e454f97acc
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.3@7903 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
1111 lines
38 KiB
C++
1111 lines
38 KiB
C++
/*
|
|
* freeglut_geometry.c
|
|
*
|
|
* Freeglut geometry rendering methods.
|
|
*
|
|
* Copyright (c) 1999-2010 Pawel W. Olszta. All Rights Reserved.
|
|
* Written by Pawel W. Olszta, <olszta@sourceforge.net>
|
|
* Creation date: Fri Dec 3 1999
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <FL/glut.H>
|
|
#include <FL/math.h>
|
|
#include <stdlib.h>
|
|
|
|
/*
|
|
* TODO BEFORE THE STABLE RELEASE:
|
|
*
|
|
* Following functions have been contributed by Andreas Umbach.
|
|
*
|
|
* glutWireCube() -- looks OK
|
|
* glutSolidCube() -- OK
|
|
*
|
|
* Those functions have been implemented by John Fay.
|
|
*
|
|
* glutWireTorus() -- looks OK
|
|
* glutSolidTorus() -- looks OK
|
|
* glutWireDodecahedron() -- looks OK
|
|
* glutSolidDodecahedron() -- looks OK
|
|
* glutWireOctahedron() -- looks OK
|
|
* glutSolidOctahedron() -- looks OK
|
|
* glutWireTetrahedron() -- looks OK
|
|
* glutSolidTetrahedron() -- looks OK
|
|
* glutWireIcosahedron() -- looks OK
|
|
* glutSolidIcosahedron() -- looks OK
|
|
*
|
|
* The Following functions have been updated by Nigel Stewart, based
|
|
* on FreeGLUT 2.0.0 implementations:
|
|
*
|
|
* glutWireSphere() -- looks OK
|
|
* glutSolidSphere() -- looks OK
|
|
* glutWireCone() -- looks OK
|
|
* glutSolidCone() -- looks OK
|
|
*/
|
|
|
|
|
|
/* -- INTERFACE FUNCTIONS -------------------------------------------------- */
|
|
|
|
/*
|
|
* Draws a wireframed cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
|
|
*/
|
|
void glutWireCube( GLdouble dSize )
|
|
{
|
|
double size = dSize * 0.5;
|
|
|
|
# define V(a,b,c) glVertex3d( a size, b size, c size );
|
|
# define N(a,b,c) glNormal3d( a, b, c );
|
|
|
|
/* PWO: I dared to convert the code to use macros... */
|
|
glBegin( GL_LINE_LOOP ); N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+); glEnd();
|
|
glBegin( GL_LINE_LOOP ); N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+); glEnd();
|
|
glBegin( GL_LINE_LOOP ); N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+); glEnd();
|
|
glBegin( GL_LINE_LOOP ); N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-); glEnd();
|
|
glBegin( GL_LINE_LOOP ); N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+); glEnd();
|
|
glBegin( GL_LINE_LOOP ); N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-); glEnd();
|
|
|
|
# undef V
|
|
# undef N
|
|
}
|
|
|
|
/*
|
|
* Draws a solid cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
|
|
*/
|
|
void glutSolidCube( GLdouble dSize )
|
|
{
|
|
double size = dSize * 0.5;
|
|
|
|
# define V(a,b,c) glVertex3d( a size, b size, c size );
|
|
# define N(a,b,c) glNormal3d( a, b, c );
|
|
|
|
/* PWO: Again, I dared to convert the code to use macros... */
|
|
glBegin( GL_QUADS );
|
|
N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+);
|
|
N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+);
|
|
N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+);
|
|
N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-);
|
|
N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+);
|
|
N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-);
|
|
glEnd();
|
|
|
|
# undef V
|
|
# undef N
|
|
}
|
|
|
|
/*
|
|
* Compute lookup table of cos and sin values forming a cirle
|
|
*
|
|
* Notes:
|
|
* It is the responsibility of the caller to free these tables
|
|
