mirror of https://github.com/fltk/fltk
Fix for issue #159 - continued
Changes here concentrate the fix within static function alpha_blend() and thus are visible only when drawing transparent images under X11 platform without Xrender.
This commit is contained in:
parent
aa140973a3
commit
aa9e2e888e
|
@ -839,11 +839,31 @@ Fl_RGB_Image *Fl_X11_Screen_Driver::read_win_rectangle(int X, int Y, int w, int
|
|||
}
|
||||
}
|
||||
|
||||
if (!image) return 0;
|
||||
if (s != 1) {
|
||||
w = ws;
|
||||
h = hs;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
printf("width = %d\n", image->width);
|
||||
printf("height = %d\n", image->height);
|
||||
printf("xoffset = %d\n", image->xoffset);
|
||||
printf("format = %d\n", image->format);
|
||||
printf("data = %p\n", image->data);
|
||||
printf("byte_order = %d\n", image->byte_order);
|
||||
printf("bitmap_unit = %d\n", image->bitmap_unit);
|
||||
printf("bitmap_bit_order = %d\n", image->bitmap_bit_order);
|
||||
printf("bitmap_pad = %d\n", image->bitmap_pad);
|
||||
printf("depth = %d\n", image->depth);
|
||||
printf("bytes_per_line = %d\n", image->bytes_per_line);
|
||||
printf("bits_per_pixel = %d\n", image->bits_per_pixel);
|
||||
printf("red_mask = %08x\n", image->red_mask);
|
||||
printf("green_mask = %08x\n", image->green_mask);
|
||||
printf("blue_mask = %08x\n", image->blue_mask);
|
||||
printf("map_entries = %d\n", fl_visual->visual->map_entries);
|
||||
#endif // DEBUG
|
||||
|
||||
const int d = 3; // Depth of image
|
||||
uchar *p = NULL;
|
||||
// Allocate the image data array as needed...
|
||||
|
@ -851,318 +871,299 @@ Fl_RGB_Image *Fl_X11_Screen_Driver::read_win_rectangle(int X, int Y, int w, int
|
|||
|
||||
// Initialize the default colors/alpha in the whole image...
|
||||
memset(p, 0, w * h * d);
|
||||
if (image) {
|
||||
|
||||
// Check that we have valid mask/shift values...
|
||||
if (!image->red_mask && image->bits_per_pixel > 12) {
|
||||
// Greater than 12 bits must be TrueColor...
|
||||
image->red_mask = fl_visual->visual->red_mask;
|
||||
image->green_mask = fl_visual->visual->green_mask;
|
||||
image->blue_mask = fl_visual->visual->blue_mask;
|
||||
|
||||
#ifdef DEBUG
|
||||
printf("width = %d\n", image->width);
|
||||
printf("height = %d\n", image->height);
|
||||
printf("xoffset = %d\n", image->xoffset);
|
||||
printf("format = %d\n", image->format);
|
||||
printf("data = %p\n", image->data);
|
||||
printf("byte_order = %d\n", image->byte_order);
|
||||
printf("bitmap_unit = %d\n", image->bitmap_unit);
|
||||
printf("bitmap_bit_order = %d\n", image->bitmap_bit_order);
|
||||
printf("bitmap_pad = %d\n", image->bitmap_pad);
|
||||
printf("depth = %d\n", image->depth);
|
||||
printf("bytes_per_line = %d\n", image->bytes_per_line);
|
||||
printf("bits_per_pixel = %d\n", image->bits_per_pixel);
|
||||
// Defined in Fl_Xlib_Graphics_Driver_color.cxx
|
||||
extern uchar fl_redmask, fl_greenmask, fl_bluemask;
|
||||
extern int fl_redshift, fl_greenshift, fl_blueshift;
|
||||
puts("\n---- UPDATED ----");
|
||||
printf("fl_redmask = %08x\n", fl_redmask);
|
||||
printf("fl_redshift = %d\n", fl_redshift);
|
||||
printf("fl_greenmask = %08x\n", fl_greenmask);
|
||||
printf("fl_greenshift = %d\n", fl_greenshift);
|
||||
printf("fl_bluemask = %08x\n", fl_bluemask);
|
||||
printf("fl_blueshift = %d\n", fl_blueshift);
|
||||
printf("red_mask = %08x\n", image->red_mask);
|
||||
printf("green_mask = %08x\n", image->green_mask);
|
||||
printf("blue_mask = %08x\n", image->blue_mask);
|
||||
printf("map_entries = %d\n", fl_visual->visual->map_entries);
|
||||
#endif // DEBUG
|
||||
|
||||
// Check that we have valid mask/shift values...
