fltk/documentation/Fl_Gl_Window.html

266 lines
9.6 KiB
HTML
Raw Normal View History

<html>
<body>
<hr break>
<h2><a name="Fl_Gl_Window">class Fl_Gl_Window</a></h2>
<hr>
<h3>Class Hierarchy</h3>
<ul><pre>
<a href="#Fl_Widget">Fl_Widget</a>
|
+----<b>Fl_Gl_Window</b>
|
+----<a href="#Fl_Pack">Fl_Pack</a>, <a href="#Fl_Scroll">Fl_Scroll</a>, <a href="#Fl_Tabs">Fl_Tabs</a>, <a href="#Fl_Tile">Fl_Tile</a>, <a href="#Fl_Window">Fl_Window</a>
</pre></ul>
<h3>Include Files</h3>
<ul><pre>
#include &lt;FL/Fl_Gl_Window.H>
</pre></ul>
<h3>Description</h3>
The <tt>Fl_Gl_Window</tt> widget sets things up so OpenGL works, and
also keeps an OpenGL "context" for that window, so that changes to the
lighting and projection may be reused between redraws.
</tt>Fl_Gl_Window</tt> also flushes the OpenGL streams and swaps
buffers after <tt>draw()</tt> returns.
<p>OpenGL hardware typically provides some overlay bit planes, which
are very useful for drawing UI controls atop your 3D graphics. If the
overlay hardware is not provided, FLTK tries to simulate the overlay,
This works pretty well if your graphics are double buffered, but not
very well for single-buffered.
<h3>Methods</h3>
<center>
<table width=90%>
<tr>
<td align=left valign=top>
<ul>
<li><a href="#Fl_Gl_Window.Fl_Gl_Window">Fl_Gl_Window</a>
<li><a href="#Fl_Gl_Window.~Fl_Gl_Window">~Fl_Gl_Window</a>
<li><a href="#Fl_Gl_Window.can_do">can_do</a>
<li><a href="#Fl_Gl_Window.can_do_overlay">can_do_overlay</a>
</ul>
</td>
<td align=left valign=top>
<ul>
<li><a href="#Fl_Gl_Window.draw">draw</a>
<li><a href="#Fl_Gl_Window.draw_overlay">draw_overlay</a>
<li><a href="#Fl_Gl_Window.handle">handle</a>
</ul>
</td>
<td align=left valign=top>
<ul>
<li><a href="#Fl_Gl_Window.hide">hide</a>
<li><a href="#Fl_Gl_Window.invalidate">invalidate</a>
<li><a href="#Fl_Gl_Window.make_current">make_current</a>
</ul>
</td>
<td align=left valign=top>
<ul>
<li><a href="#Fl_Gl_Window.make_overlay_current">make_overlay_current</a>
<li><a href="#Fl_Gl_Window.mode">mode</a>
<li><a href="#Fl_Gl_Window.ortho">ortho</a>
</ul>
</td>
<td align=left valign=top>
<ul>
<li><a href="#Fl_Gl_Window.redraw_overlay">redraw_overlay</a>
<li><a href="#Fl_Gl_Window.swap_buffers">swap_buffers</a>
<li><a href="#Fl_Gl_Window.valid">valid</a>
</ul>
</td>
</tr>
</table>
</center>
<h4><a name="Fl_Gl_Window.Fl_Gl_Window">Fl_Gl_Window::Fl_Gl_Window(int x, int y, int w, int h, const char *label = 0)</a></h4>
Creates a new <tt>Fl_Gl_Window</tt> widget using the given position, size, and
label string. The default boxtype is <tt>FL_NO_BOX</tt>. The default mode is
<tt>FL_RGB|FL_DOUBLE|FL_DEPTH</tt>.
<h4><a name="Fl_Gl_Window.~Fl_Gl_Window">virtual Fl_Gl_Window::~Fl_Gl_Window()</a></h4>
The destructor removes the widget and destroys the OpenGL context associated
with it.