* The size of the table is (n+1) to form a connected loop
|
|
* The last entry is exactly the same as the first
|
|
* The sign of n can be flipped to get the reverse loop
|
|
*/
|
|
|
|
static void fghCircleTable(double **sint,double **cost,const int n)
|
|
{
|
|
int i;
|
|
|
|
/* Table size, the sign of n flips the circle direction */
|
|
|
|
const int size = abs(n);
|
|
|
|
/* Determine the angle between samples */
|
|
|
|
const double angle = 2*M_PI/(double)( ( n == 0 ) ? 1 : n );
|
|
|
|
/* Allocate memory for n samples, plus duplicate of first entry at the end */
|
|
|
|
*sint = (double *) calloc(sizeof(double), size+1);
|
|
*cost = (double *) calloc(sizeof(double), size+1);
|
|
|
|
/* Bail out if memory allocation fails, fgError never returns */
|
|
|
|
if (!(*sint) || !(*cost))
|
|
{
|
|
if (*sint) free(*sint);
|
|
if (*cost) free(*cost);
|
|
return;
|
|
}
|
|
|
|
/* Compute cos and sin around the circle */
|
|
|
|
(*sint)[0] = 0.0;
|
|
(*cost)[0] = 1.0;
|
|
|
|
for (i=1; i<size; i++)
|
|
{
|
|
(*sint)[i] = sin(angle*i);
|
|
(*cost)[i] = cos(angle*i);
|
|
}
|
|
|
|
/* Last sample is duplicate of the first */
|
|
|
|
(*sint)[size] = (*sint)[0];
|
|
(*cost)[size] = (*cost)[0];
|
|
}
|
|
|
|
/*
|
|
* Draws a solid sphere
|
|
*/
|
|
void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
|
|
{
|
|
int i,j;
|
|
|
|
/* Adjust z and radius as stacks are drawn. */
|
|
|
|
double z0,z1;
|
|
double r0,r1;
|
|
|
|
/* Pre-computed circle */
|
|
|
|
double *sint1,*cost1;
|
|
double *sint2,*cost2;
|
|
|
|
fghCircleTable(&sint1,&cost1,-slices);
|
|
fghCircleTable(&sint2,&cost2,stacks*2);
|
|
|
|
/* The top stack is covered with a triangle fan */
|
|
|
|
z0 = 1.0;
|
|
z1 = cost2[(stacks>0)?1:0];
|
|
r0 = 0.0;
|
|
r1 = sint2[(stacks>0)?1:0];
|
|
|
|
glBegin(GL_TRIANGLE_FAN);
|
|
|
|
glNormal3d(0,0,1);
|
|
glVertex3d(0,0,radius);
|
|
|
|
for (j=slices; j>=0; j--)
|
|
{
|
|
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
|
|
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
|
|
}
|
|
|
|
glEnd();
|
|
|
|
/* Cover each stack with a quad strip, except the top and bottom stacks */
|
|
|
|
for( i=1; i<stacks-1; i++ )
|
|
{
|
|
z0 = z1; z1 = cost2[i+1];
|
|
r0 = r1; r1 = sint2[i+1];
|
|
|
|
glBegin(GL_QUAD_STRIP);
|
|
|
|
for(j=0; j<=slices; j++)
|
|
{
|
|
glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 );
|
|
glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
|
|
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
|
|
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
|
|
/* The bottom stack is covered with a triangle fan */
|
|
|
|
z0 = z1;
|
|
r0 = r1;
|
|
|
|
glBegin(GL_TRIANGLE_FAN);
|
|
|
|
glNormal3d(0,0,-1);
|
|
glVertex3d(0,0,-radius);
|
|
|
|
for (j=0; j<=slices; j++)
|
|
{
|
|
glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 );
|
|
glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
|
|
}
|
|
|
|
glEnd();
|
|
|
|
/* Release sin and cos tables */
|
|
|
|
free(sint1);
|
|
free(cost1);
|
|
free(sint2);
|
|
free(cost2);
|
|
}
|
|
|
|
/*
|
|
* Draws a wire sphere
|
|
*/
|
|
void glutWireSphere(GLdouble radius, GLint slices, GLint stacks)
|
|
{
|
|
int i,j;
|
|
|
|
/* Adjust z and radius as stacks and slices are drawn. */
|
|
|
|
double r;
|
|
double x,y,z;
|
|
|
|
/* Pre-computed circle */
|
|
|
|
double *sint1,*cost1;
|
|
double *sint2,*cost2;
|
|
|
|
fghCircleTable(&sint1,&cost1,-slices );
|
|
fghCircleTable(&sint2,&cost2, stacks*2);
|
|
|
|
/* Draw a line loop for each stack */
|
|
|
|
for (i=1; i<stacks; i++)
