// // "$Id$" // // Arc functions for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2005 by Bill Spitzak and others. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA. // // Please report all bugs and problems to "fltk-bugs@fltk.org". // // Utility for drawing arcs and circles. They are added to // the current fl_begin/fl_vertex/fl_end path. // Incremental math implementation: #include #include void fl_arc(double x, double y, double r, double start, double end) { // draw start point accurately: double A = start*(M_PI/180); // Initial angle (radians) double X = r*cos(A); // Initial displacement, (X,Y) double Y = -r*sin(A); // from center to initial point fl_vertex(x+X,y+Y); // Insert initial point // Maximum arc length to approximate with chord with error <= 0.125 double epsilon; { double r1 = hypot(fl_transform_dx(r,0), // Horizontal "radius" fl_transform_dy(r,0)); double r2 = hypot(fl_transform_dx(0,r), // Vertical "radius" fl_transform_dy(0,r)); if (r1 > r2) r1 = r2; // r1 = minimum "radius" if (r1 < 2.) r1 = 2.; // radius for circa 9 chords/circle epsilon = 2*acos(1.0 - 0.125/r1); // Maximum arc angle } A = end*(M_PI/180) - A; // Displacement angle (radians) int i = int(ceil(fabs(A)/epsilon)); // Segments in approximation if (i) { epsilon = A/i; // Arc length for equal-size steps double cos_e = cos(epsilon); // Rotation coefficients double sin_e = sin(epsilon); do { double Xnew = cos_e*X + sin_e*Y; Y = -sin_e*X + cos_e*Y; fl_vertex(x + (X=Xnew), y + Y); } while (--i); } } #if 0 // portable version. X-specific one in fl_vertex.cxx void fl_circle(double x,double y,double r) { _fl_arc(x, y, r, r, 0, 360); } #endif // // End of "$Id$". //