fltk/src/fl_arci.cxx

174 lines
5.7 KiB
C++

//
// "$Id$"
//
// Arc (integer) drawing functions for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2009 by Bill Spitzak and others.
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
/**
\file fl_arci.cxx
\brief Utility functions for drawing circles using integers
*/
// "integer" circle drawing functions. These draw the limited
// circle types provided by X and NT graphics. The advantage of
// these is that small ones draw quite nicely (probably due to stored
// hand-drawn bitmaps of small circles!) and may be implemented by
// hardware and thus are fast.
// Probably should add fl_chord.
// 3/10/98: created
#include <FL/fl_draw.H>
#include <FL/x.H>
#ifdef WIN32
# include <FL/math.h>
#endif
#include <config.h>
/**
Draw ellipse sections using integer coordinates.
These functions match the rather limited circle drawing code provided by X
and WIN32. The advantage over using fl_arc with floating point coordinates
is that they are faster because they often use the hardware, and they draw
much nicer small circles, since the small sizes are often hard-coded bitmaps.
If a complete circle is drawn it will fit inside the passed bounding box.
The two angles are measured in degrees counterclockwise from 3 o'clock and
are the starting and ending angle of the arc, \p a2 must be greater or equal
to \p a1.
fl_arc() draws a series of lines to approximate the arc. Notice that the
integer version of fl_arc() has a different number of arguments than the
double version fl_arc(double x, double y, double r, double start, double a)
\param[in] x,y,w,h bounding box of complete circle
\param[in] a1,a2 start and end angles of arc measured in degrees
counter-clockwise from 3 o'clock. \p a2 must be greater
than or equal to \p a1.
*/
void fl_arc(int x,int y,int w,int h,double a1,double a2) {
if (w <= 0 || h <= 0) return;
#if defined(USE_X11)
XDrawArc(fl_display, fl_window, fl_gc, x,y,w-1,h-1, int(a1*64),int((a2-a1)*64));
#elif defined(WIN32)
int xa = x+w/2+int(w*cos(a1/180.0*M_PI));
int ya = y+h/2-int(h*sin(a1/180.0*M_PI));
int xb = x+w/2+int(w*cos(a2/180.0*M_PI));
int yb = y+h/2-int(h*sin(a2/180.0*M_PI));
if (fabs(a1 - a2) < 90) {
if (xa == xb && ya == yb) SetPixel(fl_gc, xa, ya, fl_RGB());
else Arc(fl_gc, x, y, x+w, y+h, xa, ya, xb, yb);
} else Arc(fl_gc, x, y, x+w, y+h, xa, ya, xb, yb);
#elif defined(__APPLE_QUARTZ__)
a1 = (-a1)/180.0f*M_PI; a2 = (-a2)/180.0f*M_PI;
float cx = x + 0.5f*w - 0.5f, cy = y + 0.5f*h - 0.5f;
#ifdef __APPLE_COCOA__
CGContextSetShouldAntialias(fl_gc, true);
#endif
if (w!=h) {
CGContextSaveGState(fl_gc);
CGContextTranslateCTM(fl_gc, cx, cy);
CGContextScaleCTM(fl_gc, w-1.0f, h-1.0f);
CGContextAddArc(fl_gc, 0, 0, 0.5, a1, a2, 1);
CGContextRestoreGState(fl_gc);
} else {
float r = (w+h)*0.25f-0.5f;
CGContextAddArc(fl_gc, cx, cy, r, a1, a2, 1);
}
CGContextStrokePath(fl_gc);
#ifdef __APPLE_COCOA__
CGContextSetShouldAntialias(fl_gc, false);
#endif
#else
# error unsupported platform
#endif
}
/**
Draw filled ellipse sections using integer coordinates.
Like fl_arc(), but fl_pie() draws a filled-in pie slice.
This slice may extend outside the line drawn by fl_arc();
to avoid this use w - 1 and h - 1.
\param[in] x,y,w,h bounding box of complete circle
\param[in] a1,a2 start and end angles of arc measured in degrees
counter-clockwise from 3 o'clock. \p a2 must be greater
than or equal to \p a1.
*/
void fl_pie(int x,int y,int w,int h,double a1,double a2) {
if (w <= 0 || h <= 0) return;
#if defined(USE_X11)
XFillArc(fl_display, fl_window, fl_gc, x,y,w-1,h-1, int(a1*64),int((a2-a1)*64));
#elif defined(WIN32)
if (a1 == a2) return;
int xa = x+w/2+int(w*cos(a1/180.0*M_PI));
int ya = y+h/2-int(h*sin(a1/180.0*M_PI));
int xb = x+w/2+int(w*cos(a2/180.0*M_PI));
int yb = y+h/2-int(h*sin(a2/180.0*M_PI));
SelectObject(fl_gc, fl_brush());
if (fabs(a1 - a2) < 90) {
if (xa == xb && ya == yb) {
MoveToEx(fl_gc, x+w/2, y+h/2, 0L);
LineTo(fl_gc, xa, ya);
SetPixel(fl_gc, xa, ya, fl_RGB());
} else Pie(fl_gc, x, y, x+w, y+h, xa, ya, xb, yb);
} else Pie(fl_gc, x, y, x+w, y+h, xa, ya, xb, yb);
#elif defined(__APPLE_QUARTZ__)
a1 = (-a1)/180.0f*M_PI; a2 = (-a2)/180.0f*M_PI;
float cx = x + 0.5f*w - 0.5f, cy = y + 0.5f*h - 0.5f;
#ifdef __APPLE_COCOA__
CGContextSetShouldAntialias(fl_gc, true);
#endif
if (w!=h) {
CGContextSaveGState(fl_gc);
CGContextTranslateCTM(fl_gc, cx, cy);
CGContextScaleCTM(fl_gc, w, h);
CGContextAddArc(fl_gc, 0, 0, 0.5, a1, a2, 1);
CGContextAddLineToPoint(fl_gc, 0, 0);
CGContextClosePath(fl_gc);
CGContextRestoreGState(fl_gc);
} else {
float r = (w+h)*0.25f;
CGContextAddArc(fl_gc, cx, cy, r, a1, a2, 1);
CGContextAddLineToPoint(fl_gc, cx, cy);
CGContextClosePath(fl_gc);
}
CGContextFillPath(fl_gc);
#ifdef __APPLE_COCOA__
CGContextSetShouldAntialias(fl_gc, false);
#endif
#else
# error unsupported platform
#endif
}
//
// End of "$Id$".
//