|
|
{
|
|
z = cost2[i];
|
|
r = sint2[i];
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
|
|
for(j=0; j<=slices; j++)
|
|
{
|
|
x = cost1[j];
|
|
y = sint1[j];
|
|
|
|
glNormal3d(x,y,z);
|
|
glVertex3d(x*r*radius,y*r*radius,z*radius);
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
|
|
/* Draw a line loop for each slice */
|
|
|
|
for (i=0; i<slices; i++)
|
|
{
|
|
glBegin(GL_LINE_STRIP);
|
|
|
|
for(j=0; j<=stacks; j++)
|
|
{
|
|
x = cost1[i]*sint2[j];
|
|
y = sint1[i]*sint2[j];
|
|
z = cost2[j];
|
|
|
|
glNormal3d(x,y,z);
|
|
glVertex3d(x*radius,y*radius,z*radius);
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
|
|
/* Release sin and cos tables */
|
|
|
|
free(sint1);
|
|
free(cost1);
|
|
free(sint2);
|
|
free(cost2);
|
|
}
|
|
|
|
/*
|
|
* Draws a solid cone
|
|
*/
|
|
void glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
|
|
{
|
|
int i,j;
|
|
|
|
/* Step in z and radius as stacks are drawn. */
|
|
|
|
double z0,z1;
|
|
double r0,r1;
|
|
|
|
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
|
|
const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 );
|
|
|
|
/* Scaling factors for vertex normals */
|
|
|
|
const double cosn = ( height / sqrt ( height * height + base * base ));
|
|
const double sinn = ( base / sqrt ( height * height + base * base ));
|
|
|
|
/* Pre-computed circle */
|
|
|
|
double *sint,*cost;
|
|
|
|
fghCircleTable(&sint,&cost,-slices);
|
|
|
|
/* Cover the circular base with a triangle fan... */
|
|
|
|
z0 = 0.0;
|
|
z1 = zStep;
|
|
|
|
r0 = base;
|
|
r1 = r0 - rStep;
|
|
|
|
glBegin(GL_TRIANGLE_FAN);
|
|
|
|
glNormal3d(0.0,0.0,-1.0);
|
|
glVertex3d(0.0,0.0, z0 );
|
|
|
|
for (j=0; j<=slices; j++)
|
|
glVertex3d(cost[j]*r0, sint[j]*r0, z0);
|
|
|
|
glEnd();
|
|
|
|
/* Cover each stack with a quad strip, except the top stack */
|
|
|
|
for( i=0; i<stacks-1; i++ )
|
|
{
|
|
glBegin(GL_QUAD_STRIP);
|
|
|
|
for(j=0; j<=slices; j++)
|
|
{
|
|
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
|
|
glVertex3d(cost[j]*r0, sint[j]*r0, z0 );
|
|
glVertex3d(cost[j]*r1, sint[j]*r1, z1 );
|
|
}
|
|
|
|
z0 = z1; z1 += zStep;
|
|
r0 = r1; r1 -= rStep;
|
|
|
|
glEnd();
|
|
}
|
|
|
|
/* The top stack is covered with individual triangles */
|
|
|
|
glBegin(GL_TRIANGLES);
|
|
|
|
glNormal3d(cost[0]*sinn, sint[0]*sinn, cosn);
|
|
|
|
for (j=0; j<slices; j++)
|
|
{
|
|
glVertex3d(cost[j+0]*r0, sint[j+0]*r0, z0 );
|
|
glVertex3d(0, 0, height);
|
|
glNormal3d(cost[j+1]*sinn, sint[j+1]*sinn, cosn );
|
|
glVertex3d(cost[j+1]*r0, sint[j+1]*r0, z0 );
|
|
}
|
|
|
|
glEnd();
|
|
|
|
/* Release sin and cos tables */
|
|
|
|
free(sint);
|
|
free(cost);
|
|
}
|
|
|
|
/*
|
|
* Draws a wire cone
|
|
*/
|
|
void glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks)
|
|
{
|
|
int i,j;
|
|
|
|
/* Step in z and radius as stacks are drawn. */
|
|
|
|
double z = 0.0;
|
|
double r = base;
|
|
|
|
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
|
|
const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 );
|
|
|
|
/* Scaling factors for vertex normals */
|
|
|
|
const double cosn = ( height / sqrt ( height * height + base * base ));
|
|
const double sinn = ( base / sqrt ( height * height + base * base ));
|
|
|
|
/* Pre-computed circle */
|
|
|
|
double *sint,*cost;
|
|
|
|
fghCircleTable(&sint,&cost,-slices);
|
|
|
|
/* Draw the stacks... */
|
|
|
|
for (i=0; i<stacks; i++)
|
|
{
|
|
glBegin(GL_LINE_LOOP);
|
|
|
|
for( j=0; j<slices; j++ )
|
|
{
|
|
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
