This appendix describes all of the fl_ functions. For a
description of the FLTK classes, see Appendix
A.
Functions
The double version takes RGB values in the range 0.0 to 1.0. The
uchar version takes RGB values in the range 0 to 255. The title
argument specifies the label (title) for the window.
fl_color_chooser() pops up a window to let the user pick an
arbitrary RGB color. They can pick the hue and saturation in the "hue
box" on the left (hold down CTRL to just change the saturation), and
the brighness using the vertical slider. Or they can type the 8-bit
numbers into the RGB
Fl_Value_Input fields, or drag the mouse across them to adjust
them. The pull-down menu lets the user set the input fields to show
RGB, HSV, or 8-bit RGB (0 to 255).
This returns non-zero if the user picks ok, and updates the RGB
values. If the user picks cancel or closes the window this returns
zero and leaves RGB unchanged.
If you use the color chooser on an 8-bit screen, it will allocate
all the available colors, leaving you no space to exactly represent the
color the user picks! You can however use
fl_rectf() to fill a region with a simulated color using
dithering.
fl_show_colormap() pops up a panel of the 256 colors you can
access with fl_color() and lets the user
pick one of them. It returns the new color index, or the old one if
the user types ESC or clicks outside the window.
Displays a printf-style message in a pop-up box with an "OK" button,
waits for the user to hit the button. The message will wrap to fit the
window, or may be many lines by putting \n characters into it.
The enter key is a shortcut for the OK button.
Same as fl_message() except for the "!" symbol.
Displays a printf-style message in a pop-up box with an
"Yes" and "No" button and waits for the user to
hit a button. The return value is 1 if the user hits Yes, 0 if they
pick No. The enter key is a shortcut for Yes and ESC is a shortcut
for No.
Shows the message with three buttons below it marked with the strings
b0, b1, and b2. Returns 0, 1, or 2
depending on which button is hit. ESC is a shortcut for button 0 and
the enter key is a shortcut for button 1. Notice the buttons are
positioned "backwards" You can hide buttons by passing
NULL as their labels.
Pops up a window displaying a string, lets the user edit it, and
return the new value. The cancel button returns NULL. The
returned pointer is only valid until the next time fl_input()
is called. Due to back-compatability, the arguments to any printf
commands in the label are after the default value.
Same as fl_input() except an Fl_Secret_Input field is used.
Change the font and font size used for the messages in all the popups.
Returns a pointer to the box at the left edge of all the popups. You
can alter the font, color, or label (including making it a Pixmap),
before calling the functions.
FLTK provides a "tab completion" file chooser that makes it easy to
choose files from large directories. This file chooser has several
unique features, the major one being that the Tab key completes
filenames like it does in Emacs or tcsh, and the list always shows all
possible completions.
fl_file_chooser() pops up the file chooser, waits for the user
to pick a file or Cancel, and then returns a pointer to that filename
or NULL if Cancel is chosen.
message is a string used to title the window.
pattern is used to limit the files listed in a directory to
those matching the pattern. This matching is done by
filename_match(). Use NULL to show all files.
fname is a default filename to fill in the chooser with.
If this is NULL then the last filename that was choosen is
used (unless that had a different pattern, in which case just the last
directory with no name is used). The first time the file chooser is
called this defaults to a blank string.
The returned value points at a static buffer that is only good until
the next time fl_file_chooser() is called.
Set a function that is called every time the user clicks a file in the
currently popped-up file chooser. This could be used to preview the
contents of the file. It has to be reasonably fast, and cannot create
FLTK windows.
This is a portable and const-correct wrapper for the
fl_scandir function. d is the name of a directory
(it does not matter if it has a trailing slash or not). For each file
in that directory a "dirent" structure is created. The only
portable thing about a dirent is that dirent.d_name is the
nul-terminated file name. An array of pointers to these dirents is
created and a pointer to the array is returned in *list. The
number of entries is given as a return value. If there is an error
reading the directory a number less than zero is returned, and
errno has the reason (errno does not work under
WIN32). The files are sorted in "alphanumeric" order, where
an attempt is made to put unpadded numbers in consecutive order.
You can free the returned list of files with the following code:
for (int i = return_value; i > 0;) free((void*)(list[--i]));
free((void*)list);
Returns non-zero if the file exists and is a directory.
Returns a pointer to the character after the last slash, or to the
start of the filename if there is none.
Returns a pointer to the last period in filename_name(f), or
a pointer to the trailing nul if none.
Does strcpy(filename_ext(f), ext ? ext : ""). Returns a
pointer to f.
Splits in at each slash character. Replaces any occurrance
of $X with getenv("X") (leaving it as
$X if the environment variable does not exist). Replaces any
occurances of ~X with user X's home directory
(leaving it as ~X if the user does not exist). Any resulting
double slashes cause everything before the second slash to be deleted.
Copies the result to out (in and out may
be the same buffer). Returns non-zero if any changes were made. In
true retro programming style, it is up to you to provide a buffer big
enough for the result. 1024 characters should be enough.
If in does not start with a slash, this prepends the current
working directory to in and then deletes any occurances of
. and x/.. from the result, which it copies to out (in
and out may be the same buffer). Returns non-zero if any
changes were made. In true retro programming style, it is up to you
to provide a buffer big enough for the result. 1024 characters should
be enough.
Returns true if f matches pattern. The following
syntax is used by pattern:
- * matches any sequence of 0 or more characters.
- ? matches any single character.
- [set] matches any character in the set. Set can contain
any single characters, or a-z to represent a range. To match ] or -
they must be the first characters. To match ^ or ! they must not be
the first characters.
- [^set] or [!set] matches any character not in the
set.
- {X|Y|Z} or {X,Y,Z} matches any one of the
subexpressions literally.
- \x quotes the character x so it has no special meaning.
- x all other characters must be matched exactly.