fork FLAC__bitreader_read_rice_signed_block() into MSVC and non-MSVC versions; minor optimizations to non-MSVC version

This commit is contained in:
Josh Coalson 2007-03-23 04:50:54 +00:00
parent 0bddabc5df
commit 9d8fa1e0c3
1 changed files with 211 additions and 41 deletions

View File

@ -48,14 +48,13 @@
#include "FLAC/assert.h"
/* Things should be fastest when this matches the machine word size */
/* WATCHOUT: if you change this you must also change the following #defines down to ALIGNED_UNARY_BITS below to match */
/* WATCHOUT: if you change this you must also change the following #defines down to COUNT_ZERO_MSBS below to match */
/* WATCHOUT: there are a few places where the code will not work unless brword is >= 32 bits wide */
/* also, some sections currently only have fast versions for 4 or 8 bytes per word */
typedef FLAC__uint32 brword;
#define FLAC__BYTES_PER_WORD 4
#define FLAC__BITS_PER_WORD 32
#define FLAC__WORD_ALL_ONES ((FLAC__uint32)0xffffffff)
#define FLAC__WORD_TOP_BIT_ONE ((FLAC__uint32)0x80000000)
/* SWAP_BE_WORD_TO_HOST swaps bytes in a brword (which is always big-endian) if necessary to match host byte order */
#if WORDS_BIGENDIAN
#define SWAP_BE_WORD_TO_HOST(x) (x)
@ -67,13 +66,13 @@ typedef FLAC__uint32 brword;
#endif
#endif
/* counts the # of zero MSBs in a word */
#define ALIGNED_UNARY_BITS(word) ( \
#define COUNT_ZERO_MSBS(word) ( \
(word) <= 0xffff ? \
( (word) <= 0xff? byte_to_unary_table[word] + 24 : byte_to_unary_table[(word) >> 8] + 16 ) : \
( (word) <= 0xffffff? byte_to_unary_table[word >> 16] + 8 : byte_to_unary_table[(word) >> 24] ) \
)
/* this alternate might be slightly faster on some systems/compilers: */
#define ALIGNED_UNARY_BITS2(word) ( (word) <= 0xff ? byte_to_unary_table[word] + 24 : ((word) <= 0xffff ? byte_to_unary_table[(word) >> 8] + 16 : ((word) <= 0xffffff ? byte_to_unary_table[(word) >> 16] + 8 : byte_to_unary_table[(word) >> 24])) )
#define COUNT_ZERO_MSBS2(word) ( (word) <= 0xff ? byte_to_unary_table[word] + 24 : ((word) <= 0xffff ? byte_to_unary_table[(word) >> 8] + 16 : ((word) <= 0xffffff ? byte_to_unary_table[(word) >> 16] + 8 : byte_to_unary_table[(word) >> 24])) )
/*
@ -724,12 +723,7 @@ FLaC__INLINE FLAC__bool FLAC__bitreader_read_unary_unsigned(FLAC__BitReader *br,
while(br->consumed_words < br->words) { /* if we've not consumed up to a partial tail word... */
brword b = br->buffer[br->consumed_words] << br->consumed_bits;
if(b) {
#if 0 /* too slow, but this is the idea: */
for(i = 0; !(b & FLAC__WORD_TOP_BIT_ONE); i++)
b <<= 1;
#else
i = ALIGNED_UNARY_BITS(b);
#endif
i = COUNT_ZERO_MSBS(b);
*val += i;
i++;
br->consumed_bits += i;
@ -759,12 +753,7 @@ FLaC__INLINE FLAC__bool FLAC__bitreader_read_unary_unsigned(FLAC__BitReader *br,
const unsigned end = br->bytes * 8;
brword b = (br->buffer[br->consumed_words] & (FLAC__WORD_ALL_ONES << (FLAC__BITS_PER_WORD-end))) << br->consumed_bits;
if(b) {
#if 0 /* too slow, but this is the idea: */
for(i = 0; !(b & FLAC__WORD_TOP_BIT_ONE); i++)
b <<= 1;
#else
i = ALIGNED_UNARY_BITS(b);
#endif
i = COUNT_ZERO_MSBS(b);
*val += i;
i++;
br->consumed_bits += i;
@ -814,6 +803,189 @@ FLAC__bool FLAC__bitreader_read_rice_signed(FLAC__BitReader *br, int *val, unsig
/* this is by far the most heavily used reader call. it ain't pretty but it's fast */
/* a lot of the logic is copied, then adapted, from FLAC__bitreader_read_unary_unsigned() and FLAC__bitreader_read_raw_uint32() */
FLAC__bool FLAC__bitreader_read_rice_signed_block(FLAC__BitReader *br, int vals[], unsigned nvals, unsigned parameter)
#ifdef _MSC_VER
{
unsigned i;
unsigned uval = 0;
unsigned bits; /* the # of binary LSBs left to read to finish a rice codeword */
/* try and get br->consumed_words and br->consumed_bits into register;
* must remember to flush them back to *br before calling other
* bitwriter functions that use them, and before returning */