|
|
glVertex3d(cost[j]*r, sint[j]*r, z );
|
|
}
|
|
|
|
glEnd();
|
|
|
|
z += zStep;
|
|
r -= rStep;
|
|
}
|
|
|
|
/* Draw the slices */
|
|
|
|
r = base;
|
|
|
|
glBegin(GL_LINES);
|
|
|
|
for (j=0; j<slices; j++)
|
|
{
|
|
glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn );
|
|
glVertex3d(cost[j]*r, sint[j]*r, 0.0 );
|
|
glVertex3d(0.0, 0.0, height);
|
|
}
|
|
|
|
glEnd();
|
|
|
|
/* Release sin and cos tables */
|
|
|
|
free(sint);
|
|
free(cost);
|
|
}
|
|
|
|
|
|
/*
|
|
* Draws a solid cylinder
|
|
*/
|
|
void glutSolidCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
|
|
{
|
|
int i,j;
|
|
|
|
/* Step in z and radius as stacks are drawn. */
|
|
|
|
double z0,z1;
|
|
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
|
|
|
|
/* Pre-computed circle */
|
|
|
|
double *sint,*cost;
|
|
|
|
fghCircleTable(&sint,&cost,-slices);
|
|
|
|
/* Cover the base and top */
|
|
|
|
glBegin(GL_TRIANGLE_FAN);
|
|
glNormal3d(0.0, 0.0, -1.0 );
|
|
glVertex3d(0.0, 0.0, 0.0 );
|
|
for (j=0; j<=slices; j++)
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0);
|
|
glEnd();
|
|
|
|
glBegin(GL_TRIANGLE_FAN);
|
|
glNormal3d(0.0, 0.0, 1.0 );
|
|
glVertex3d(0.0, 0.0, height);
|
|
for (j=slices; j>=0; j--)
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, height);
|
|
glEnd();
|
|
|
|
/* Do the stacks */
|
|
|
|
z0 = 0.0;
|
|
z1 = zStep;
|
|
|
|
for (i=1; i<=stacks; i++)
|
|
{
|
|
if (i==stacks)
|
|
z1 = height;
|
|
|
|
glBegin(GL_QUAD_STRIP);
|
|
for (j=0; j<=slices; j++ )
|
|
{
|
|
glNormal3d(cost[j], sint[j], 0.0 );
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, z0 );
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, z1 );
|
|
}
|
|
glEnd();
|
|
|
|
z0 = z1; z1 += zStep;
|
|
}
|
|
|
|
/* Release sin and cos tables */
|
|
|
|
free(sint);
|
|
free(cost);
|
|
}
|
|
|
|
/*
|
|
* Draws a wire cylinder
|
|
*/
|
|
void glutWireCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
|
|
{
|
|
int i,j;
|
|
|
|
/* Step in z and radius as stacks are drawn. */
|
|
|
|
double z = 0.0;
|
|
const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
|
|
|
|
/* Pre-computed circle */
|
|
|
|
double *sint,*cost;
|
|
|
|
fghCircleTable(&sint,&cost,-slices);
|
|
|
|
/* Draw the stacks... */
|
|
|
|
for (i=0; i<=stacks; i++)
|
|
{
|
|
if (i==stacks)
|
|
z = height;
|
|
|
|
glBegin(GL_LINE_LOOP);
|
|
|
|
for( j=0; j<slices; j++ )
|
|
{
|
|
glNormal3d(cost[j], sint[j], 0.0);
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, z );
|
|
}
|
|
|
|
glEnd();
|
|
|
|
z += zStep;
|
|
}
|
|
|
|
/* Draw the slices */
|
|
|
|
glBegin(GL_LINES);
|
|
|
|
for (j=0; j<slices; j++)
|
|
{
|
|
glNormal3d(cost[j], sint[j], 0.0 );
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, 0.0 );
|
|
glVertex3d(cost[j]*radius, sint[j]*radius, height);
|
|
}
|
|
|
|
glEnd();
|
|
|
|
/* Release sin and cos tables */
|
|
|
|
free(sint);
|
|
free(cost);
|
|
}
|
|
|
|
/*
|
|
* Draws a wire torus
|
|
*/
|
|
void glutWireTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
|
|
{
|
|
double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
|
|
double *vertex, *normal;
|
|
int i, j;
|
|
double spsi, cpsi, sphi, cphi ;
|
|
|
|
if ( nSides < 1 ) nSides = 1;
|
|
if ( nRings < 1 ) nRings = 1;
|
|
|
|
/* Allocate the vertices array */
|
|
vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
|
|
normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
|
|
|
|
glPushMatrix();
|
|
|
|
dpsi = 2.0 * M_PI / (double)nRings ;
|
|
dphi = -2.0 * M_PI / (double)nSides ;