<h4><a name="Fl_Gl_Window.draw">virtual void Fl_Gl_Window::draw(void)</a></h4>
<tt>Fl_Gl_Window::draw()</tt> is a pure virtual method. You must
subclass <tt>Fl_Gl_Window</tt> and provide an implementation for
<tt>draw()</tt>. You may also provide an implementation of
draw_overlay() if you want to draw into the overlay planes. You can
avoid reinitializing the viewport and lights and other things by
checking <tt>valid()</tt> at the start of <tt>draw()</tt> and only
doing the initialization if it is false.
<p>The <tt>draw()</tt> method can <i>only</i> use OpenGL calls. Do not
attempt to call X, any of the functions in &lt;FL/fl_draw.H>, or
<tt>glX</tt> directly. Do not call <tt>gl_start()</tt> or
<tt>gl_finish()</tt>.
<p>If double-buffering is enabled in the window, the back and front buffers
are swapped after this function is completed.
<h4><a name="Fl_Gl_Window.mode">const int Fl_Gl_Window::mode() const<br>
int Fl_Gl_Window::mode(int m)</a></h4>
Set or change the OpenGL capabilites of the window. The value can be
any of the following OR'd together:
<ul>
<li><tt>FL_RGB</tt> - RGB color (not indexed)
<li><tt>FL_RGB8</tt> - RGB color with at least 8 bits of each color
<li><tt>FL_INDEX</tt> - Indexed mode
<li><tt>FL_SINGLE</tt> - not double buffered
<li><tt>FL_DOUBLE</tt> - double buffered
<li><tt>FL_ACCUM</tt> - accumulation buffer
<li><tt>FL_ALPHA</tt> - alpha channel in color
<li><tt>FL_DEPTH</tt> - depth buffer
<li><tt>FL_STENCIL</tt> - stencil buffer
<li><tt>FL_MULTISAMPLE</tt> - multisample antialiasing
</ul>
<tt>FL_RGB</tt> and <tt>FL_SINGLE</tt> have a value of zero, so they are
"on" unless you give <tt>FL_INDEX</tt> or <tt>FL_DOUBLE</tt>.
<p>If the desired combination cannot be done, FLTK will try turning off
<tt>FL_MULTISAMPLE</tt>. If this also fails the <tt>show()</tt> will call
<tt>Fl::error()</tt> and not show the window.
<p>You can change the mode while the window is displayed. This
is most useful for turning double-buffering on and off. Under
X this will cause the old X window to be destroyed and a new one to be
created. If this is a top-level window this will unfortunately also
cause the window to blink, raise to the top, and be de-iconized, and
the <tt>xid()</tt> will change, possibly breaking other code. It is best to
make the GL window a child of another window if you wish to do this!
<h4><a name="Fl_Gl_Window.can_do">static int Fl_Gl_Window::can_do(int)<br>
int Fl_Gl_Window::can_do() const</a></h4>
Returns non-zero if the hardware supports the given or current OpenGL mode.
<h4><a name="Fl_Gl_Window.valid">char Fl_Gl_Window::valid() const<br>
void Fl_Gl_Window::valid(char i)</a></h4>
<tt>Fl_Gl_Window::valid()</tt> is turned off when FLTK creates a
new context for this window or when the window resizes, and is turned
on <i>after</i> <tt>draw()</tt> is called. You can use this inside your <tt>draw()</tt>
method to avoid unneccessarily initializing the OpenGL context. Just
do this:
<ul><pre>
void mywindow::draw() {
if (!valid()) {
glViewport(0,0,w(),h());
glFrustum(...);
glLight(...);
...other initialization...
}
... draw your geometry here ...
