fltk/documentation/opengl.html

376 lines
14 KiB
HTML
Raw Normal View History

<HTML><BODY>
<H1 ALIGN=RIGHT><A NAME=opengl>9 - Using OpenGL</A></H1>
This chapter discusses using FLTK for your OpenGL applications.
<H2>Using OpenGL in FLTK</H2>
The easiest way to make an OpenGL display is to subclass <A href=Fl_Gl_Window.html#Fl_Gl_Window>
<TT>Fl_Gl_Window</TT></A>. Your subclass must implement a <TT>draw()</TT>
method which uses OpenGL calls to draw the display. Your main program
should call <TT>redraw()</TT> when the display needs to change, and
(somewhat later) FLTK will call <TT>draw()</TT>.
<P>With a bit of care you can also use OpenGL to draw into normal FLTK
windows. This allows you to use Gouraud shading for
drawing your widgets. To do this you use the <A href=#gl_start><TT>
gl_start()</TT></A> and <A href=#gl_finish><TT>gl_finish()</TT></A>
functions around your OpenGL code. </P>
<P>You must include FLTK's <TT>&lt;FL/gl.h&gt;</TT> header file. It will
include the file <TT>&lt;GL/gl.h&gt;</TT>, define some extra drawing
functions provided by FLTK, and include the <TT>&lt;windows.h&gt;</TT> header
file needed by WIN32 applications. </P>
<H2>Making a Subclass of Fl_Gl_Window</H2>
To make a subclass of Fl_Gl_Window, you must provide:
<UL>
<LI>A class definition. </LI>
<LI>A <TT>draw()</TT> method. </LI>
<LI>A <TT>handle()</TT> method (if you need to recieve input from the
user). </LI>
</UL>
If your subclass provides static controls in the window, they must be
redrawn whenever the <tt>FL_DAMAGE_ALL</tt> bit is set in the value
returned by <tt>damage()</tt>. For double-buffered windows you will
need to surround the drawing code with the following code to make sure
that both buffers are redrawn:
<ul><pre>
#ifndef MESA
glDrawBuffer(GL_FRONT_AND_BACK);
#endif // !MESA
... draw stuff here ...
#ifndef MESA
glDrawBuffer(GL_BACK);
#endif // !MESA
</pre></ul>
<B>Note:</B> If you are using the Mesa graphics library, the call to
<tt>glDrawBuffer()</tt> is not required and will slow down drawing
considerably. The preprocessor instructions shown above will optimize
your code based upon the graphics library used.
<H3>Defining the Subclass</H3>
To define the subclass you just subclass the <TT>Fl_Gl_Window</TT> class:
<UL>
<PRE>
class MyWindow : public Fl_Gl_Window {
void draw();
int handle(int);
public:
MyWindow(int X, int Y, int W, int H, const char *L)
: Fl_Gl_Window(X, Y, W, H, L) {}
};
</PRE>
</UL>
The <TT>draw()</TT> and <TT>handle()</TT> methods are described below.
Like any widget, you can include additional private and public data in
your class (such as scene graph information, etc.)
<H3>The draw() Method</H3>
The <TT>draw()</TT> method is where you actually do your OpenGL
drawing:
<UL>
<PRE>
void MyWindow::draw() {
if (!valid()) {
... set up projection, viewport, etc ...
... window size is in w() and h().
... valid() is turned on by FLTK after draw() returns
}
... draw ...
}
</PRE>
</UL>
<H3>The handle() Method</H3>
The <TT>handle()</TT> method handles mouse and keyboard events for the
window:
<UL>
<PRE>
int MyWindow::handle(int event) {
switch(event) {
case FL_PUSH:
... mouse down event ...
... position in Fl::event_x() and Fl::event_y()
return 1;
case FL_DRAG:
... mouse moved while down event ...
return 1;
case FL_RELEASE:
... mouse up event ...
return 1;
case FL_FOCUS :
case FL_UNFOCUS :
... Return 1 if you want keyboard events, 0 otherwise
return 1;
case FL_KEYBOARD:
... keypress, key is in Fl::event_key(), ascii in Fl::event_text()
... Return 1 if you understand/use the keyboard event, 0 otherwise...
return 1;
case FL_SHORTCUT:
... shortcut, key is in Fl::event_key(), ascii in Fl::event_text()
... Return 1 if you understand/use the shortcut event, 0 otherwise...
return 1;
default:
// pass other events to the base class...
return Fl_Gl_Window::handle(event);
}
}
</PRE>
</UL>
When <TT>handle()</TT> is called, the OpenGL context is not set up!
If your display changes, you should call <TT>redraw()</TT> and let <TT>
draw()</TT> do the work. Don't call any OpenGL drawing functions from
inside <TT>handle()</TT>!
<P>You can call <I>some</I> OpenGL stuff like hit detection and texture
loading functions by doing: </P>
<UL>
<PRE>
case FL_PUSH:
make_current(); // make OpenGL context current
if (!valid()) {
... set up projection exactly the same as draw ...
valid(1); // stop it from doing this next time
}
... ok to call NON-DRAWING OpenGL code here, such as hit
detection, loading textures, etc...