|
|
psi = 0.0;
|
|
|
|
for( j=0; j<nRings; j++ )
|
|
{
|
|
cpsi = cos ( psi ) ;
|
|
spsi = sin ( psi ) ;
|
|
phi = 0.0;
|
|
|
|
for( i=0; i<nSides; i++ )
|
|
{
|
|
int offset = 3 * ( j * nSides + i ) ;
|
|
cphi = cos ( phi ) ;
|
|
sphi = sin ( phi ) ;
|
|
*(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
|
|
*(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
|
|
*(vertex + offset + 2) = sphi * iradius ;
|
|
*(normal + offset + 0) = cpsi * cphi ;
|
|
*(normal + offset + 1) = spsi * cphi ;
|
|
*(normal + offset + 2) = sphi ;
|
|
phi += dphi;
|
|
}
|
|
|
|
psi += dpsi;
|
|
}
|
|
|
|
for( i=0; i<nSides; i++ )
|
|
{
|
|
glBegin( GL_LINE_LOOP );
|
|
|
|
for( j=0; j<nRings; j++ )
|
|
{
|
|
int offset = 3 * ( j * nSides + i ) ;
|
|
glNormal3dv( normal + offset );
|
|
glVertex3dv( vertex + offset );
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
|
|
for( j=0; j<nRings; j++ )
|
|
{
|
|
glBegin(GL_LINE_LOOP);
|
|
|
|
for( i=0; i<nSides; i++ )
|
|
{
|
|
int offset = 3 * ( j * nSides + i ) ;
|
|
glNormal3dv( normal + offset );
|
|
glVertex3dv( vertex + offset );
|
|
}
|
|
|
|
glEnd();
|
|
}
|
|
|
|
free ( vertex ) ;
|
|
free ( normal ) ;
|
|
glPopMatrix();
|
|
}
|
|
|
|
/*
|
|
* Draws a solid torus
|
|
*/
|
|
void glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
|
|
{
|
|
double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
|
|
double *vertex, *normal;
|
|
int i, j;
|
|
double spsi, cpsi, sphi, cphi ;
|
|
|
|
if ( nSides < 1 ) nSides = 1;
|
|
if ( nRings < 1 ) nRings = 1;
|
|
|
|
/* Increment the number of sides and rings to allow for one more point than surface */
|
|
nSides ++ ;
|
|
nRings ++ ;
|
|
|
|
/* Allocate the vertices array */
|
|
vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
|
|
normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
|
|
|
|
glPushMatrix();
|
|
|
|
dpsi = 2.0 * M_PI / (double)(nRings - 1) ;
|
|
dphi = -2.0 * M_PI / (double)(nSides - 1) ;
|
|
psi = 0.0;
|
|
|
|
for( j=0; j<nRings; j++ )
|
|
{
|
|
cpsi = cos ( psi ) ;
|
|
spsi = sin ( psi ) ;
|
|
phi = 0.0;
|
|
|
|
for( i=0; i<nSides; i++ )
|
|
{
|
|
int offset = 3 * ( j * nSides + i ) ;
|
|
cphi = cos ( phi ) ;
|
|
sphi = sin ( phi ) ;
|
|
*(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
|
|
*(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
|
|
*(vertex + offset + 2) = sphi * iradius ;
|
|
*(normal + offset + 0) = cpsi * cphi ;
|
|
*(normal + offset + 1) = spsi * cphi ;
|
|
*(normal + offset + 2) = sphi ;
|
|
phi += dphi;
|
|
}
|
|
|
|
psi += dpsi;
|
|
}
|
|
|
|
glBegin( GL_QUADS );
|
|
for( i=0; i<nSides-1; i++ )
|
|
{
|
|
for( j=0; j<nRings-1; j++ )
|
|
{
|
|
int offset = 3 * ( j * nSides + i ) ;
|
|
glNormal3dv( normal + offset );
|
|
glVertex3dv( vertex + offset );
|
|
glNormal3dv( normal + offset + 3 );
|
|
glVertex3dv( vertex + offset + 3 );
|
|
glNormal3dv( normal + offset + 3 * nSides + 3 );
|
|
glVertex3dv( vertex + offset + 3 * nSides + 3 );
|
|
glNormal3dv( normal + offset + 3 * nSides );
|
|
glVertex3dv( vertex + offset + 3 * nSides );
|
|
}
|
|
}
|
|
|
|
glEnd();
|
|
|
|
free ( vertex ) ;
|
|
free ( normal ) ;
|
|
glPopMatrix();
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutWireDodecahedron( void )
|
|
{
|
|
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
|
|
* of a cube. The coordinates of the points are:
|
|
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
|
|
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
|
|
* x = 0.61803398875 and z = 1.61803398875.
