fltk/src/Fl_lock.cxx
Manolo Gouy 7046e99f96 Move Fl_System_Driver.H from FL/ to src/
git-svn-id: file:///fltk/svn/fltk/branches/branch-1.4@12976 ea41ed52-d2ee-0310-a9c1-e6b18d33e121
2018-06-26 14:12:43 +00:00

466 lines
12 KiB
C++

//
// "$Id$"
//
// Multi-threading support code for the Fast Light Tool Kit (FLTK).
//
// Copyright 1998-2018 by Bill Spitzak and others.
//
// This library is free software. Distribution and use rights are outlined in
// the file "COPYING" which should have been included with this file. If this
// file is missing or damaged, see the license at:
//
// http://www.fltk.org/COPYING.php
//
// Please report all bugs and problems on the following page:
//
// http://www.fltk.org/str.php
//
#include "config_lib.h"
#include <FL/Fl.H>
#include "Fl_System_Driver.H"
#include <stdlib.h>
// FIXME: why do we need the lines below?
#if defined(FL_CFG_SYS_POSIX)
#include "drivers/Posix/Fl_Posix_System_Driver.H"
#elif defined(FL_CFG_SYS_WIN32)
#include "drivers/WinAPI/Fl_WinAPI_System_Driver.H"
#endif
/*
From Bill:
I would prefer that FLTK contain the minimal amount of extra
stuff for doing threads. There are other portable thread
wrapper libraries out there and FLTK should not be providing
another. This file is an attempt to make minimal additions
and make them self-contained in this source file.
From Mike:
Starting with 1.1.8, we now have a callback so that you can
process awake() messages as they come in.
The API:
Fl::lock() - recursive lock. You must call this before the
first call to Fl::wait()/run() to initialize the thread
system. The lock is locked all the time except when
Fl::wait() is waiting for events.
Fl::unlock() - release the recursive lock.
Fl::awake(void*) - Causes Fl::wait() to return (with the lock
locked) even if there are no events ready.
Fl::awake(void (*cb)(void *), void*) - Call a function
in the main thread from within another thread of execution.
Fl::thread_message() - returns an argument sent to an
Fl::awake() call, or returns NULL if none. WARNING: the
current implementation only has a one-entry queue and only
returns the most recent value!
*/
#ifndef FL_DOXYGEN
Fl_Awake_Handler *Fl::awake_ring_;
void **Fl::awake_data_;
int Fl::awake_ring_size_;
int Fl::awake_ring_head_;
int Fl::awake_ring_tail_;
#endif
static const int AWAKE_RING_SIZE = 1024;
static void lock_ring();
static void unlock_ring();
/** Adds an awake handler for use in awake(). */
int Fl::add_awake_handler_(Fl_Awake_Handler func, void *data)
{
int ret = 0;
lock_ring();
if (!awake_ring_) {
awake_ring_size_ = AWAKE_RING_SIZE;
awake_ring_ = (Fl_Awake_Handler*)malloc(awake_ring_size_*sizeof(Fl_Awake_Handler));
awake_data_ = (void**)malloc(awake_ring_size_*sizeof(void*));
// explicitly initialize the head and tail indices
awake_ring_head_= awake_ring_tail_ = 0;
}
// The next head index we will want (not the current index):
// We use this to check if the ring-buffer is full or not
// (and to update awake_ring_head_ if we do use the current index.)
int next_head = awake_ring_head_ + 1;
if (next_head >= awake_ring_size_) {
next_head = 0;
}
// check that the ring buffer is not full, and that it exists
if ((!awake_ring_) || (next_head == awake_ring_tail_)) {
// ring is non-existent or full. Return -1 as an error indicator.
ret = -1;
} else {
awake_ring_[awake_ring_head_] = func;
awake_data_[awake_ring_head_] = data;
awake_ring_head_ = next_head;
}
unlock_ring();
return ret;
}
/** Gets the last stored awake handler for use in awake(). */
int Fl::get_awake_handler_(Fl_Awake_Handler &func, void *&data)
{
int ret = 0;
lock_ring();
if ((!awake_ring_) || (awake_ring_head_ == awake_ring_tail_)) {
ret = -1;
} else {
func = awake_ring_[awake_ring_tail_];
data = awake_data_[awake_ring_tail_];
++awake_ring_tail_;
if (awake_ring_tail_ >= awake_ring_size_) {
awake_ring_tail_ = 0;
}
}
unlock_ring();
return ret;
}
/**
Let the main thread know an update is pending and have it call a specific function.