</PRE>
</UL>
Your main program can now create one of your windows by doing <TT>new
MyWindow(...)</TT>. You can also use <A href=FLUID.html#FLUID>FLUID</A>
by:
<OL>
<LI>Putting your class definition in a <tt>MyWindow.H</tt> file. </LI>
<LI>Creating a <tt>Fl_Box</tt> widget in FLUID.</LI>
<LI>In the widget panel fill in the &quot;class&quot; field with <tt>MyWindow</tt>.
This will make FLUID produce constructors for your new class. </LI>
<LI>In the &quot;Extra Code&quot; field put <TT>#include &quot;MyWindow.H&quot;</TT>, so that
the FLUID output file will compile. </LI>
</OL>
You must put <TT>glwindow-&gt;show()</TT> in your main code after calling <TT>
show()</TT> on the window containing the OpenGL window.
<H2>Using OpenGL in Normal FLTK Windows</H2>
You can put OpenGL code into an <A href=#draw><TT>Fl_Widget::draw()</TT>
</A> method or into the code for a <A href=common.html#boxtypes>boxtype</A>
or other places with some care.
<P>Most importantly, before you show <I>any</I> windows (including those
that don't have OpenGL drawing) you <B>must</B> initialize FLTK so that it
knows it is going to use OpenGL. You may use any of the symbols
described for <A href=Fl_Gl_Window.html#Fl_Gl_Window.mode><TT>
Fl_Gl_Window::mode()</TT></A> to describe how you intend to use OpenGL: </P>
<UL>
<PRE>
Fl::gl_visual(FL_RGB);
</PRE>
</UL>
You can then put OpenGL drawing code anywhere you can draw normally by
surrounding it with:
<UL>
<PRE>
gl_start();
... put your OpenGL code here ...
gl_finish();
</PRE>
</UL>
<A name=gl_start><TT>gl_start()</TT></A> and <A name=gl_finish><TT>
gl_finish()</TT></A> set up an OpenGL context with an orthographic
projection so that 0,0 is the lower-left corner of the window and each
pixel is one unit. The current clipping is reproduced with OpenGL <TT>
glScissor()</TT> commands. These also synchronize the OpenGL graphics
stream with the drawing done by other X, WIN32, or FLTK functions.
<P>The same context is reused each time. If your code changes the
projection transformation or anything else you should use <TT>
glPushMatrix()</TT> and <TT>glPopMatrix()</TT> functions to put the
state back before calling <TT>gl_finish()</TT>. </P>
<P>You may want to use <TT>Fl_Window::current()-&gt;h()</TT> to get the
drawable height so that you can flip the Y coordinates. </P>
<P>Unfortunately, there are a bunch of limitations you must adhere to
for maximum portability: </P>
<UL>
<LI>You must choose a default visual with <A href=functions.html#gl_visual>
<TT>Fl::gl_visual()</TT></A>. </LI>
<LI>You cannot pass <TT>FL_DOUBLE</TT> to <TT>Fl::gl_visual()</TT>.</LI>
<LI>You cannot use <TT>Fl_Double_Window</TT> or <TT>Fl_Overlay_Window</TT>.</LI>
</UL>
Do <I>not</I> call <TT>gl_start()</TT> or <TT>gl_finish()</TT> when
drawing into an <TT>Fl_Gl_Window</TT>!
<H2>OpenGL Drawing Functions</H2>
FLTK provides some useful OpenGL drawing functions. They can be
freely mixed with any OpenGL calls, and are defined by including <TT>
&lt;FL/gl.H&gt;</TT> (which you should include instead of the OpenGL header <TT>
&lt;GL/gl.h&gt;</TT>).
<H4>void gl_color(Fl_Color)</H4>
Set the current color to a FLTK color. <I>For color-index modes
it will use <TT>fl_xpixel(c)</TT>, which is only right if this window
uses the default colormap!</I>
<H4>void gl_rect(int x, int y, int w, int h)
<BR> void gl_rectf(int x, int y, int w, int h)</H4>
Outline or fill a rectangle with the current color. If
<A HREF="Fl_Gl_Window.html#Fl_Gl_Window.ortho"><TT>Fl_Gl_Window::ortho()</TT></A>
has been called, then the rectangle will exactly fill the pixel
rectangle passed.
<H4>void gl_font(Fl_Font fontid, int size)</H4>
Set the current OpenGL font to the same font you get by calling <A href=drawing.html#fl_font>
<TT>fl_font()</TT></A>.
<H4>int gl_height()
<BR> int gl_descent()
<BR> float gl_width(const char *)
<BR> float gl_width(const char *, int n)
<BR> float gl_width(uchar)</H4>
Return information about the current OpenGL font.
<H4>void gl_draw(const char *)
<BR> void gl_draw(const char *, int n)</H4>
Draw a nul-terminated string or an array of <TT>n</TT> characters in
the current OpenGL font at the current raster position.
<H4>void gl_draw(const char *, int x, int y)
<BR> void gl_draw(const char *, int n, int x, int y)
<BR> void gl_draw(const char *, float x, float y)
<BR> void gl_draw(const char *, int n, float x, float y)</H4>
Draw a nul-terminated string or an array of <TT>n</TT> characters in
the current OpenGL font at the given position.