|
||||
if (!image->red_mask && image->bits_per_pixel > 12) {
|
||||
// Greater than 12 bits must be TrueColor...
|
||||
image->red_mask = fl_visual->visual->red_mask;
|
||||
image->green_mask = fl_visual->visual->green_mask;
|
||||
image->blue_mask = fl_visual->visual->blue_mask;
|
||||
|
||||
#ifdef DEBUG
|
||||
// Defined in Fl_Xlib_Graphics_Driver_color.cxx
|
||||
extern uchar fl_redmask, fl_greenmask, fl_bluemask;
|
||||
extern int fl_redshift, fl_greenshift, fl_blueshift;
|
||||
puts("\n---- UPDATED ----");
|
||||
printf("fl_redmask = %08x\n", fl_redmask);
|
||||
printf("fl_redshift = %d\n", fl_redshift);
|
||||
printf("fl_greenmask = %08x\n", fl_greenmask);
|
||||
printf("fl_greenshift = %d\n", fl_greenshift);
|
||||
printf("fl_bluemask = %08x\n", fl_bluemask);
|
||||
printf("fl_blueshift = %d\n", fl_blueshift);
|
||||
printf("red_mask = %08x\n", image->red_mask);
|
||||
printf("green_mask = %08x\n", image->green_mask);
|
||||
printf("blue_mask = %08x\n", image->blue_mask);
|
||||
#endif // DEBUG
|
||||
}
|
||||
|
||||
// Check if we have colormap image...
|
||||
if (!image->red_mask) {
|
||||
// Get the colormap entries for this window...
|
||||
maxindex = fl_visual->visual->map_entries;
|
||||
|
||||
for (i = 0; i < maxindex; i ++) colors[i].pixel = i;
|
||||
|
||||
XQueryColors(fl_display, fl_colormap, colors, maxindex);
|
||||
|
||||
for (i = 0; i < maxindex; i ++) {
|
||||
cvals[i][0] = colors[i].red >> 8;
|
||||
cvals[i][1] = colors[i].green >> 8;
|
||||
cvals[i][2] = colors[i].blue >> 8;
|
||||
}
|
||||
|
||||
// Read the pixels and output an RGB image...
|
||||
for (y = 0; y < image->height; y ++) {
|
||||
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
|
||||
line = p + y * w * d;
|
||||
|
||||
switch (image->bits_per_pixel) {
|
||||
case 1 :
|
||||
for (x = image->width, line_ptr = line, index_mask = 128;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (*pixel & index_mask) {
|
||||
line_ptr[0] = cvals[1][0];
|
||||
line_ptr[1] = cvals[1][1];
|
||||
line_ptr[2] = cvals[1][2];
|
||||
} else {
|
||||
line_ptr[0] = cvals[0][0];
|
||||
line_ptr[1] = cvals[0][1];
|
||||
line_ptr[2] = cvals[0][2];
|
||||
}
|
||||
|
||||
if (index_mask > 1) {
|
||||
index_mask >>= 1;
|
||||
} else {
|
||||
index_mask = 128;
|
||||
pixel ++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 2 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 6;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
i = (*pixel >> index_shift) & 3;
|
||||
|
||||
line_ptr[0] = cvals[i][0];
|
||||
line_ptr[1] = cvals[i][1];
|
||||
line_ptr[2] = cvals[i][2];
|
||||
|
||||
if (index_shift > 0) {
|
||||
index_shift -= 2;
|
||||
} else {
|
||||
index_shift = 6;
|
||||
pixel ++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 4 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 4;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (index_shift == 4) i = (*pixel >> 4) & 15;
|
||||
else i = *pixel & 15;
|
||||
|
||||
line_ptr[0] = cvals[i][0];
|
||||
line_ptr[1] = cvals[i][1];
|
||||
line_ptr[2] = cvals[i][2];
|
||||
|
||||
if (index_shift > 0) {
|
||||
index_shift = 0;
|
||||
} else {
|
||||
index_shift = 4;
|
||||
pixel ++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 8 :
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel ++) {
|
||||
line_ptr[0] = cvals[*pixel][0];
|
||||
line_ptr[1] = cvals[*pixel][1];
|
||||
line_ptr[2] = cvals[*pixel][2];
|
||||
}
|
||||
break;
|
||||
|
||||
