use double instead of FLAC__real in some places internally; add explicit casts for some implicit cases

This commit is contained in:
Josh Coalson 2001-07-03 04:37:18 +00:00
parent 8e0cbd49d5
commit b35bebd439

View File

@ -75,7 +75,7 @@ void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_le
void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__real error[])
{
unsigned i, j;
FLAC__real r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];
double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];
FLAC__ASSERT(0 < max_order);
FLAC__ASSERT(max_order <= FLAC__MAX_LPC_ORDER);
@ -93,7 +93,7 @@ void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned max_or
/* Update LPC coefficients and total error. */
lpc[i]=r;
for(j = 0; j < (i>>1); j++) {
FLAC__real tmp = lpc[j];
double tmp = lpc[j];
lpc[j] += r * lpc[i-1-j];
lpc[i-1-j] += r * tmp;
}
@ -104,15 +104,15 @@ void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned max_or
/* save this order */
for(j = 0; j <= i; j++)
lp_coeff[i][j] = -lpc[j]; /* negate FIR filter coeff to get predictor coeff */
error[i] = err;
lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
error[i] = (FLAC__real)err;
}
}
int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, unsigned bits_per_sample, FLAC__int32 qlp_coeff[], int *shift)
{
unsigned i;
FLAC__real d, cmax = -1e32;
double d, cmax = -1e32;
FLAC__int32 qmax, qmin;
const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
const int min_shiftlimit = -max_shiftlimit - 1;
@ -163,7 +163,7 @@ redo_it:
/* check for corner cases mentioned in the comment for log2cmax above */
if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) {
#ifdef FLAC__OVERFLOW_DETECT
fprintf(stderr, "FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (double)lp_coeff[i] * (double)(1 << *shift), floor((double)lp_coeff[i] * (double)(1 << *shift)));
fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (double)lp_coeff[i] * (double)(1 << *shift), floor((double)lp_coeff[i] * (double)(1 << *shift)));
#endif
cmax *= 2.0;
goto redo_it;
@ -172,16 +172,14 @@ redo_it:
}
else { /* (*shift < 0) */
const int nshift = -(*shift);
#ifdef FLAC__OVERFLOW_DETECT
fprintf(stderr, "FLAC__lpc_quantize_coefficients: negative shift = %d\n", *shift);
#endif
fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift = %d\n", *shift);
for(i = 0; i < order; i++) {
qlp_coeff[i] = (FLAC__int32)floor((double)lp_coeff[i] / (double)(1 << nshift));
/* check for corner cases mentioned in the comment for log2cmax above */
if(qlp_coeff[i] > qmax || qlp_coeff[i] < qmin) {
#ifdef FLAC__OVERFLOW_DETECT
fprintf(stderr, "FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (double)lp_coeff[i] / (double)(1 << nshift), floor((double)lp_coeff[i] / (double)(1 << nshift)));
fprintf(stderr,"FLAC__lpc_quantize_coefficients: compensating for overflow, qlp_coeff[%u]=%d, lp_coeff[%u]=%f, cmax=%f, precision=%u, shift=%d, q=%f, f(q)=%f\n", i, qlp_coeff[i], i, lp_coeff[i], cmax, precision, *shift, (double)lp_coeff[i] / (double)(1 << nshift), floor((double)lp_coeff[i] / (double)(1 << nshift)));
#endif
cmax *= 2.0;
goto redo_it;
@ -220,7 +218,7 @@ void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 data[],
#ifdef FLAC__OVERFLOW_DETECT
sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
if(sumo > 2147483647ll || sumo < -2147483648ll) {
fprintf(stderr, "FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);
fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);
}
#endif
}
@ -265,7 +263,7 @@ void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, c
#ifdef FLAC__OVERFLOW_DETECT
sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
if(sumo > 2147483647ll || sumo < -2147483648ll) {
fprintf(stderr, "FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);
fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,sumo);
}
#endif
}
@ -284,38 +282,38 @@ void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, c
FLAC__real FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__real lpc_error, unsigned total_samples)
{
FLAC__real error_scale;
double error_scale;
FLAC__ASSERT(total_samples > 0);
error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__real)total_samples;
if(lpc_error > 0.0) {
FLAC__real bps = 0.5 * log(error_scale * lpc_error) / M_LN2;
FLAC__real bps = (FLAC__real)((double)0.5 * log(error_scale * lpc_error) / M_LN2);
if(bps >= 0.0)
return bps;
else
return 0.0;
}
else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate float resolution */
return 1e32;
return (FLAC__real)1e32;
}
else {
return 0.0;
}
}
FLAC__real FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__real lpc_error, FLAC__real error_scale)
FLAC__real FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__real lpc_error, double error_scale)
{
if(lpc_error > 0.0) {
FLAC__real bps = 0.5 * log(error_scale * lpc_error) / M_LN2;
FLAC__real bps = (FLAC__real)((double)0.5 * log(error_scale * lpc_error) / M_LN2);
if(bps >= 0.0)
return bps;
else
return 0.0;
}
else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate float resolution */
return 1e32;
return (FLAC__real)1e32;
}
else {
return 0.0;
@ -325,7 +323,8 @@ FLAC__real FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(
unsigned FLAC__lpc_compute_best_order(const FLAC__real lpc_error[], unsigned max_order, unsigned total_samples, unsigned bits_per_signal_sample)
{
unsigned order, best_order;
FLAC__real best_bits, tmp_bits, error_scale;
FLAC__real best_bits, tmp_bits;
double error_scale;
FLAC__ASSERT(max_order > 0);
FLAC__ASSERT(total_samples > 0);