fltk/src/Fl_Image.cxx
Manolo Gouy 6e880cee6a Allow compilation with early Mac OS versions.
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.3@9795 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
2013-01-16 08:45:35 +00:00

606 lines
16 KiB
C++

//
// "$Id$"
//
// Image drawing code for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2012 by Bill Spitzak and others.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// http://www.fltk.org/COPYING.php
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
#include <FL/Fl.H>
#include <FL/fl_draw.H>
#include <FL/x.H>
#include <FL/Fl_Widget.H>
#include <FL/Fl_Menu_Item.H>
#include <FL/Fl_Image.H>
#include "flstring.h"
#ifdef WIN32
void fl_release_dc(HWND, HDC); // from Fl_win32.cxx
#endif
void fl_restore_clip(); // from fl_rect.cxx
//
// Base image class...
//
/**
The destructor is a virtual method that frees all memory used
by the image.
*/
Fl_Image::~Fl_Image() {
}
/**
If the image has been cached for display, delete the cache
data. This allows you to change the data used for the image and
then redraw it without recreating an image object.
*/
void Fl_Image::uncache() {
}
void Fl_Image::draw(int XP, int YP, int, int, int, int) {
draw_empty(XP, YP);
}
/**
The protected method draw_empty() draws a box with
an X in it. It can be used to draw any image that lacks image
data.
*/
void Fl_Image::draw_empty(int X, int Y) {
if (w() > 0 && h() > 0) {
fl_color(FL_FOREGROUND_COLOR);
fl_rect(X, Y, w(), h());
fl_line(X, Y, X + w() - 1, Y + h() - 1);
fl_line(X, Y + h() - 1, X + w() - 1, Y);
}
}
/**
The copy() method creates a copy of the specified
image. If the width and height are provided, the image is
resized to the specified size. The image should be deleted (or in
the case of Fl_Shared_Image, released) when you are done
with it.
*/
Fl_Image *Fl_Image::copy(int W, int H) {
return new Fl_Image(W, H, d());
}
/**
The color_average() method averages the colors in
the image with the FLTK color value c. The i
argument specifies the amount of the original image to combine
with the color, so a value of 1.0 results in no color blend, and
a value of 0.0 results in a constant image of the specified
color. <I>The original image data is not altered by this
method.</I>
*/
void Fl_Image::color_average(Fl_Color, float) {
}
/**
The desaturate() method converts an image to
grayscale. If the image contains an alpha channel (depth = 4),
the alpha channel is preserved. <I>This method does not alter
the original image data.</I>
*/
void Fl_Image::desaturate() {
}
/**
The label() methods are an obsolete way to set the
image attribute of a widget or menu item. Use the
image() or deimage() methods of the
Fl_Widget and Fl_Menu_Item classes
instead.
*/
void Fl_Image::label(Fl_Widget* widget) {
widget->image(this);
}
/**
The label() methods are an obsolete way to set the
image attribute of a widget or menu item. Use the
image() or deimage() methods of the
Fl_Widget and Fl_Menu_Item classes
instead.
*/
void Fl_Image::label(Fl_Menu_Item* m) {
Fl::set_labeltype(_FL_IMAGE_LABEL, labeltype, measure);
m->label(_FL_IMAGE_LABEL, (const char*)this);
}
void
Fl_Image::labeltype(const Fl_Label *lo, // I - Label
int lx, // I - X position
int ly, // I - Y position
int lw, // I - Width of label
int lh, // I - Height of label
Fl_Align la) { // I - Alignment
Fl_Image *img; // Image pointer
int cx, cy; // Image position
img = (Fl_Image *)(lo->value);
if (la & FL_ALIGN_LEFT) cx = 0;
else if (la & FL_ALIGN_RIGHT) cx = img->w() - lw;
else cx = (img->w() - lw) / 2;
if (la & FL_ALIGN_TOP) cy = 0;
else if (la & FL_ALIGN_BOTTOM) cy = img->h() - lh;
else cy = (img->h() - lh) / 2;
fl_color((Fl_Color)lo->color);
img->draw(lx, ly, lw, lh, cx, cy);
}
void
Fl_Image::measure(const Fl_Label *lo, // I - Label
int &lw, // O - Width of image
int &lh) { // O - Height of image
Fl_Image *img; // Image pointer
img = (Fl_Image *)(lo->value);
lw = img->w();
lh = img->h();
}
//
// RGB image class...