case 12 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 0;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (index_shift == 0) {
|
||||
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
|
||||
} else {
|
||||
i = ((pixel[1] << 8) | pixel[2]) & 4095;
|
||||
}
|
||||
|
||||
line_ptr[0] = cvals[i][0];
|
||||
line_ptr[1] = cvals[i][1];
|
||||
line_ptr[2] = cvals[i][2];
|
||||
|
||||
if (index_shift == 0) {
|
||||
index_shift = 4;
|
||||
} else {
|
||||
index_shift = 0;
|
||||
pixel += 3;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// RGB(A) image, so figure out the shifts & masks...
|
||||
red_mask = image->red_mask;
|
||||
red_shift = 0;
|
||||
|
||||
while ((red_mask & 1) == 0) {
|
||||
red_mask >>= 1;
|
||||
red_shift ++;
|
||||
}
|
||||
|
||||
green_mask = image->green_mask;
|
||||
green_shift = 0;
|
||||
|
||||
while ((green_mask & 1) == 0) {
|
||||
green_mask >>= 1;
|
||||
green_shift ++;
|
||||
}
|
||||
|
||||
blue_mask = image->blue_mask;
|
||||
blue_shift = 0;
|
||||
|
||||
while ((blue_mask & 1) == 0) {
|
||||
blue_mask >>= 1;
|
||||
blue_shift ++;
|
||||
}
|
||||
|
||||
// Read the pixels and output an RGB image...
|
||||
for (y = 0; y < image->height; y ++) {
|
||||
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
|
||||
line = p + y * w * d;
|
||||
|
||||
switch (image->bits_per_pixel) {
|
||||
case 8 :
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel ++) {
|
||||
i = *pixel;
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
break;
|
||||
|
||||
case 12 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 0;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (index_shift == 0) {
|
||||
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
|
||||
} else {
|
||||
i = ((pixel[1] << 8) | pixel[2]) & 4095;
|
||||
}
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
|
||||
if (index_shift == 0) {
|
||||
index_shift = 4;
|
||||
} else {
|
||||
index_shift = 0;
|
||||
pixel += 3;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 16 :
|
||||
if (image->byte_order == LSBFirst) {
|
||||
// Little-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 2) {
|
||||
i = (pixel[1] << 8) | pixel[0];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
} else {
|
||||
// Big-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 2) {
|
||||
i = (pixel[0] << 8) | pixel[1];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 24 :
|
||||
if (image->byte_order == LSBFirst) {
|
||||
// Little-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 3) {
|
||||
i = (((pixel[2] << 8) | pixel[1]) << 8) | pixel[0];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
} else {
|
||||
// Big-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 3) {
|
||||
i = (((pixel[0] << 8) | pixel[1]) << 8) | pixel[2];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 32 :
|
||||
if (image->byte_order == LSBFirst) {
|
||||
// Little-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 4) {
|
||||
i = (((((pixel[3] << 8) | pixel[2]) << 8) | pixel[1]) << 8) | pixel[0];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
} else {
|
||||
// Big-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 4) {
|
||||
i = (((((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]) << 8) | pixel[3];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Destroy the X image we've read and return the RGB(A) image...
|
||||
XDestroyImage(image);
|
||||
}
|
||||
|
||||
// Check if we have colormap image...
|
||||
if (!image->red_mask) {
|
||||
// Get the colormap entries for this window...