<H4>void gl_draw(const char *, int x, int y, int w, int h, Fl_Align)</H4>
Draw a string formatted into a box, with newlines and tabs expanded,
other control characters changed to ^X, and aligned with the edges or
center. Exactly the same output as <A href=#fl_draw><TT>fl_draw()</TT></A>
.
<h2>Speeding up OpenGL</h2>
Performance of Fl_Gl_Window may be improved on some types of OpenGL
implementations (in particular MESA or other software emulators) by
setting the <tt>GL_SWAP_TYPE</tt> environment variable. This variable
declares what is in the back buffer after you do a swapbuffers.
<ul>
<li><tt>setenv GL_SWAP_TYPE COPY</tt>
<p>This indicates that the back buffer is copied to the front buffer,
and still contains it's old data. This is true of many hardware
implementations. Setting this will speed up emulation of
overlays, and widgets that can do partial update can take
advantage of this as damage() will not be cleared to -1.
<p>
<li><tt>setenv GL_SWAP_TYPE NODAMAGE</tt>
<p>This indicates that nothing changes the back buffer except drawing
into it. This is true of MESA and Win32 software emulation and
perhaps some hardware emulation on systems with lots of memory.
<p>
<li>All other values for <tt>GL_SWAP_TYPE</tt>, and not setting the variable,
cause fltk to assumme that the back buffer must be completely
redrawn after a swap.
</ul>
<p>This is easily tested by running the gl_overlay demo program and
seeing if the display is correct when you drag another window over
it or if you drag the window off the screen and back on. You have to
exit and run the program again for it to see any changes to the
environment variable.
<H2>Using OpenGL Optimizer with FLTK</H2>
<A href=http://www.sgi.com/software/optimizer>OpenGL Optimizer</A> is a
scene graph toolkit for OpenGL available from Silicon Graphics for IRIX
and Microsoft Windows. Versions are in the works for Solaris and
HP-UX. It allows you to view large scenes without writing a lot of
OpenGL code.
<H4>OptimizerWindow Class Definition</H4>
To use OpenGL Optimizer with FLTK you'll need to create a subclass of <TT>
Fl_Gl_Widget</TT> that includes several state variables:
<UL>
<PRE>
class OptimizerWindow : public Fl_Gl_Window {
csContext *context_; // Initialized to 0 and set by draw()...
csDrawAction *draw_action_; // Draw action...
csGroup *scene_; // Scene to draw...
csCamara *camera_; // Viewport for scene...
void draw();
public:
OptimizerWindow(int X, int Y, int W, int H, const char *L)
: Fl_Gl_Window(X, Y, W, H, L) {
context_ = (csContext *)0;
draw_action_ = (csDrawAction *)0;
scene_ = (csGroup *)0;
camera_ = (csCamera *)0;
}
void scene(csGroup *g) { scene_ = g; redraw(); }
void camera(csCamera *c) {
camera_ = c;
if (context_) {
draw_action_-&gt;setCamera(camera_);
camera_-&gt;draw(draw_action_);
redraw();
}
}
};
</PRE>
</UL>
<PRE>
</PRE>
<H4>The camera() Method</H4>
The <TT>camera()</TT> method sets the camera (projection and
viewpoint) to use when drawing the scene. The scene is redrawn after
this call.
<H4>The draw() Method</H4>
The <TT>draw()</TT> method performs the needed initialization and does
the actual drawing:
<UL>
<PRE>
void OptimizerWindow::draw() {
if (!context_) {
// This is the first time we've been asked to draw; create the
// Optimizer context for the scene...
#ifdef WIN32
context_ = new csContext((HDC)fl_getHDC());
context_-&gt;ref();
context_-&gt;makeCurrent((HDC)fl_getHDC());
#else
context_ = new csContext(fl_display, fl_visual);
context_-&gt;ref();
context_-&gt;makeCurrent(fl_display, fl_window);
#endif // WIN32
... perform other context setup as desired ...
// Then create the draw action to handle drawing things...
draw_action_ = new csDrawAction;
if (camera_) {
draw_action_-&gt;setCamera(camera_);
camera_-&gt;draw(draw_action_);
}
} else {
#ifdef WIN32
context_-&gt;makeCurrent((HDC)fl_getHDC());
#else
context_-&gt;makeCurrent(fl_display, fl_window);
#endif // WIN32
}
if (!valid()) {
// Update the viewport for this context...
context_-&gt;setViewport(0, 0, w(), h());
}
// Clear the window...
context_-&gt;clear(csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR,
0.0f, // Red
0.0f, // Green
0.0f, // Blue
1.0f); // Alpha
// Then draw the scene (if any)...
if (scene_)
draw_action_-&gt;apply(scene_);
}
</PRE>
</UL>
<H4>The scene() Method</H4>
The <TT>scene()</TT> method sets the scene to be drawn. The scene is
a collection of 3D objects in a <TT>csGroup</TT>. The scene is redrawn
after this call. </BODY></HTML>