//
size_t Fl_RGB_Image::max_size_ = ~((size_t)0);
/** The destructor free all memory and server resources that are used by the image. */
Fl_RGB_Image::~Fl_RGB_Image() {
uncache();
if (alloc_array) delete[] (uchar *)array;
}
void Fl_RGB_Image::uncache() {
#ifdef __APPLE_QUARTZ__
if (id_) {
CGImageRelease((CGImageRef)id_);
id_ = 0;
}
#else
if (id_) {
fl_delete_offscreen((Fl_Offscreen)id_);
id_ = 0;
}
if (mask_) {
fl_delete_bitmask((Fl_Bitmask)mask_);
mask_ = 0;
}
#endif
}
Fl_Image *Fl_RGB_Image::copy(int W, int H) {
Fl_RGB_Image *new_image; // New RGB image
uchar *new_array; // New array for image data
// Optimize the simple copy where the width and height are the same,
// or when we are copying an empty image...
if ((W == w() && H == h()) ||
!w() || !h() || !d() || !array) {
if (array) {
// Make a copy of the image data and return a new Fl_RGB_Image...
new_array = new uchar[w() * h() * d()];
if (ld() && ld()!=w()*d()) {
const uchar *src = array;
uchar *dst = new_array;
int dy, dh = h(), wd = w()*d(), wld = ld();
for (dy=0; dy<dh; dy++) {
memcpy(dst, src, wd);
src += wld;
dst += wd;
}
} else {
memcpy(new_array, array, w() * h() * d());
}
new_image = new Fl_RGB_Image(new_array, w(), h(), d());
new_image->alloc_array = 1;
return new_image;
} else return new Fl_RGB_Image(array, w(), h(), d(), ld());
}
if (W <= 0 || H <= 0) return 0;
// OK, need to resize the image data; allocate memory and
uchar *new_ptr; // Pointer into new array
const uchar *old_ptr; // Pointer into old array
int c, // Channel number
sy, // Source coordinate
dx, dy, // Destination coordinates
xerr, yerr, // X & Y errors
xmod, ymod, // X & Y moduli
xstep, ystep, // X & Y step increments
line_d; // stride from line to line
// Figure out Bresenheim step/modulus values...
xmod = w() % W;
xstep = (w() / W) * d();
ymod = h() % H;
ystep = h() / H;
line_d = ld() ? ld() : w() * d();
// Allocate memory for the new image...
new_array = new uchar [W * H * d()];
new_image = new Fl_RGB_Image(new_array, W, H, d());
new_image->alloc_array = 1;
// Scale the image using a nearest-neighbor algorithm...
for (dy = H, sy = 0, yerr = H, new_ptr = new_array; dy > 0; dy --) {
for (dx = W, xerr = W, old_ptr = array + sy * line_d; dx > 0; dx --) {
for (c = 0; c < d(); c ++) *new_ptr++ = old_ptr[c];
old_ptr += xstep;
xerr -= xmod;
if (xerr <= 0) {
xerr += W;
old_ptr += d();
}
}
sy += ystep;
yerr -= ymod;
if (yerr <= 0) {
yerr += H;
sy ++;
}
}
return new_image;
}
void Fl_RGB_Image::color_average(Fl_Color c, float i) {
// Don't average an empty image...
if (!w() || !h() || !d() || !array) return;
// Delete any existing pixmap/mask objects...
uncache();
// Allocate memory as needed...
uchar *new_array,
*new_ptr;
if (!alloc_array) new_array = new uchar[h() * w() * d()];
else new_array = (uchar *)array;
// Get the color to blend with...