|
|
*/
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutSolidDodecahedron( void )
|
|
{
|
|
/* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
|
|
* of a cube. The coordinates of the points are:
|
|
* (+-x,0, z); (+-1, 1, 1); (0, z, x )
|
|
* where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
|
|
* x = 0.61803398875 and z = 1.61803398875.
|
|
*/
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
|
|
glEnd () ;
|
|
glBegin ( GL_POLYGON ) ;
|
|
glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
|
|
glEnd () ;
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutWireOctahedron( void )
|
|
{
|
|
#define RADIUS 1.0f
|
|
glBegin( GL_LINE_LOOP );
|
|
glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
|
|
glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
|
|
glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
|
|
glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
|
|
glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
|
|
glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
|
|
glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
|
|
glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
|
|
glEnd();
|
|
#undef RADIUS
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutSolidOctahedron( void )
|
|
{
|
|
#define RADIUS 1.0f
|
|
glBegin( GL_TRIANGLES );
|
|
glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
|
|
glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
|
|
glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
|
|
glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
|
|
glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
|
|
glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
|
|
glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
|
|
glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
|
|
glEnd();
|
|
#undef RADIUS
|
|
}
|
|
|
|
/* Magic Numbers: r0 = ( 1, 0, 0 )
|
|
* r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
|
|
* r2 = ( -1/3, -sqrt(2) / 3, sqrt(6) / 3 )
|
|
* r3 = ( -1/3, -sqrt(2) / 3, -sqrt(6) / 3 )
|
|
* |r0| = |r1| = |r2| = |r3| = 1
|
|
* Distance between any two points is 2 sqrt(6) / 3
|
|
*
|
|
* Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
|
|
*/
|
|
|
|
#define NUM_TETR_FACES 4
|
|
|
|
static GLdouble tet_r[4][3] = { { 1.0, 0.0, 0.0 },
|
|
{ -0.333333333333, 0.942809041582, 0.0 },
|
|
{ -0.333333333333, -0.471404520791, 0.816496580928 },
|
|
{ -0.333333333333, -0.471404520791, -0.816496580928 } } ;
|
|
|
|
static GLint tet_i[4][3] = /* Vertex indices */
|
|
{
|
|
{ 1, 3, 2 }, { 0, 2, 3 }, { 0, 3, 1 }, { 0, 1, 2 }
|
|
} ;
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutWireTetrahedron( void )
|
|
{
|
|
glBegin( GL_LINE_LOOP ) ;
|
|
glNormal3d ( -tet_r[0][0], -tet_r[0][1], -tet_r[0][2] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[2] ) ;
|
|
glNormal3d ( -tet_r[1][0], -tet_r[1][1], -tet_r[1][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[2] ) ; glVertex3dv ( tet_r[3] ) ;
|
|
glNormal3d ( -tet_r[2][0], -tet_r[2][1], -tet_r[2][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[1] ) ;
|
|
glNormal3d ( -tet_r[3][0], -tet_r[3][1], -tet_r[3][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[2] ) ;
|
|
glEnd() ;
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutSolidTetrahedron( void )