|
||||
maxindex = fl_visual->visual->map_entries;
|
||||
|
||||
for (i = 0; i < maxindex; i ++) colors[i].pixel = i;
|
||||
|
||||
XQueryColors(fl_display, fl_colormap, colors, maxindex);
|
||||
|
||||
for (i = 0; i < maxindex; i ++) {
|
||||
cvals[i][0] = colors[i].red >> 8;
|
||||
cvals[i][1] = colors[i].green >> 8;
|
||||
cvals[i][2] = colors[i].blue >> 8;
|
||||
}
|
||||
|
||||
// Read the pixels and output an RGB image...
|
||||
for (y = 0; y < image->height; y ++) {
|
||||
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
|
||||
line = p + y * w * d;
|
||||
|
||||
switch (image->bits_per_pixel) {
|
||||
case 1 :
|
||||
for (x = image->width, line_ptr = line, index_mask = 128;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (*pixel & index_mask) {
|
||||
line_ptr[0] = cvals[1][0];
|
||||
line_ptr[1] = cvals[1][1];
|
||||
line_ptr[2] = cvals[1][2];
|
||||
} else {
|
||||
line_ptr[0] = cvals[0][0];
|
||||
line_ptr[1] = cvals[0][1];
|
||||
line_ptr[2] = cvals[0][2];
|
||||
}
|
||||
|
||||
if (index_mask > 1) {
|
||||
index_mask >>= 1;
|
||||
} else {
|
||||
index_mask = 128;
|
||||
pixel ++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 2 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 6;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
i = (*pixel >> index_shift) & 3;
|
||||
|
||||
line_ptr[0] = cvals[i][0];
|
||||
line_ptr[1] = cvals[i][1];
|
||||
line_ptr[2] = cvals[i][2];
|
||||
|
||||
if (index_shift > 0) {
|
||||
index_shift -= 2;
|
||||
} else {
|
||||
index_shift = 6;
|
||||
pixel ++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 4 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 4;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (index_shift == 4) i = (*pixel >> 4) & 15;
|
||||
else i = *pixel & 15;
|
||||
|
||||
line_ptr[0] = cvals[i][0];
|
||||
line_ptr[1] = cvals[i][1];
|
||||
line_ptr[2] = cvals[i][2];
|
||||
|
||||
if (index_shift > 0) {
|
||||
index_shift = 0;
|
||||
} else {
|
||||
index_shift = 4;
|
||||
pixel ++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 8 :
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel ++) {
|
||||
line_ptr[0] = cvals[*pixel][0];
|
||||
line_ptr[1] = cvals[*pixel][1];
|
||||
line_ptr[2] = cvals[*pixel][2];
|
||||
}
|
||||
break;
|
||||
|
||||
case 12 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 0;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (index_shift == 0) {
|
||||
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
|
||||
} else {
|
||||
i = ((pixel[1] << 8) | pixel[2]) & 4095;
|
||||
}
|
||||
|
||||
line_ptr[0] = cvals[i][0];
|
||||
line_ptr[1] = cvals[i][1];
|
||||
line_ptr[2] = cvals[i][2];
|
||||
|
||||
if (index_shift == 0) {
|
||||
index_shift = 4;
|
||||
} else {
|
||||
index_shift = 0;
|
||||
pixel += 3;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// RGB(A) image, so figure out the shifts & masks...
|
||||
red_mask = image->red_mask;
|
||||
red_shift = 0;
|
||||
|
||||
while ((red_mask & 1) == 0) {
|
||||
red_mask >>= 1;
|
||||
red_shift ++;
|
||||
}
|
||||
|
||||
green_mask = image->green_mask;
|
||||
green_shift = 0;
|
||||
|
||||
while ((green_mask & 1) == 0) {
|
||||
green_mask >>= 1;
|
||||
green_shift ++;
|
||||
}
|
||||
|
||||
blue_mask = image->blue_mask;
|
||||
blue_shift = 0;
|
||||
|
||||
while ((blue_mask & 1) == 0) {
|
||||
blue_mask >>= 1;
|
||||
blue_shift ++;
|
||||
}
|
||||
|
||||
// Read the pixels and output an RGB image...