uchar r, g, b;
unsigned ia, ir, ig, ib;
Fl::get_color(c, r, g, b);
if (i < 0.0f) i = 0.0f;
else if (i > 1.0f) i = 1.0f;
ia = (unsigned)(256 * i);
ir = r * (256 - ia);
ig = g * (256 - ia);
ib = b * (256 - ia);
// Update the image data to do the blend...
const uchar *old_ptr;
int x, y;
int line_i = ld() ? ld() - (w()*d()) : 0; // increment from line end to beginning of next line
if (d() < 3) {
ig = (r * 31 + g * 61 + b * 8) / 100 * (256 - ia);
for (new_ptr = new_array, old_ptr = array, y = 0; y < h(); y ++, old_ptr += line_i)
for (x = 0; x < w(); x ++) {
*new_ptr++ = (*old_ptr++ * ia + ig) >> 8;
if (d() > 1) *new_ptr++ = *old_ptr++;
}
} else {
for (new_ptr = new_array, old_ptr = array, y = 0; y < h(); y ++, old_ptr += line_i)
for (x = 0; x < w(); x ++) {
*new_ptr++ = (*old_ptr++ * ia + ir) >> 8;
*new_ptr++ = (*old_ptr++ * ia + ig) >> 8;
*new_ptr++ = (*old_ptr++ * ia + ib) >> 8;
if (d() > 3) *new_ptr++ = *old_ptr++;
}
}
// Set the new pointers/values as needed...
if (!alloc_array) {
array = new_array;
alloc_array = 1;
ld(0);
}
}
void Fl_RGB_Image::desaturate() {
// Don't desaturate an empty image...
if (!w() || !h() || !d() || !array) return;
// Can only desaturate color images...
if (d() < 3) return;
// Delete any existing pixmap/mask objects...
uncache();
// Allocate memory for a grayscale image...
uchar *new_array,
*new_ptr;
int new_d;
new_d = d() - 2;
new_array = new uchar[h() * w() * new_d];
// Copy the image data, converting to grayscale...
const uchar *old_ptr;
int x, y;
int line_i = ld() ? ld() - (w()*d()) : 0; // increment from line end to beginning of next line
for (new_ptr = new_array, old_ptr = array, y = 0; y < h(); y ++, old_ptr += line_i)
for (x = 0; x < w(); x ++, old_ptr += d()) {
*new_ptr++ = (uchar)((31 * old_ptr[0] + 61 * old_ptr[1] + 8 * old_ptr[2]) / 100);
if (d() > 3) *new_ptr++ = old_ptr[3];
}
// Free the old array as needed, and then set the new pointers/values...
if (alloc_array) delete[] (uchar *)array;
array = new_array;
alloc_array = 1;
ld(0);
d(new_d);
}
#if !defined(WIN32) && !defined(__APPLE_QUARTZ__)
// Composite an image with alpha on systems that don't have accelerated
// alpha compositing...
static void alpha_blend(Fl_RGB_Image *img, int X, int Y, int W, int H, int cx, int cy) {
int ld = img->ld();
if (ld == 0) ld = img->w() * img->d();
uchar *srcptr = (uchar*)img->array + cy * ld + cx * img->d();
int srcskip = ld - img->d() * W;
uchar *dst = new uchar[W * H * 3];
uchar *dstptr = dst;
fl_read_image(dst, X, Y, W, H, 0);
uchar srcr, srcg, srcb, srca;
uchar dstr, dstg, dstb, dsta;
if (img->d() == 2) {
// Composite grayscale + alpha over RGB...
for (int y = H; y > 0; y--, srcptr+=srcskip)
for (int x = W; x > 0; x--) {
srcg = *srcptr++;
srca = *srcptr++;
dstr = dstptr[0];
dstg = dstptr[1];
dstb = dstptr[2];
dsta = 255 - srca;
*dstptr++ = (srcg * srca + dstr * dsta) >> 8;
*dstptr++ = (srcg * srca + dstg * dsta) >> 8;
*dstptr++ = (srcg * srca + dstb * dsta) >> 8;
}
} else {
// Composite RGBA over RGB...