register unsigned cwords;
register unsigned cbits;
FLAC__ASSERT(0 != br);
FLAC__ASSERT(0 != br->buffer);
/* WATCHOUT: code does not work with <32bit words; we can make things much faster with this assertion */
FLAC__ASSERT(FLAC__BITS_PER_WORD >= 32);
FLAC__ASSERT(parameter < 32);
/* the above two asserts also guarantee that the binary part never straddles more that 2 words, so we don't have to loop to read it */
if(nvals == 0)
return true;
cbits = br->consumed_bits;
cwords = br->consumed_words;
while(1) {
/* read unary part */
while(1) {
while(cwords < br->words) { /* if we've not consumed up to a partial tail word... */
brword b = br->buffer[cwords] << cbits;
if(b) {
#if 0 /* slower, probably due to bad register allocation... */ && defined FLAC__CPU_IA32 && !defined FLAC__NO_ASM && FLAC__BITS_PER_WORD == 32
__asm {
bsr eax, b
not eax
and eax, 31
mov i, eax
}
#else
i = COUNT_ZERO_MSBS(b);
#endif
uval += i;
bits = parameter;
i++;
cbits += i;
if(cbits == FLAC__BITS_PER_WORD) {
crc16_update_word_(br, br->buffer[cwords]);
cwords++;
cbits = 0;
}
goto break1;
}
else {
uval += FLAC__BITS_PER_WORD - cbits;
crc16_update_word_(br, br->buffer[cwords]);
cwords++;
cbits = 0;
/* didn't find stop bit yet, have to keep going... */
}
}
/* at this point we've eaten up all the whole words; have to try
* reading through any tail bytes before calling the read callback.
* this is a repeat of the above logic adjusted for the fact we
* don't have a whole word. note though if the client is feeding
* us data a byte at a time (unlikely), br->consumed_bits may not
* be zero.
*/
if(br->bytes) {
const unsigned end = br->bytes * 8;
brword b = (br->buffer[cwords] & (FLAC__WORD_ALL_ONES << (FLAC__BITS_PER_WORD-end))) << cbits;
if(b) {
i = COUNT_ZERO_MSBS(b);
uval += i;
bits = parameter;
i++;
cbits += i;
FLAC__ASSERT(cbits < FLAC__BITS_PER_WORD);
goto break1;
}
else {
uval += end - cbits;
cbits += end;
FLAC__ASSERT(cbits < FLAC__BITS_PER_WORD);
/* didn't find stop bit yet, have to keep going... */
}
}
/* flush registers and read; bitreader_read_from_client_() does
* not touch br->consumed_bits at all but we still need to set
* it in case it fails and we have to return false.
*/
br->consumed_bits = cbits;
br->consumed_words = cwords;
if(!bitreader_read_from_client_(br))
return false;
cwords = br->consumed_words;
}
break1:
/* read binary part */
FLAC__ASSERT(cwords <= br->words);
if(bits) {
while((br->words-cwords)*FLAC__BITS_PER_WORD + br->bytes*8 - cbits < bits) {
/* flush registers and read; bitreader_read_from_client_() does
* not touch br->consumed_bits at all but we still need to set
* it in case it fails and we have to return false.
*/
br->consumed_bits = cbits;
br->consumed_words = cwords;
if(!bitreader_read_from_client_(br))
return false;
cwords = br->consumed_words;
}
if(cwords < br->words) { /* if we've not consumed up to a partial tail word... */
if(cbits) {
/* this also works when consumed_bits==0, it's just a little slower than necessary for that case */
const unsigned n = FLAC__BITS_PER_WORD - cbits;
const brword word = br->buffer[cwords];
if(bits < n) {
uval <<= bits;
uval |= (word & (FLAC__WORD_ALL_ONES >> cbits)) >> (n-bits);
cbits += bits;
goto break2;
}
uval <<= n;
uval |= word & (FLAC__WORD_ALL_ONES >> cbits);
bits -= n;
crc16_update_word_(br, word);
cwords++;
cbits = 0;
if(bits) { /* if there are still bits left to read, there have to be less than 32 so they will all be in the next word */
uval <<= bits;
uval |= (br->buffer[cwords] >> (FLAC__BITS_PER_WORD-bits));
cbits = bits;
}
goto break2;
}
else {
FLAC__ASSERT(bits < FLAC__BITS_PER_WORD);
uval <<= bits;
uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-bits);
cbits = bits;
goto break2;
}
}
else {
/* in this case we're starting our read at a partial tail word;
* the reader has guaranteed that we have at least 'bits' bits
* available to read, which makes this case simpler.
