mirror of
https://github.com/0intro/conterm
synced 2024-11-25 07:09:34 +03:00
85 lines
1.5 KiB
C
85 lines
1.5 KiB
C
#include "os.h"
|
|
#include <mp.h>
|
|
#include <libsec.h>
|
|
|
|
// Miller-Rabin probabilistic primality testing
|
|
// Knuth (1981) Seminumerical Algorithms, p.379
|
|
// Menezes et al () Handbook, p.39
|
|
// 0 if composite; 1 if almost surely prime, Pr(err)<1/4**nrep
|
|
int
|
|
probably_prime(mpint *n, int nrep)
|
|
{
|
|
int j, k, rep, nbits, isprime = 1;
|
|
mpint *nm1, *q, *x, *y, *r;
|
|
|
|
if(n->sign < 0)
|
|
sysfatal("negative prime candidate");
|
|
|
|
if(nrep <= 0)
|
|
nrep = 18;
|
|
|
|
k = mptoi(n);
|
|
if(k == 2) // 2 is prime
|
|
return 1;
|
|
if(k < 2) // 1 is not prime
|
|
return 0;
|
|
if((n->p[0] & 1) == 0) // even is not prime
|
|
return 0;
|
|
|
|
// test against small prime numbers
|
|
if(smallprimetest(n) < 0)
|
|
return 0;
|
|
|
|
// fermat test, 2^n mod n == 2 if p is prime
|
|
x = uitomp(2, nil);
|
|
y = mpnew(0);
|
|
mpexp(x, n, n, y);
|
|
k = mptoi(y);
|
|
if(k != 2){
|
|
mpfree(x);
|
|
mpfree(y);
|
|
return 0;
|
|
}
|
|
|
|
nbits = mpsignif(n);
|
|
nm1 = mpnew(nbits);
|
|
mpsub(n, mpone, nm1); // nm1 = n - 1 */
|
|
k = mplowbits0(nm1);
|
|
q = mpnew(0);
|
|
mpright(nm1, k, q); // q = (n-1)/2**k
|
|
|
|
for(rep = 0; rep < nrep; rep++){
|
|
|
|
// x = random in [2, n-2]
|
|
r = mprand(nbits, prng, nil);
|
|
mpmod(r, nm1, x);
|
|
mpfree(r);
|
|
if(mpcmp(x, mpone) <= 0)
|
|
continue;
|
|
|
|
// y = x**q mod n
|
|
mpexp(x, q, n, y);
|
|
|
|
if(mpcmp(y, mpone) == 0 || mpcmp(y, nm1) == 0)
|
|
goto done;
|
|
|
|
for(j = 1; j < k; j++){
|
|
mpmul(y, y, x);
|
|
mpmod(x, n, y); // y = y*y mod n
|
|
if(mpcmp(y, nm1) == 0)
|
|
goto done;
|
|
if(mpcmp(y, mpone) == 0){
|
|
isprime = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
isprime = 0;
|
|
}
|
|
done:
|
|
mpfree(y);
|
|
mpfree(x);
|
|
mpfree(q);
|
|
mpfree(nm1);
|
|
return isprime;
|
|
}
|