|
|
the image, and the \p x, \p y, and \p w of the scan line desired from
|
|
the image. 0,0 is the upper-left corner of the image, not \p x, \p y.
|
|
A pointer to a buffer to put the data into is passed. You must copy
|
|
\p w pixels from scanline \p y, starting at pixel \p x, to this buffer.
|
|
|
|
Due to cropping, less than the whole image may be requested. So \p x
|
|
may be greater than zero, the first \p y may be greater than zero,
|
|
and \p w may be less than \p W. The buffer is long enough to store
|
|
the entire \p W * \p D pixels, this is for convenience with some
|
|
decompression schemes where you must decompress the entire line at
|
|
once: decompress it into the buffer, and then if \p x is not zero,
|
|
copy the data over so the \p x'th pixel is at the start of the buffer.
|
|
|
|
You can assume the \p y's will be consecutive, except the first one
|
|
may be greater than zero.
|
|
|
|
If \p D is 4 or more, you must fill in the unused bytes with zero.
|
|
*/
|
|
inline void fl_draw_image(Fl_Draw_Image_Cb cb, void *data, int X, int Y, int W, int H, int D = 3) {
|
|
fl_graphics_driver->draw_image(cb, data, X, Y, W, H, D);
|
|
}
|
|
|
|
/**
|
|
Draw a gray-scale image using a callback function to generate image data.
|
|
\see fl_draw_image(Fl_Draw_Image_Cb cb, void* data, int X,int Y,int W,int H, int D)
|
|
*/
|
|
inline void fl_draw_image_mono(Fl_Draw_Image_Cb cb, void *data, int X, int Y, int W, int H, int D = 1) {
|
|
fl_graphics_driver->draw_image_mono(cb, data, X, Y, W, H, D);
|
|
}
|
|
|
|
/**
|
|
Check whether platform supports true alpha blending for RGBA images.
|
|
\returns 1 if true alpha blending supported by platform
|
|
\returns 0 not supported so FLTK will use screen door transparency
|
|
*/
|
|
inline char fl_can_do_alpha_blending() {
|
|
return Fl_Graphics_Driver::default_driver().can_do_alpha_blending();
|
|
}
|
|
|
|
FL_EXPORT uchar *fl_read_image(uchar *p, int X, int Y, int W, int H, int alpha = 0);
|
|
FL_EXPORT Fl_RGB_Image *fl_capture_window(Fl_Window *win, int x, int y, int w, int h);
|
|
|
|
// pixmaps:
|
|
/**
|
|
Draw XPM image data, with the top-left corner at the given position.
|
|
The image is dithered on 8-bit displays so you won't lose color
|
|
space for programs displaying both images and pixmaps.
|
|
|
|
\param[in] data pointer to XPM image data
|
|
\param[in] x,y position of top-left corner
|
|
\param[in] bg background color
|
|
|
|
\returns 0 if there was any error decoding the XPM data.
|
|
*/
|
|
FL_EXPORT int fl_draw_pixmap(const char *const *data, int x, int y, Fl_Color bg = FL_GRAY);
|
|
/**
|
|
Draw XPM image data, with the top-left corner at the given position.
|
|
\see fl_draw_pixmap(const char* const* data, int x, int y, Fl_Color bg)
|
|
*/
|
|
inline int fl_draw_pixmap(/*const*/ char *const *data, int x, int y, Fl_Color bg = FL_GRAY) {
|
|
return fl_draw_pixmap((const char *const *)data, x, y, bg);
|
|
}
|
|
FL_EXPORT int fl_measure_pixmap(/*const*/ char *const *data, int &w, int &h);
|
|
FL_EXPORT int fl_measure_pixmap(const char *const *cdata, int &w, int &h);
|
|
|
|
// other:
|
|
FL_EXPORT void fl_scroll(int X, int Y, int W, int H, int dx, int dy,
|
|
void (*draw_area)(void *, int, int, int, int), void *data);
|
|
FL_EXPORT const char *fl_shortcut_label(unsigned int shortcut);
|
|
FL_EXPORT const char *fl_shortcut_label(unsigned int shortcut, const char **eom);
|
|
FL_EXPORT unsigned int fl_old_shortcut(const char *s);
|
|
FL_EXPORT void fl_overlay_rect(int x, int y, int w, int h);
|
|
FL_EXPORT void fl_overlay_clear();
|
|
FL_EXPORT void fl_cursor(Fl_Cursor);
|
|
FL_EXPORT void fl_cursor(Fl_Cursor, Fl_Color fg, Fl_Color bg = FL_WHITE);
|
|
FL_EXPORT const char *fl_expand_text(const char *from, char *buf, int maxbuf, double maxw,
|
|
int &n, double &width, int wrap, int draw_symbols = 0);
|
|
|
|
// XIM:
|
|
FL_EXPORT void fl_set_status(int X, int Y, int W, int H);
|
|
/** Inform text input methods about the current text insertion cursor.
|
|
\param font Font currently in use in text input.
|
|
\param size Size of the current font.
|
|
\param X,Y Position of the bottom of the current text insertion cursor.
|
|
\param W,H Width and height of the current text insertion cursor.
|
|
\param win Points to the Fl_Window object containing the current text widget, or NULL.
|
|
*/
|
|
FL_EXPORT void fl_set_spot(int font, int size, int X, int Y, int W, int H, Fl_Window *win = 0);
|
|
/** Resets marked text.
|
|
|
|
In many languages, typing a character can involve multiple keystrokes. For
|
|
example, the Ä can be composed of two dots (¨) on top of the
|
|
character, followed by the letter A (on a Mac with U.S. keyboard, you'd
|
|
type Alt-U, Shift-A. To inform the user that the dots may be followed by
|
|
another character, the ¨ is underlined).
|
|
|
|
Call this function if character composition needs to be aborted for some
|
|
reason. One such example would be the text input widget losing focus.
|
|
*/
|
|
FL_EXPORT void fl_reset_spot(void);
|
|
|
|
|
|
// XForms symbols:
|
|
FL_EXPORT int fl_draw_symbol(const char *label, int x, int y, int w, int h, Fl_Color);
|
|
FL_EXPORT int fl_add_symbol(const char *name, void (*drawit)(Fl_Color), int scalable);
|
|
/** @} */
|
|
|
|
#endif
|