// // "$Id$" // // Bitmap drawing routines for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2009 by Bill Spitzak and others. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA. // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // /** \fn Fl_Bitmap::Fl_Bitmap(const char *array, int W, int H) The constructors create a new bitmap from the specified bitmap data.*/ /** \fn Fl_Bitmap::Fl_Bitmap(const unsigned char *array, int W, int H) The constructors create a new bitmap from the specified bitmap data.*/ #include #include #include #include #include #include #include "flstring.h" #if defined(__APPLE_QUARTZ__) Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *array) { static uchar reverse[16] = /* Bit reversal lookup table */ { 0x00, 0x88, 0x44, 0xcc, 0x22, 0xaa, 0x66, 0xee, 0x11, 0x99, 0x55, 0xdd, 0x33, 0xbb, 0x77, 0xff }; int rowBytes = (w+7)>>3 ; uchar *bmask = (uchar*)malloc(rowBytes*h), *dst = bmask; const uchar *src = array; for ( int i=rowBytes*h; i>0; i--,src++ ) { *dst++ = ((reverse[*src & 0x0f] & 0xf0) | (reverse[(*src >> 4) & 0x0f] & 0x0f))^0xff; } CGDataProviderRef srcp = CGDataProviderCreateWithData( 0L, bmask, rowBytes*h, 0L); CGImageRef id = CGImageMaskCreate( w, h, 1, 1, rowBytes, srcp, 0L, false); CGDataProviderRelease(srcp); return (Fl_Bitmask)id; } void fl_delete_bitmask(Fl_Bitmask id) { if (id) CGImageRelease((CGImageRef)id); } #elif defined(WIN32) // Windows bitmask functions... // 'fl_create_bitmap()' - Create a 1-bit bitmap for drawing... static Fl_Bitmask fl_create_bitmap(int w, int h, const uchar *data) { // we need to pad the lines out to words & swap the bits // in each byte. int w1 = (w+7)/8; int w2 = ((w+15)/16)*2; uchar* newarray = new uchar[w2*h]; const uchar* src = data; uchar* dest = newarray; Fl_Bitmask id; static uchar reverse[16] = /* Bit reversal lookup table */ { 0x00, 0x88, 0x44, 0xcc, 0x22, 0xaa, 0x66, 0xee, 0x11, 0x99, 0x55, 0xdd, 0x33, 0xbb, 0x77, 0xff }; for (int y=0; y < h; y++) { for (int n = 0; n < w1; n++, src++) *dest++ = (uchar)((reverse[*src & 0x0f] & 0xf0) | (reverse[(*src >> 4) & 0x0f] & 0x0f)); dest += w2-w1; } id = CreateBitmap(w, h, 1, 1, newarray); delete[] newarray; return id; } // 'fl_create_bitmask()' - Create an N-bit bitmap for masking... Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *data) { // this won't work when the user changes display mode during run or // has two screens with differnet depths Fl_Bitmask id; static uchar hiNibble[16] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0 }; static uchar loNibble[16] = { 0x00, 0x08, 0x04, 0x0c, 0x02, 0x0a, 0x06, 0x0e, 0x01, 0x09, 0x05, 0x0d, 0x03, 0x0b, 0x07, 0x0f }; int np = GetDeviceCaps(fl_gc, PLANES); //: was always one on sample machines int bpp = GetDeviceCaps(fl_gc, BITSPIXEL);//: 1,4,8,16,24,32 and more odd stuff? int Bpr = (bpp*w+7)/8; //: bytes per row int pad = Bpr&1, w1 = (w+7)/8, shr = ((w-1)&7)+1; if (bpp==4) shr = (shr+1)/2; uchar *newarray = new uchar[(Bpr+pad)*h]; uchar *dst = newarray; const uchar *src = data; for (int i=0; i0; j--) { uchar b = *src++; if (bpp==1) { *dst++ = (uchar)( hiNibble[b&15] ) | ( loNibble[(b>>4)&15] ); } else if (bpp==4) { for (int k=(j==1)?shr:4; k>0; k--) { *dst++ = (uchar)("\377\360\017\000"[b&3]); b = b >> 2; } } else { for (int k=(j==1)?shr:8; k>0; k--) { if (b&1) { *dst++=0; if (bpp>8) *dst++=0; if (bpp>16) *dst++=0; if (bpp>24) *dst++=0; } else { *dst++=0xff; if (bpp>8) *dst++=0xff; if (bpp>16) *dst++=0xff; if (bpp>24) *dst++=0xff; } b = b >> 1; } } } dst += pad; } id = CreateBitmap(w, h, np, bpp, newarray); delete[] newarray; return id; } #if 0 // This doesn't appear to be used anywhere... Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *data, int for_mask) { // we need to pad the lines out to words & swap the bits // in each byte. int w1 = (w+7)/8; int w2 = ((w+15)/16)*2; uchar* newarray = new uchar[w2*h]; const uchar* src = data; uchar* dest = newarray; Fl_Bitmask id; static uchar reverse[16] = /* Bit reversal lookup table */ { 0x00, 0x88, 0x44, 0xcc, 0x22, 0xaa, 0x66, 0xee, 0x11, 0x99, 0x55, 0xdd, 0x33, 0xbb, 0x77, 0xff }; for (int y=0; y < h; y++) { for (int n = 0; n < w1; n++, src++) *dest++ = (reverse[*src & 0x0f] & 0xf0) | (reverse[(*src >> 4) & 0x0f] & 0x0f); dest += w2-w1; } id = CreateBitmap(w, h, 1, 1, newarray); delete[] newarray; return (id); } # endif // 0 void fl_delete_bitmask(Fl_Bitmask bm) { DeleteObject((HGDIOBJ)bm); } #else // X11 bitmask functions Fl_Bitmask fl_create_bitmask(int w, int h, const uchar *data) { return XCreateBitmapFromData(fl_display, fl_window, (const char *)data, (w+7)&-8, h); } void fl_delete_bitmask(Fl_Bitmask bm) { fl_delete_offscreen((Fl_Offscreen)bm); } #endif // __APPLE__ // Create a 1-bit mask used for alpha blending Fl_Bitmask fl_create_alphamask(int w, int h, int d, int ld, const uchar *array) { Fl_Bitmask mask; int bmw = (w + 7) / 8; uchar *bitmap = new uchar[bmw * h]; uchar *bitptr, bit; const uchar *dataptr; int x, y; static uchar dither[16][16] = { // Simple 16x16 Floyd dither { 0, 128, 32, 160, 8, 136, 40, 168, 2, 130, 34, 162, 10, 138, 42, 170 }, { 192, 64, 224, 96, 200, 72, 232, 104, 194, 66, 226, 98, 202, 74, 234, 106 }, { 48, 176, 16, 144, 56, 184, 24, 152, 50, 178, 18, 146, 58, 186, 26, 154 }, { 240, 112, 208, 80, 248, 120, 216, 88, 242, 114, 210, 82, 250, 122, 218, 90 }, { 12, 140, 44, 172, 4, 132, 36, 164, 14, 142, 46, 174, 6, 134, 38, 166 }, { 204, 76, 236, 108, 196, 68, 228, 100, 206, 78, 238, 110, 198, 70, 230, 102 }, { 60, 188, 28, 156, 52, 180, 20, 148, 62, 190, 30, 158, 54, 182, 22, 150 }, { 252, 124, 220, 92, 244, 116, 212, 84, 254, 126, 222, 94, 246, 118, 214, 86 }, { 3, 131, 35, 163, 11, 139, 43, 171, 1, 129, 33, 161, 9, 137, 41, 169 }, { 195, 67, 227, 99, 203, 75, 235, 107, 193, 65, 225, 97, 201, 73, 233, 105 }, { 51, 179, 19, 147, 59, 187, 27, 155, 49, 177, 17, 145, 57, 185, 25, 153 }, { 243, 115, 211, 83, 251, 123, 219, 91, 241, 113, 209, 81, 249, 121, 217, 89 }, { 15, 143, 47, 175, 7, 135, 39, 167, 13, 141, 45, 173, 5, 133, 37, 165 }, { 207, 79, 239, 111, 199, 71, 231, 103, 205, 77, 237, 109, 197, 69, 229, 101 }, { 63, 191, 31, 159, 55, 183, 23, 151, 61, 189, 29, 157, 53, 181, 21, 149 }, { 254, 127, 223, 95, 247, 119, 215, 87, 253, 125, 221, 93, 245, 117, 213, 85 } }; // Generate a 1-bit "screen door" alpha mask; not always pretty, but // definitely fast... In the future we may be able to support things // like the RENDER extension in XFree86, when available, to provide // true RGBA-blended rendering. See: // // http://www.xfree86.org/~keithp/render/protocol.html // // for more info on XRender... // // MacOS already provides alpha blending support and has its own // fl_create_alphamask() function... memset(bitmap, 0, bmw * h); for (dataptr = array + d - 1, y = 0; y < h; y ++, dataptr += ld) for (bitptr = bitmap + y * bmw, bit = 1, x = 0; x < w; x ++, dataptr += d) { if (*dataptr > dither[x & 15][y & 15]) *bitptr |= bit; if (bit < 128) bit <<= 1; else { bit = 1; bitptr ++; } } mask = fl_create_bitmask(w, h, bitmap); delete[] bitmap; return (mask); } void Fl_Bitmap::draw(int XP, int YP, int WP, int HP, int cx, int cy) { if (!array) { draw_empty(XP, YP); return; } // account for current clip region (faster on Irix): int