for (int y = H; y > 0; y--, srcptr+=srcskip)
for (int x = W; x > 0; x--) {
srcr = *srcptr++;
srcg = *srcptr++;
srcb = *srcptr++;
srca = *srcptr++;
dstr = dstptr[0];
dstg = dstptr[1];
dstb = dstptr[2];
dsta = 255 - srca;
*dstptr++ = (srcr * srca + dstr * dsta) >> 8;
*dstptr++ = (srcg * srca + dstg * dsta) >> 8;
*dstptr++ = (srcb * srca + dstb * dsta) >> 8;
}
}
fl_draw_image(dst, X, Y, W, H, 3, 0);
delete[] dst;
}
#endif // !WIN32 && !__APPLE_QUARTZ__
void Fl_RGB_Image::draw(int XP, int YP, int WP, int HP, int cx, int cy) {
fl_graphics_driver->draw(this, XP, YP, WP, HP, cx, cy);
}
static int start(Fl_RGB_Image *img, int XP, int YP, int WP, int HP, int w, int h, int &cx, int &cy,
int &X, int &Y, int &W, int &H)
{
// account for current clip region (faster on Irix):
fl_clip_box(XP,YP,WP,HP,X,Y,W,H);
cx += X-XP; cy += Y-YP;
// clip the box down to the size of image, quit if empty:
if (cx < 0) {W += cx; X -= cx; cx = 0;}
if (cx+W > w) W = w-cx;
if (W <= 0) return 1;
if (cy < 0) {H += cy; Y -= cy; cy = 0;}
if (cy+H > h) H = h-cy;
if (H <= 0) return 1;
return 0;
}
#ifdef __APPLE__
static void imgProviderReleaseData (void *info, const void *data, size_t size)
{
delete[] (unsigned char *)data;
}
#if MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_5
typedef void (*CGDataProviderReleaseDataCallback)(void *info, const void *data, size_t size);
#endif
void Fl_Quartz_Graphics_Driver::draw(Fl_RGB_Image *img, int XP, int YP, int WP, int HP, int cx, int cy) {
int X, Y, W, H;
// Don't draw an empty image...
if (!img->d() || !img->array) {
img->draw_empty(XP, YP);
return;
}
if (start(img, XP, YP, WP, HP, img->w(), img->h(), cx, cy, X, Y, W, H)) {
return;
}
if (!img->id_) {
CGColorSpaceRef lut = 0;
CGDataProviderReleaseDataCallback release_cb = NULL;
const uchar* img_bytes = img->array;
int ld = img->ld();
if (Fl_Surface_Device::surface() != Fl_Display_Device::display_device()) {
// when printing, duplicate the image data so it can be deleted later, at page end
release_cb = imgProviderReleaseData;
Fl_RGB_Image* img2 = (Fl_RGB_Image*)img->copy();
img2->alloc_array = 0;
img_bytes = img2->array;
ld = 0;
delete img2;
}
if (img->d()<=2)
lut = CGColorSpaceCreateDeviceGray();
else
lut = CGColorSpaceCreateDeviceRGB();
CGDataProviderRef src = CGDataProviderCreateWithData( NULL, img_bytes, img->w()*img->h()*img->d(), release_cb);
img->id_ = CGImageCreate( img->w(), img->h(), 8, img->d()*8, ld?ld:img->w()*img->d(),
lut, (img->d()&1)?kCGImageAlphaNone:kCGImageAlphaLast,
src, 0L, false, kCGRenderingIntentDefault);
CGColorSpaceRelease(lut);
CGDataProviderRelease(src);
}
if (img->id_ && fl_gc) {
CGRect rect = { { X, Y }, { W, H } };
Fl_X::q_begin_image(rect, cx, cy, img->w(), img->h());
CGContextDrawImage(fl_gc, rect, (CGImageRef)img->id_);
Fl_X::q_end_image();
}
}
#elif defined(WIN32)
void Fl_GDI_Graphics_Driver::draw(Fl_RGB_Image *img, int XP, int YP, int WP, int HP, int cx, int cy) {
int X, Y, W, H;
// Don't draw an empty image...