Registers a function that will be
called by the main thread during the next message handling cycle.
Returns 0 if the callback function was registered,
and -1 if registration failed. Over a thousand awake callbacks can be
registered simultaneously.
\see Fl::awake(void* message=0)
*/
int Fl::awake(Fl_Awake_Handler func, void *data) {
int ret = add_awake_handler_(func, data);
Fl::awake();
return ret;
}
/** \fn int Fl::lock()
The lock() method blocks the current thread until it
can safely access FLTK widgets and data. Child threads should
call this method prior to updating any widgets or accessing
data. The main thread must call lock() to initialize
the threading support in FLTK. lock() will return non-zero
if threading is not available on the platform.
Child threads must call unlock() when they are done
accessing FLTK.
When the wait() method is waiting
for input or timeouts, child threads are given access to FLTK.
Similarly, when the main thread needs to do processing, it will
wait until all child threads have called unlock() before processing
additional data.
\return 0 if threading is available on the platform; non-zero
otherwise.
See also: \ref advanced_multithreading
*/
/** \fn void Fl::unlock()
The unlock() method releases the lock that was set
using the lock() method. Child
threads should call this method as soon as they are finished
accessing FLTK.
See also: \ref advanced_multithreading
*/
/** \fn void Fl::awake(void* msg)
Sends a message pointer to the main thread,
causing any pending Fl::wait() call to
terminate so that the main thread can retrieve the message and any pending
redraws can be processed.
Multiple calls to Fl::awake() will queue multiple pointers
for the main thread to process, up to a system-defined (typically several
thousand) depth. The default message handler saves the last message which
can be accessed using the
Fl::thread_message() function.
In the context of a threaded application, a call to Fl::awake() with no
argument will trigger event loop handling in the main thread. Since
it is not possible to call Fl::flush() from a subsidiary thread,
Fl::awake() is the best (and only, really) substitute.
See also: \ref advanced_multithreading
*/
#if defined(FL_CFG_SYS_WIN32)
////////////////////////////////////////////////////////////////
// Windows threading...
# include <windows.h>
# include <process.h>
# include <FL/platform.H>
// These pointers are in Fl_win32.cxx:
extern void (*fl_lock_function)();
extern void (*fl_unlock_function)();
// The main thread's ID
static DWORD main_thread;
// Microsoft's version of a MUTEX...
CRITICAL_SECTION cs;
CRITICAL_SECTION *cs_ring;
void unlock_ring() {
LeaveCriticalSection(cs_ring);
}
void lock_ring() {
if (!cs_ring) {
cs_ring = (CRITICAL_SECTION*)malloc(sizeof(CRITICAL_SECTION));
InitializeCriticalSection(cs_ring);
}
EnterCriticalSection(cs_ring);
}
//
// 'unlock_function()' - Release the lock.
//
static void unlock_function() {
LeaveCriticalSection(&cs);
}
//
// 'lock_function()' - Get the lock.
//
static void lock_function() {
EnterCriticalSection(&cs);
}
int Fl_WinAPI_System_Driver::lock() {
if (!main_thread) InitializeCriticalSection(&cs);
lock_function();
if (!main_thread) {
fl_lock_function = lock_function;
fl_unlock_function = unlock_function;
main_thread = GetCurrentThreadId();
}
return 0;
}
void Fl_WinAPI_System_Driver::unlock() {
unlock_function();
}
void Fl_WinAPI_System_Driver::awake(void* msg) {
PostThreadMessage( main_thread, fl_wake_msg, (WPARAM)msg, 0);
}
#endif // FL_CFG_SYS_WIN32
#if defined(FL_CFG_SYS_POSIX) && !defined(FL_DOXYGEN)
////////////////////////////////////////////////////////////////
// POSIX threading...