|
||||
for (y = 0; y < image->height; y ++) {
|
||||
pixel = (unsigned char *)(image->data + y * image->bytes_per_line);
|
||||
line = p + y * w * d;
|
||||
|
||||
switch (image->bits_per_pixel) {
|
||||
case 8 :
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel ++) {
|
||||
i = *pixel;
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
break;
|
||||
|
||||
case 12 :
|
||||
for (x = image->width, line_ptr = line, index_shift = 0;
|
||||
x > 0;
|
||||
x --, line_ptr += d) {
|
||||
if (index_shift == 0) {
|
||||
i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095;
|
||||
} else {
|
||||
i = ((pixel[1] << 8) | pixel[2]) & 4095;
|
||||
}
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
|
||||
if (index_shift == 0) {
|
||||
index_shift = 4;
|
||||
} else {
|
||||
index_shift = 0;
|
||||
pixel += 3;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 16 :
|
||||
if (image->byte_order == LSBFirst) {
|
||||
// Little-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 2) {
|
||||
i = (pixel[1] << 8) | pixel[0];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
} else {
|
||||
// Big-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 2) {
|
||||
i = (pixel[0] << 8) | pixel[1];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 24 :
|
||||
if (image->byte_order == LSBFirst) {
|
||||
// Little-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 3) {
|
||||
i = (((pixel[2] << 8) | pixel[1]) << 8) | pixel[0];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
} else {
|
||||
// Big-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 3) {
|
||||
i = (((pixel[0] << 8) | pixel[1]) << 8) | pixel[2];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 32 :
|
||||
if (image->byte_order == LSBFirst) {
|
||||
// Little-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 4) {
|
||||
i = (((((pixel[3] << 8) | pixel[2]) << 8) | pixel[1]) << 8) | pixel[0];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
} else {
|
||||
// Big-endian...
|
||||
for (x = image->width, line_ptr = line;
|
||||
x > 0;
|
||||
x --, line_ptr += d, pixel += 4) {
|
||||
i = (((((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]) << 8) | pixel[3];
|
||||
|
||||
line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask;
|
||||
line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask;
|
||||
line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Destroy the X image we've read and return the RGB(A) image...
|
||||
XDestroyImage(image);
|
||||
|
||||
Fl_RGB_Image *rgb = new Fl_RGB_Image(p, w, h, d);
|
||||
rgb->alloc_array = 1;
|
||||
return rgb;
|
||||
|
|
|
@ -658,13 +658,15 @@ static void alpha_blend(Fl_RGB_Image *img, int X, int Y, int W, int H, int cx, i
|
|||
int ld = img->ld();
|
||||
if (ld == 0) ld = img->data_w() * img->d();
|
||||
uchar *srcptr = (uchar*)img->array + cy * ld + cx * img->d();
|
||||
|
||||
uchar *dst = fl_read_image(NULL, X, Y, W, H, 0);
|
||||
if (!dst) {
|
||||
fl_draw_image(srcptr, X, Y, W, H, img->d(), ld);
|
||||
return;
|
||||
}
|
||||
int srcskip = ld - img->d() * W;
|
||||
|
||||
uchar *dst = new uchar[W * H * 3];
|
||||
uchar *dstptr = dst;
|
||||
|
||||
fl_read_image(dst, X, Y, W, H, 0);
|
||||
|
||||
uchar srcr, srcg, srcb, srca;
|
||||
uchar dstr, dstg, dstb, dsta;
|
||||
|
||||
|
|
|
@ -50,7 +50,7 @@ uchar *fl_read_image(uchar *p, int X, int Y, int w, int h, int alpha) {
|
|||
img = Fl_Screen_Driver::traverse_to_gl_subwindows(Fl_Window::current(), X, Y, w, h, NULL);
|
||||
}
|
||||
int depth = alpha ? 4 : 3;
|
||||
if (img->d() != depth) {
|
||||
if (img && img->d() != depth) {
|
||||
uchar *data = new uchar[img->w() * img->h() * depth];
|
||||
if (depth == 4) memset(data, alpha, img->w() * img->h() * depth);
|
||||
uchar *d = data;
|
||||
|
|
Loading…
Reference in New Issue