if (!img->d() || !img->array) {
img->draw_empty(XP, YP);
return;
}
if (start(img, XP, YP, WP, HP, img->w(), img->h(), cx, cy, X, Y, W, H)) {
return;
}
if (!img->id_) {
img->id_ = fl_create_offscreen(img->w(), img->h());
if ((img->d() == 2 || img->d() == 4) && fl_can_do_alpha_blending()) {
fl_begin_offscreen((Fl_Offscreen)img->id_);
fl_draw_image(img->array, 0, 0, img->w(), img->h(), img->d()|FL_IMAGE_WITH_ALPHA, img->ld());
fl_end_offscreen();
} else {
fl_begin_offscreen((Fl_Offscreen)img->id_);
fl_draw_image(img->array, 0, 0, img->w(), img->h(), img->d(), img->ld());
fl_end_offscreen();
if (img->d() == 2 || img->d() == 4) {
img->mask_ = fl_create_alphamask(img->w(), img->h(), img->d(), img->ld(), img->array);
}
}
}
if (img->mask_) {
HDC new_gc = CreateCompatibleDC(fl_gc);
int save = SaveDC(new_gc);
SelectObject(new_gc, (void*)img->mask_);
BitBlt(fl_gc, X, Y, W, H, new_gc, cx, cy, SRCAND);
SelectObject(new_gc, (void*)img->id_);
BitBlt(fl_gc, X, Y, W, H, new_gc, cx, cy, SRCPAINT);
RestoreDC(new_gc,save);
DeleteDC(new_gc);
} else if (img->d()==2 || img->d()==4) {
copy_offscreen_with_alpha(X, Y, W, H, (Fl_Offscreen)img->id_, cx, cy);
} else {
copy_offscreen(X, Y, W, H, (Fl_Offscreen)img->id_, cx, cy);
}
}
#else
void Fl_Xlib_Graphics_Driver::draw(Fl_RGB_Image *img, int XP, int YP, int WP, int HP, int cx, int cy) {
int X, Y, W, H;
// Don't draw an empty image...
if (!img->d() || !img->array) {
img->draw_empty(XP, YP);
return;
}
if (start(img, XP, YP, WP, HP, img->w(), img->h(), cx, cy, X, Y, W, H)) {
return;
}
if (!img->id_) {
if (img->d() == 1 || img->d() == 3) {
img->id_ = fl_create_offscreen(img->w(), img->h());
fl_begin_offscreen((Fl_Offscreen)img->id_);
fl_draw_image(img->array, 0, 0, img->w(), img->h(), img->d(), img->ld());
fl_end_offscreen();
}
}
if (img->id_) {
if (img->mask_) {
// I can't figure out how to combine a mask with existing region,
// so cut the image down to a clipped rectangle:
int nx, ny; fl_clip_box(X,Y,W,H,nx,ny,W,H);
cx += nx-X; X = nx;
cy += ny-Y; Y = ny;
// make X use the bitmap as a mask:
XSetClipMask(fl_display, fl_gc, img->mask_);
int ox = X-cx; if (ox < 0) ox += img->w();
int oy = Y-cy; if (oy < 0) oy += img->h();
XSetClipOrigin(fl_display, fl_gc, X-cx, Y-cy);
}
copy_offscreen(X, Y, W, H, img->id_, cx, cy);
if (img->mask_) {
// put the old clip region back
XSetClipOrigin(fl_display, fl_gc, 0, 0);
fl_restore_clip();
}
} else {
// Composite image with alpha manually each time...
alpha_blend(img, X, Y, W, H, cx, cy);
}
}
#endif
void Fl_RGB_Image::label(Fl_Widget* widget) {
widget->image(this);
}
void Fl_RGB_Image::label(Fl_Menu_Item* m) {
Fl::set_labeltype(_FL_IMAGE_LABEL, labeltype, measure);
m->label(_FL_IMAGE_LABEL, (const char*)this);
}
//
// End of "$Id$".
//