#if defined(HAVE_PTHREAD)
# include <unistd.h>
# include <fcntl.h>
# include <pthread.h>
// Pipe for thread messaging via Fl::awake()...
static int thread_filedes[2];
// Mutex and state information for Fl::lock() and Fl::unlock()...
static pthread_mutex_t fltk_mutex;
static pthread_t owner;
static int counter;
static void lock_function_init_std() {
pthread_mutex_init(&fltk_mutex, NULL);
}
static void lock_function_std() {
if (!counter || owner != pthread_self()) {
pthread_mutex_lock(&fltk_mutex);
owner = pthread_self();
}
counter++;
}
static void unlock_function_std() {
if (!--counter) pthread_mutex_unlock(&fltk_mutex);
}
# ifdef PTHREAD_MUTEX_RECURSIVE
static bool lock_function_init_rec() {
pthread_mutexattr_t attrib;
pthread_mutexattr_init(&attrib);
if (pthread_mutexattr_settype(&attrib, PTHREAD_MUTEX_RECURSIVE)) {
pthread_mutexattr_destroy(&attrib);
return true;
}
pthread_mutex_init(&fltk_mutex, &attrib);
return false;
}
static void lock_function_rec() {
pthread_mutex_lock(&fltk_mutex);
}
static void unlock_function_rec() {
pthread_mutex_unlock(&fltk_mutex);
}
# endif // PTHREAD_MUTEX_RECURSIVE
void Fl_Posix_System_Driver::awake(void* msg) {
if (write(thread_filedes[1], &msg, sizeof(void*))==0) { /* ignore */ }
}
static void* thread_message_;
void* Fl_Posix_System_Driver::thread_message() {
void* r = thread_message_;
thread_message_ = 0;
return r;
}
static void thread_awake_cb(int fd, void*) {
if (read(fd, &thread_message_, sizeof(void*))==0) {
/* This should never happen */
}
Fl_Awake_Handler func;
void *data;
while (Fl::get_awake_handler_(func, data)==0) {
(*func)(data);
}
}
// These pointers are in Fl_x.cxx:
extern void (*fl_lock_function)();
extern void (*fl_unlock_function)();
int Fl_Posix_System_Driver::lock() {
if (!thread_filedes[1]) {
// Initialize thread communication pipe to let threads awake FLTK
// from Fl::wait()
if (pipe(thread_filedes)==-1) {
/* this should not happen */
}
// Make the write side of the pipe non-blocking to avoid deadlock
// conditions (STR #1537)
fcntl(thread_filedes[1], F_SETFL,
fcntl(thread_filedes[1], F_GETFL) | O_NONBLOCK);
// Monitor the read side of the pipe so that messages sent via
// Fl::awake() from a thread will "wake up" the main thread in
// Fl::wait().
Fl::add_fd(thread_filedes[0], FL_READ, thread_awake_cb);
// Set lock/unlock functions for this system, using a system-supplied
// recursive mutex if supported...
# ifdef PTHREAD_MUTEX_RECURSIVE
if (!lock_function_init_rec()) {
fl_lock_function = lock_function_rec;
fl_unlock_function = unlock_function_rec;
} else {
# endif // PTHREAD_MUTEX_RECURSIVE
lock_function_init_std();
fl_lock_function = lock_function_std;
fl_unlock_function = unlock_function_std;
# ifdef PTHREAD_MUTEX_RECURSIVE
}
# endif // PTHREAD_MUTEX_RECURSIVE
}
fl_lock_function();
return 0;
}
void Fl_Posix_System_Driver::unlock() {
fl_unlock_function();
}
// Mutex code for the awake ring buffer
static pthread_mutex_t *ring_mutex;
void unlock_ring() {
pthread_mutex_unlock(ring_mutex);
}
void lock_ring() {
if (!ring_mutex) {
ring_mutex = (pthread_mutex_t*)malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(ring_mutex, NULL);
}
pthread_mutex_lock(ring_mutex);
}
#else // ! HAVE_PTHREAD
void Fl_Posix_System_Driver::awake(void*) {}
int Fl_Posix_System_Driver::lock() { return 1; }
void Fl_Posix_System_Driver::unlock() {}
void* Fl_Posix_System_Driver::thread_message() { return NULL; }
void lock_ring() {}
void unlock_ring() {}
#endif // HAVE_PTHREAD
#endif // FL_CFG_SYS_POSIX
// TODO: can these functions be moved to the system drivers?
#ifdef __ANDROID__
static void unlock_ring()
{
// TODO: implement me
}
static void lock_ring()
{
// TODO: implement me
}
static void unlock_function()
{
// TODO: implement me
}
static void lock_function()
{
// TODO: implement me
}
#endif // __ANDROID__
void Fl::awake(void *v) {
Fl::system_driver()->awake(v);
}
void* Fl::thread_message() {
return Fl::system_driver()->thread_message();
}
int Fl::lock() {
return Fl::system_driver()->lock();
}
void Fl::unlock() {
Fl::system_driver()->unlock();
}
//
// End of "$Id$".
//