// // "$Id$" // // Bezier curve functions for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2010 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // http://www.fltk.org/COPYING.php // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // /** \file fl_curve.cxx \brief Utility for drawing Bezier curves, adding the points to the current fl_begin/fl_vertex/fl_end path. Incremental math implementation: I very much doubt this is optimal! From Foley/vanDam page 511. If anybody has a better algorithm, please send it! */ #include #include void Fl_Graphics_Driver::curve(double X0, double Y0, double X1, double Y1, double X2, double Y2, double X3, double Y3) { double x = fl_transform_x(X0,Y0); double y = fl_transform_y(X0,Y0); // draw point 0: fl_transformed_vertex(x,y); double x1 = fl_transform_x(X1,Y1); double yy1 = fl_transform_y(X1,Y1); double x2 = fl_transform_x(X2,Y2); double y2 = fl_transform_y(X2,Y2); double x3 = fl_transform_x(X3,Y3); double y3 = fl_transform_y(X3,Y3); // find the area: double a = fabs((x-x2)*(y3-yy1)-(y-y2)*(x3-x1)); double b = fabs((x-x3)*(y2-yy1)-(y-y3)*(x2-x1)); if (b > a) a = b; // use that to guess at the number of segments: int n = int(sqrt(a)/4); if (n > 1) { if (n > 100) n = 100; // make huge curves not hang forever double e = 1.0/n; // calculate the coefficients of 3rd order equation: double xa = (x3-3*x2+3*x1-x); double xb = 3*(x2-2*x1+x); double xc = 3*(x1-x); // calculate the forward differences: double dx1 = ((xa*e+xb)*e+xc)*e; double dx3 = 6*xa*e*e*e; double dx2 = dx3 + 2*xb*e*e; // calculate the coefficients of 3rd order equation: double ya = (y3-3*y2+3*yy1-y); double yb = 3*(y2-2*yy1+y); double yc = 3*(yy1-y); // calculate the forward differences: double dy1 = ((ya*e+yb)*e+yc)*e; double dy3 = 6*ya*e*e*e; double dy2 = dy3 + 2*yb*e*e; // draw points 1 .. n-2: for (int m=2; m