*/
uval <<= bits;
if(cbits) {
/* this also works when consumed_bits==0, it's just a little slower than necessary for that case */
FLAC__ASSERT(cbits + bits <= br->bytes*8);
uval |= (br->buffer[cwords] & (FLAC__WORD_ALL_ONES >> cbits)) >> (FLAC__BITS_PER_WORD-cbits-bits);
cbits += bits;
goto break2;
}
else {
uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-bits);
cbits += bits;
goto break2;
}
}
}
break2:
/* compose the value */
*vals = (int)(uval >> 1 ^ -(int)(uval & 1));
/* are we done? */
--nvals;
if(nvals == 0) {
br->consumed_bits = cbits;
br->consumed_words = cwords;
return true;
}
uval = 0;
++vals;
}
}
#else
{
unsigned i;
unsigned uval = 0;
@ -846,11 +1018,16 @@ FLAC__bool FLAC__bitreader_read_rice_signed_block(FLAC__BitReader *br, int vals[
while(cwords < br->words) { /* if we've not consumed up to a partial tail word... */
brword b = br->buffer[cwords] << cbits;
if(b) {
#if 0 /* too slow, but this is the idea: */
for(i = 0; !(b & FLAC__WORD_TOP_BIT_ONE); i++)
b <<= 1;
#if 0 /* is not discernably faster... */ && defined FLAC__CPU_IA32 && !defined FLAC__NO_ASM && FLAC__BITS_PER_WORD == 32 && defined __GNUC__
asm volatile (
"bsrl %1, %0;"
"notl %0;"
"andl $31, %0;"
: "=r"(i)
: "r"(b)
);
#else
i = ALIGNED_UNARY_BITS(b);
i = COUNT_ZERO_MSBS(b);
#endif
uval += i;
cbits += i;
@ -881,12 +1058,7 @@ FLAC__bool FLAC__bitreader_read_rice_signed_block(FLAC__BitReader *br, int vals[
const unsigned end = br->bytes * 8;
brword b = (br->buffer[cwords] & ~(FLAC__WORD_ALL_ONES >> end)) << cbits;
if(b) {
#if 0 /* too slow, but this is the idea: */
for(i = 0; !(b & FLAC__WORD_TOP_BIT_ONE); i++)
b <<= 1;
#else
i = ALIGNED_UNARY_BITS(b);
#endif
i = COUNT_ZERO_MSBS(b);
uval += i;
cbits += i;
cbits++; /* skip over stop bit */
@ -937,15 +1109,15 @@ break1:
}
if(cwords < br->words) { /* if we've not consumed up to a partial tail word... */
if(cbits) {
/* this also works when consumed_bits==0, it's just a little slower than necessary for that case */
/* this also works when consumed_bits==0, it's just slower than necessary for that case */
const unsigned n = FLAC__BITS_PER_WORD - cbits;
const brword word = br->buffer[cwords];
if(parameter < n) {
uval <<= parameter;
uval |= (word & (FLAC__WORD_ALL_ONES >> cbits)) >> (n-parameter);
cbits += parameter;
goto break2;
}
else {
uval <<= n;
uval |= word & (FLAC__WORD_ALL_ONES >> cbits);
crc16_update_word_(br, word);
@ -955,13 +1127,12 @@ break1:
uval <<= cbits;
uval |= (br->buffer[cwords] >> (FLAC__BITS_PER_WORD-cbits));
}
goto break2;
}
}
else {
cbits = parameter;
uval <<= parameter;
uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-cbits);
goto break2;
}
}
else {
@ -975,16 +1146,14 @@ break1:
FLAC__ASSERT(cbits + parameter <= br->bytes*8);
uval |= (br->buffer[cwords] & (FLAC__WORD_ALL_ONES >> cbits)) >> (FLAC__BITS_PER_WORD-cbits-parameter);
cbits += parameter;
goto break2;
}
else {
cbits = parameter;
uval |= br->buffer[cwords] >> (FLAC__BITS_PER_WORD-cbits);
goto break2;
}
}
}
break2:
ucbits -= parameter;
/* compose the value */
@ -1003,6 +1172,7 @@ break2:
}
}
#endif
#if 0 /* UNUSED */
FLAC__bool FLAC__bitreader_read_golomb_signed(FLAC__BitReader *br, int *val, unsigned parameter)