}
<br>void Fl_Gl_Window::invalidate();
<br>void Fl_Gl_Window::valid(char i);</a></h4>
<tt>Fl_Gl_Window::valid()</tt> is turned off when FLTK creates a
new context for this window and by the window resizing, and is turned
on <i>after</i> draw() is called. You can use this inside your draw()
method to avoid unneccessarily initializing the OpenGL context. Just
do this:
<pre><tt>void mywindow::draw() {
if (!valid()) {
glViewport(0,0,w(),h());
glFrustum(...);
glLight(...);
...other initilization...
}
... draw your geometry here ...
}
</pre></ul>
You can turn <tt>valid()</tt> on by calling <tt>valid(1)</tt>. You
should only do this after fixing the transformation inside a
<tt>draw()</tt> or after <tt>make_current()</tt>. This is done
automatically after <tt>draw()</tt> returns.
<h4><a name="Fl_Gl_Window.invalidate">void Fl_Gl_Window::invalidate()</a></h4>
The <tt>invalidate()</tt> method turns off <tt>valid()</tt> and is
equivalent to calling <tt>value(0)</tt>.
<h4><a name="Fl_Gl_Window.ortho">void Fl_Gl_Window::ortho()</a></h4>
Set the projection so 0,0 is in the lower left of the window and each
pixel is 1 unit wide/tall. If you are drawing 2D images, your
<tt>draw()</tt> method may want to call this if <tt>valid()</tt> is
false.
<h4><a name="Fl_Gl_Window.make_current">void Fl_Gl_Window::make_current()</a></h4>
The <tt>make_current()</tt> method selects the OpenGL context for the
widget. It is called automatically prior to the <tt>draw()</tt> method
being called and can also be used to implement feedback and/or selection
within the <tt>handle()</tt> method.
<h4><a name="Fl_Gl_Window.make_overlay_current">void Fl_Gl_Window::make_overlay_current()</a></h4>
The <tt>make_overlay_current()</tt> method selects the OpenGL context
for the widget's overlay. It is called automatically prior to the
<tt>draw_overlay()</tt> method being called and can also be used to
implement feedback and/or selection within the <tt>handle()</tt>
method.
<h4><a name="Fl_Gl_Window.swap_buffers">void Fl_Gl_Window::swap_buffers()</a></h4>
The <tt>swap_buffers()</tt> method swaps the back and front buffers.
It is called automatically after the <tt>draw()</tt> method is called.
<h4><a name="Fl_Gl_Window.hide">void Fl_Gl_Window::hide()</a></h4>
Hides the window and destroys the OpenGL context.
<h4><a name="Fl_Gl_Window.can_do_overlay">int Fl_Gl_Window::can_do_overlay()</a></h4>
Returns true if the hardware overlay is possible. If this is false,
FLTK will try to simulate the overlay, with significant loss of update
speed. Calling this will cause FLTK to open the display.
<h4><a name="Fl_Gl_Window.redraw_overlay">void Fl_Gl_Window::redraw_overlay()</a></h4>
This method causes <tt>draw_overlay</tt> to be called at a later time.
Initially the overlay is clear, if you want the window to display
something in the overlay when it first appears, you must call this
immediately after you <tt>show()</tt> your window.
<h4><a name="Fl_Gl_Window.draw_overlay">virtual void Fl_Gl_Window::draw_overlay()</a></h4>
You must implement this virtual function if you want to draw into the
overlay. The overlay is cleared before this is called. You should
draw anything that is not clear using OpenGL. You must use
<tt>gl_color(i)</tt> to choose colors (it allocates them from the colormap
using system-specific calls), and remember that you are in an indexed
OpenGL mode and drawing anything other than flat-shaded will probably
not work.
<p>Both this function and <tt>Fl_Gl_Window::draw()</tt> should check
<tt>Fl_Gl_Window::valid()</tt> and set the same transformation. If you
don't your code may not work on other systems. Depending on the OS,
and on whether overlays are real or simulated, the OpenGL context may
be the same or different between the overlay and main window.
</body>
</html>