X,Y,W,H; fl_clip_box(XP,YP,WP,HP,X,Y,W,H); cx += X-XP; cy += Y-YP; // clip the box down to the size of image, quit if empty: if (cx < 0) {W += cx; X -= cx; cx = 0;} if ((cx+W) > w()) W = w()-cx; if (W <= 0) return; if (cy < 0) {H += cy; Y -= cy; cy = 0;} if ((cy+H) > h()) H = h()-cy; if (H <= 0) return; #if defined(USE_X11) if (!id) id = fl_create_bitmask(w(), h(), array); XSetStipple(fl_display, fl_gc, id); int ox = X-cx; if (ox < 0) ox += w(); int oy = Y-cy; if (oy < 0) oy += h(); XSetTSOrigin(fl_display, fl_gc, ox, oy); XSetFillStyle(fl_display, fl_gc, FillStippled); XFillRectangle(fl_display, fl_window, fl_gc, X, Y, W, H); XSetFillStyle(fl_display, fl_gc, FillSolid); #elif defined(WIN32) if (!id) id = fl_create_bitmap(w(), h(), array); HDC tempdc = CreateCompatibleDC(fl_gc); int save = SaveDC(tempdc); SelectObject(tempdc, (HGDIOBJ)id); SelectObject(fl_gc, fl_brush()); // secret bitblt code found in old MSWindows reference manual: BitBlt(fl_gc, X, Y, W, H, tempdc, cx, cy, 0xE20746L); RestoreDC(tempdc, save); DeleteDC(tempdc); #elif defined(__APPLE_QUARTZ__) if (!id) id = fl_create_bitmask(w(), h(), array); if (id && fl_gc) { CGRect rect = { { X, Y }, { W, H } }; Fl_X::q_begin_image(rect, cx, cy, w(), h()); CGContextDrawImage(fl_gc, rect, (CGImageRef)id); Fl_X::q_end_image(); } #else # error unsupported platform #endif } /** The destructor free all memory and server resources that are used by the bitmap. */ Fl_Bitmap::~Fl_Bitmap() { uncache(); if (alloc_array) delete[] (uchar *)array; } void Fl_Bitmap::uncache() { if (id) { #if defined(__APPLE__) && defined(__APPLE_COCOA__) fl_delete_bitmask((Fl_Bitmask)id); #else fl_delete_bitmask((Fl_Offscreen)id); #endif id = 0; } } void Fl_Bitmap::label(Fl_Widget* widget) { widget->image(this); } void Fl_Bitmap::label(Fl_Menu_Item* m) { Fl::set_labeltype(_FL_IMAGE_LABEL, labeltype, measure); m->label(_FL_IMAGE_LABEL, (const char*)this); } Fl_Image *Fl_Bitmap::copy(int W, int H) { Fl_Bitmap *new_image; // New RGB image uchar *new_array; // New array for image data // Optimize the simple copy where the width and height are the same... if (W == w() && H == h()) { new_array = new uchar [H * ((W + 7) / 8)]; memcpy(new_array, array, H * ((W + 7) / 8)); new_image = new Fl_Bitmap(new_array, W, H); new_image->alloc_array = 1; return new_image; } if (W <= 0 || H <= 0) return 0; // OK, need to resize the image data; allocate memory and uchar *new_ptr, // Pointer into new array new_bit, // Bit for new array old_bit; // Bit for old array const uchar *old_ptr; // Pointer into old array int sx, sy, // Source coordinates dx, dy, // Destination coordinates xerr, yerr, // X & Y errors xmod, ymod, // X & Y moduli xstep, ystep; // X & Y step increments // Figure out Bresenheim step/modulus values... xmod = w() % W; xstep = w() / W; ymod = h() % H; ystep = h() / H; // Allocate memory for the new image... new_array = new uchar [H * ((W + 7) / 8)]; new_image = new Fl_Bitmap(new_array, W, H); new_image->alloc_array = 1; memset(new_array, 0, H * ((W + 7) / 8)); // Scale the image using a nearest-neighbor algorithm... for (dy = H, sy = 0, yerr = H, new_ptr = new_array; dy > 0; dy --) { for (dx = W, xerr = W, old_ptr = array + sy * ((w() + 7) / 8), sx = 0, new_bit = 1; dx > 0; dx --) { old_bit = (uchar)(1 << (sx & 7)); if (old_ptr[sx / 8] & old_bit) *new_ptr |= new_bit; if (new_bit < 128) new_bit <<= 1; else { new_bit = 1; new_ptr ++; } sx += xstep; xerr -= xmod; if (xerr <= 0) { xerr += W; sx ++; } } if (new_bit > 1) new_ptr ++; sy += ystep; yerr -= ymod; if (yerr <= 0) { yerr += H; sy ++; } } return new_image; } // // End of "$Id$". //