|
|
{
|
|
glBegin( GL_TRIANGLES ) ;
|
|
glNormal3d ( -tet_r[0][0], -tet_r[0][1], -tet_r[0][2] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[2] ) ;
|
|
glNormal3d ( -tet_r[1][0], -tet_r[1][1], -tet_r[1][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[2] ) ; glVertex3dv ( tet_r[3] ) ;
|
|
glNormal3d ( -tet_r[2][0], -tet_r[2][1], -tet_r[2][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[1] ) ;
|
|
glNormal3d ( -tet_r[3][0], -tet_r[3][1], -tet_r[3][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[2] ) ;
|
|
glEnd() ;
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
double icos_r[12][3] = { { 1.0, 0.0, 0.0 },
|
|
{ 0.447213595500, 0.894427191000, 0.0 }, { 0.447213595500, 0.276393202252, 0.850650808354 }, { 0.447213595500, -0.723606797748, 0.525731112119 }, { 0.447213595500, -0.723606797748, -0.525731112119 }, { 0.447213595500, 0.276393202252, -0.850650808354 },
|
|
{ -0.447213595500, -0.894427191000, 0.0 }, { -0.447213595500, -0.276393202252, 0.850650808354 }, { -0.447213595500, 0.723606797748, 0.525731112119 }, { -0.447213595500, 0.723606797748, -0.525731112119 }, { -0.447213595500, -0.276393202252, -0.850650808354 },
|
|
{ -1.0, 0.0, 0.0 } } ;
|
|
int icos_v [20][3] = { { 0, 1, 2 }, { 0, 2, 3 }, { 0, 3, 4 }, { 0, 4, 5 }, { 0, 5, 1 },
|
|
{ 1, 8, 2 }, { 2, 7, 3 }, { 3, 6, 4 }, { 4, 10, 5 }, { 5, 9, 1 },
|
|
{ 1, 9, 8 }, { 2, 8, 7 }, { 3, 7, 6 }, { 4, 6, 10 }, { 5, 10, 9 },
|
|
{ 11, 9, 10 }, { 11, 8, 9 }, { 11, 7, 8 }, { 11, 6, 7 }, { 11, 10, 6 } } ;
|
|
|
|
void glutWireIcosahedron( void )
|
|
{
|
|
int i ;
|
|
|
|
for ( i = 0; i < 20; i++ )
|
|
{
|
|
double normal[3] ;
|
|
normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
|
|
normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
|
|
normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3dv ( normal ) ;
|
|
glVertex3dv ( icos_r[icos_v[i][0]] ) ;
|
|
glVertex3dv ( icos_r[icos_v[i][1]] ) ;
|
|
glVertex3dv ( icos_r[icos_v[i][2]] ) ;
|
|
glEnd () ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutSolidIcosahedron( void )
|
|
{
|
|
int i ;
|
|
|
|
glBegin ( GL_TRIANGLES ) ;
|
|
for ( i = 0; i < 20; i++ )
|
|
{
|
|
double normal[3] ;
|
|
normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
|
|
normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
|
|
normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
|
|
glNormal3dv ( normal ) ;
|
|
glVertex3dv ( icos_r[icos_v[i][0]] ) ;
|
|
glVertex3dv ( icos_r[icos_v[i][1]] ) ;
|
|
glVertex3dv ( icos_r[icos_v[i][2]] ) ;
|
|
}
|
|
|
|
glEnd () ;
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
double rdod_r[14][3] = { { 0.0, 0.0, 1.0 },
|
|
{ 0.707106781187, 0.000000000000, 0.5 }, { 0.000000000000, 0.707106781187, 0.5 }, { -0.707106781187, 0.000000000000, 0.5 }, { 0.000000000000, -0.707106781187, 0.5 },
|
|
{ 0.707106781187, 0.707106781187, 0.0 }, { -0.707106781187, 0.707106781187, 0.0 }, { -0.707106781187, -0.707106781187, 0.0 }, { 0.707106781187, -0.707106781187, 0.0 },
|
|
{ 0.707106781187, 0.000000000000, -0.5 }, { 0.000000000000, 0.707106781187, -0.5 }, { -0.707106781187, 0.000000000000, -0.5 }, { 0.000000000000, -0.707106781187, -0.5 },
|
|
{ 0.0, 0.0, -1.0 } } ;
|
|
int rdod_v [12][4] = { { 0, 1, 5, 2 }, { 0, 2, 6, 3 }, { 0, 3, 7, 4 }, { 0, 4, 8, 1 },
