// // "$Id: fl_vertex.cxx,v 1.3 1998/10/21 14:21:03 mike Exp $" // // Portable drawing routines for the Fast Light Tool Kit (FLTK). // // Copyright 1998 by Bill Spitzak and others. // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // // You should have received a copy of the GNU Library General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 // USA. // // Please report all bugs and problems to "fltk-bugs@easysw.com". // // Portable drawing code for drawing arbitrary shapes with // simple 2D transformations. See also fl_arc.C #include #include #include #include struct matrix {double a, b, c, d, x, y;}; static matrix m = {1, 0, 0, 1, 0, 0}; static matrix stack[10]; static int sptr = 0; void fl_push_matrix() {stack[sptr++] = m;} void fl_pop_matrix() {m = stack[--sptr];} void fl_mult_matrix(double a, double b, double c, double d, double x, double y) { matrix o; o.a = a*m.a + b*m.c; o.b = a*m.b + b*m.d; o.c = c*m.a + d*m.c; o.d = c*m.b + d*m.d; o.x = x*m.a + y*m.c + m.x; o.y = x*m.b + y*m.d + m.y; m = o; } void fl_scale(double x,double y) {fl_mult_matrix(x,0,0,y,0,0);} void fl_scale(double x) {fl_mult_matrix(x,0,0,x,0,0);} void fl_translate(double x,double y) {fl_mult_matrix(1,0,0,1,x,y);} void fl_rotate(double d) { if (d) { double s, c; if (d == 0) {s = 0; c = 1;} else if (d == 90) {s = 1; c = 0;} else if (d == 180) {s = 0; c = -1;} else if (d == 270 || d == -90) {s = -1; c = 0;} else {s = sin(d*M_PI/180); c = cos(d*M_PI/180);} fl_mult_matrix(c,-s,s,c,0,0); } } static XPoint *p; // typedef what the x,y fields in a point are: #ifdef WIN32 typedef int COORD_T; #else typedef short COORD_T; #endif static int p_size; static int n; static int what; enum {LINE, LOOP, POLYGON, POINT_}; void fl_begin_points() {n = 0; what = POINT_;} void fl_begin_line() {n = 0; what = LINE;} void fl_begin_loop() {n = 0; what = LOOP;} void fl_begin_polygon() {n = 0; what = POLYGON;} double fl_transform_x(double x, double y) {return x*m.a + y*m.c + m.x;} double fl_transform_y(double x, double y) {return x*m.b + y*m.d + m.y;} double fl_transform_dx(double x, double y) {return x*m.a + y*m.c;} double fl_transform_dy(double x, double y) {return x*m.b + y*m.d;} static void fl_transformed_vertex(COORD_T x, COORD_T y) { if (!n || x != p[n-1].x || y != p[n-1].y) { if (n >= p_size) { p_size = p ? 2*p_size : 16; p = (XPoint *)realloc((void*)p, p_size*sizeof(*p)); } p[n].x = x; p[n].y = y; n++; } } void fl_transformed_vertex(double xf, double yf) { fl_transformed_vertex(COORD_T(xf+.5), COORD_T(yf+.5)); } void fl_vertex(double x,double y) { fl_transformed_vertex(x*m.a + y*m.c + m.x, x*m.b + y*m.d + m.y); } void fl_end_points() { #ifdef WIN32 for (int i=0; i1) XDrawPoints(fl_display, fl_window, fl_gc, p, n, 0); #endif } void fl_end_line() { #ifdef WIN32 if (n>1) Polyline(fl_gc, p, n); #else if (n>1) XDrawLines(fl_display, fl_window, fl_gc, p, n, 0); #endif } static void fixloop() { // remove equal points from closed path while (n>2 && p[n-1].x == p[0].x && p[n-1].y == p[0].y) n--; } void fl_end_loop() { fixloop(); if (n>2) fl_transformed_vertex((COORD_T)p[0].x, (COORD_T)p[0].y); fl_end_line(); } void fl_end_polygon() { fixloop(); #ifdef WIN32 if (n>2) { SelectObject(fl_gc, fl_brush()); Polygon(fl_gc, p, n); } #else if (n>2) XFillPolygon(fl_display, fl_window, fl_gc, p, n, Convex, 0); #endif } static int gap; #ifdef WIN32 static int counts[20]; static int numcount; #endif void fl_begin_complex_polygon() { fl_begin_polygon(); gap = 0; #ifdef WIN32 numcount = 0; #endif } void fl_gap() { while (n>gap+2 && p[n-1].x == p[gap].x && p[n-1].y == p[gap].y) n--; if (n > gap+2) { fl_transformed_vertex((COORD_T)p[gap].x, (COORD_T)p[gap].y); #ifdef WIN32 counts[numcount++] = n-gap; #endif gap = n; } else { n = gap; } } void fl_end_complex_polygon() { fl_gap(); #ifdef WIN32 if (n>2) { SelectObject(fl_gc, fl_brush()); PolyPolygon(fl_gc, p, counts, numcount); } #else if (n>2) XFillPolygon(fl_display, fl_window, fl_gc, p, n, 0, 0); #endif } // shortcut the closed circles so they use XDrawArc: // warning: these do not draw rotated ellipses correctly! // See fl_arc.c for portable version. void fl_circle(double x, double y,double r) { double xt = fl_transform_x(x,y); double yt = fl_transform_y(x,y); double rx = r * (m.c ? sqrt(m.a*m.a+m.c*m.c) : fabs(m.a)); double ry = r * (m.b ? sqrt(m.b*m.b+m.d*m.d) : fabs(m.d)); int llx = int(xt-rx+.5); int w = int(xt+rx+.5)-llx; int lly = int(yt-ry+.5); int h = int(yt+ry+.5)-lly; #ifdef WIN32 if (what==POLYGON) { SelectObject(fl_gc, fl_brush()); Pie(fl_gc, llx, lly, llx+w, lly+h, 0,0, 0,0); } else Arc(fl_gc, llx, lly, llx+w, lly+h, 0,0, 0,0); #else (what == POLYGON ? XFillArc : XDrawArc) (fl_display, fl_window, fl_gc, llx, lly, w, h, 0, 360*64); #endif } // // End of "$Id: fl_vertex.cxx,v 1.3 1998/10/21 14:21:03 mike Exp $". //