mirror of https://github.com/0intro/conterm
62 lines
1.1 KiB
C
62 lines
1.1 KiB
C
#include "os.h"
|
|
#include <mp.h>
|
|
#include <libsec.h>
|
|
|
|
RSApriv*
|
|
rsafill(mpint *n, mpint *e, mpint *d, mpint *p, mpint *q)
|
|
{
|
|
mpint *c2, *kq, *kp, *x;
|
|
RSApriv *rsa;
|
|
|
|
// make sure we're not being hoodwinked
|
|
if(!probably_prime(p, 10) || !probably_prime(q, 10)){
|
|
werrstr("rsafill: p or q not prime");
|
|
return nil;
|
|
}
|
|
x = mpnew(0);
|
|
mpmul(p, q, x);
|
|
if(mpcmp(n, x) != 0){
|
|
werrstr("rsafill: n != p*q");
|
|
mpfree(x);
|
|
return nil;
|
|
}
|
|
c2 = mpnew(0);
|
|
mpsub(p, mpone, c2);
|
|
mpsub(q, mpone, x);
|
|
mpmul(c2, x, x);
|
|
mpmul(e, d, c2);
|
|
mpmod(c2, x, x);
|
|
if(mpcmp(x, mpone) != 0){
|
|
werrstr("rsafill: e*d != 1 mod (p-1)*(q-1)");
|
|
mpfree(x);
|
|
mpfree(c2);
|
|
return nil;
|
|
}
|
|
|
|
// compute chinese remainder coefficient
|
|
mpinvert(p, q, c2);
|
|
|
|
// for crt a**k mod p == (a**(k mod p-1)) mod p
|
|
kq = mpnew(0);
|
|
kp = mpnew(0);
|
|
mpsub(p, mpone, x);
|
|
mpmod(d, x, kp);
|
|
mpsub(q, mpone, x);
|
|
mpmod(d, x, kq);
|
|
|
|
rsa = rsaprivalloc();
|
|
rsa->pub.ek = mpcopy(e);
|
|
rsa->pub.n = mpcopy(n);
|
|
rsa->dk = mpcopy(d);
|
|
rsa->kp = kp;
|
|
rsa->kq = kq;
|
|
rsa->p = mpcopy(p);
|
|
rsa->q = mpcopy(q);
|
|
rsa->c2 = c2;
|
|
|
|
mpfree(x);
|
|
|
|
return rsa;
|
|
}
|
|
|