|
|
{ 5, 10, 6, 2 }, { 6, 11, 7, 3 }, { 7, 12, 8, 4 }, { 8, 9, 5, 1 },
|
|
{ 5, 9, 13, 10 }, { 6, 10, 13, 11 }, { 7, 11, 13, 12 }, { 8, 12, 13, 9 } } ;
|
|
double rdod_n[12][3] = {
|
|
{ 0.353553390594, 0.353553390594, 0.5 }, { -0.353553390594, 0.353553390594, 0.5 }, { -0.353553390594, -0.353553390594, 0.5 }, { 0.353553390594, -0.353553390594, 0.5 },
|
|
{ 0.000000000000, 1.000000000000, 0.0 }, { -1.000000000000, 0.000000000000, 0.0 }, { 0.000000000000, -1.000000000000, 0.0 }, { 1.000000000000, 0.000000000000, 0.0 },
|
|
{ 0.353553390594, 0.353553390594, -0.5 }, { -0.353553390594, 0.353553390594, -0.5 }, { -0.353553390594, -0.353553390594, -0.5 }, { 0.353553390594, -0.353553390594, -0.5 }
|
|
} ;
|
|
|
|
void glutWireRhombicDodecahedron( void )
|
|
{
|
|
int i ;
|
|
|
|
for ( i = 0; i < 12; i++ )
|
|
{
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3dv ( rdod_n[i] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
|
|
glEnd () ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
*
|
|
*/
|
|
void glutSolidRhombicDodecahedron( void )
|
|
{
|
|
int i ;
|
|
|
|
glBegin ( GL_QUADS ) ;
|
|
for ( i = 0; i < 12; i++ )
|
|
{
|
|
glNormal3dv ( rdod_n[i] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
|
|
glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
|
|
}
|
|
|
|
glEnd () ;
|
|
}
|
|
|
|
void glutWireSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
|
|
{
|
|
int i, j ;
|
|
|
|
if ( num_levels == 0 )
|
|
{
|
|
|
|
for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
|
|
{
|
|
glBegin ( GL_LINE_LOOP ) ;
|
|
glNormal3d ( -tet_r[i][0], -tet_r[i][1], -tet_r[i][2] ) ;
|
|
for ( j = 0; j < 3; j++ )
|
|
{
|
|
double x = offset[0] + scale * tet_r[tet_i[i][j]][0] ;
|
|
double y = offset[1] + scale * tet_r[tet_i[i][j]][1] ;
|
|
double z = offset[2] + scale * tet_r[tet_i[i][j]][2] ;
|
|
glVertex3d ( x, y, z ) ;
|
|
}
|
|
|
|
glEnd () ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
|
|
num_levels -- ;
|
|
scale /= 2.0 ;
|
|
for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
|
|
{
|
|
local_offset[0] = offset[0] + scale * tet_r[i][0] ;
|
|
local_offset[1] = offset[1] + scale * tet_r[i][1] ;
|
|
local_offset[2] = offset[2] + scale * tet_r[i][2] ;
|
|
glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
void glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
|
|
{
|
|
int i, j ;
|
|
|
|
if ( num_levels == 0 )
|
|
{
|
|
glBegin ( GL_TRIANGLES ) ;
|
|
|
|
for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
|
|
{
|
|
glNormal3d ( -tet_r[i][0], -tet_r[i][1], -tet_r[i][2] ) ;
|
|
for ( j = 0; j < 3; j++ )
|
|
{
|
|
double x = offset[0] + scale * tet_r[tet_i[i][j]][0] ;
|
|
double y = offset[1] + scale * tet_r[tet_i[i][j]][1] ;
|
|
double z = offset[2] + scale * tet_r[tet_i[i][j]][2] ;
|
|
glVertex3d ( x, y, z ) ;
|
|
}
|
|
}
|
|
|
|
glEnd () ;
|
|
}
|
|
else
|
|
{
|
|
GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
|
|
num_levels -- ;
|
|
scale /= 2.0 ;
|
|
for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
|
|
{
|
|
local_offset[0] = offset[0] + scale * tet_r[i][0] ;
|
|
local_offset[1] = offset[1] + scale * tet_r[i][1] ;
|
|
local_offset[2] = offset[2] + scale * tet_r[i][2] ;
|
|
glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*** END OF FILE ***/
|