// This file contains a recursive descent parser for C. // // Most functions in this file are named after the symbols they are // supposed to read from an input token list. For example, stmt() is // responsible for reading a statement from a token list. The function // then construct an AST node representing a statement. // // Each function conceptually returns two values, an AST node and // remaining part of the input tokens. Since C doesn't support // multiple return values, the remaining tokens are returned to the // caller via a pointer argument. // // Input tokens are represented by a linked list. Unlike many recursive // descent parsers, we don't have the notion of the "input token stream". // Most parsing functions don't change the global state of the parser. // So it is very easy to lookahead arbitrary number of tokens in this // parser. #include "chibicc.h" // Scope for local variables, global variables, typedefs // or enum constants typedef struct VarScope VarScope; struct VarScope { VarScope *next; char *name; Obj *var; Type *type_def; Type *enum_ty; int enum_val; }; // Scope for struct, union or enum tags typedef struct TagScope TagScope; struct TagScope { TagScope *next; char *name; Type *ty; }; // Represents a block scope. typedef struct Scope Scope; struct Scope { Scope *next; // C has two block scopes; one is for variables/typedefs and // the other is for struct/union/enum tags. VarScope *vars; TagScope *tags; }; // Variable attributes such as typedef or extern. typedef struct { bool is_typedef; bool is_static; bool is_extern; int align; } VarAttr; // This struct represents a variable initializer. Since initializers // can be nested (e.g. `int x[2][2] = {{1, 2}, {3, 4}}`), this struct // is a tree data structure. typedef struct Initializer Initializer; struct Initializer { Initializer *next; Type *ty; Token *tok; bool is_flexible; // If it's not an aggregate type and has an initializer, // `expr` has an initialization expression. Node *expr; // If it's an initializer for an aggregate type (e.g. array or struct), // `children` has initializers for its children. Initializer **children; }; // For local variable initializer. typedef struct InitDesg InitDesg; struct InitDesg { InitDesg *next; int idx; Member *member; Obj *var; }; // All local variable instances created during parsing are // accumulated to this list. static Obj *locals; // Likewise, global variables are accumulated to this list. static Obj *globals; static Scope *scope = &(Scope){}; // Points to the function object the parser is currently parsing. static Obj *current_fn; // Lists of all goto statements and labels in the curent function. static Node *gotos; static Node *labels; // Current "goto" and "continue" jump targets. static char *brk_label; static char *cont_label; // Points to a node representing a switch if we are parsing // a switch statement. Otherwise, NULL. static Node *current_switch; static bool is_typename(Token *tok); static Type *declspec(Token **rest, Token *tok, VarAttr *attr); static Type *typename(Token **rest, Token *tok); static Type *enum_specifier(Token **rest, Token *tok); static Type *type_suffix(Token **rest, Token *tok, Type *ty); static Type *declarator(Token **rest, Token *tok, Type *ty); static Node *declaration(Token **rest, Token *tok, Type *basety, VarAttr *attr); static void initializer2(Token **rest, Token *tok, Initializer *init); static Initializer *initializer(Token **rest, Token *tok, Type *ty, Type **new_ty); static Node *lvar_initializer(Token **rest, Token *tok, Obj *var); static void gvar_initializer(Token **rest, Token *tok, Obj *var); static Node *compound_stmt(Token **rest, Token *tok); static Node *stmt(Token **rest, Token *tok); static Node *expr_stmt(Token **rest, Token *tok); static Node *expr(Token **rest, Token *tok); static int64_t eval(Node *node); static int64_t eval2(Node *node, char **label); static int64_t eval_rval(Node *node, char **label); static Node *assign(Token **rest, Token *tok); static Node *logor(Token **rest, Token *tok); static int64_t const_expr(Token **rest, Token *tok); static double eval_double(Node *node); static Node *conditional(Token **rest, Token *tok); static Node *logand(Token **rest, Token *tok); static Node *bitor(Token **rest, Token *tok); static Node *bitxor(Token **rest, Token *tok); static Node *bitand(Token **rest, Token *tok); static Node *equality(Token **rest, Token *tok); static Node *relational(Token **rest, Token *tok); static Node *shift(Token **rest, Token *tok); static Node *add(Token **rest, Token *tok); static Node *new_add(Node *lhs, Node *rhs, Token *tok); static Node *new_sub(Node *lhs, Node *rhs, Token *tok); static Node *mul(Token **rest, Token *tok); static Node *cast(Token **rest, Token *tok); static Type *struct_decl(Token **rest, Token *tok); static Type *union_decl(Token **rest, Token *tok); static Node *postfix(Token **rest, Token *tok); static Node *unary(Token **rest, Token *tok); static Node *primary(Token **rest, Token *tok); static Token *parse_typedef(Token *tok, Type *basety); static bool is_function(Token *tok); static Token *function(Token *tok, Type *basety, VarAttr *attr); static Token *global_variable(Token *tok, Type *basety, VarAttr *attr); static void enter_scope(void) { Scope *sc = calloc(1, sizeof(Scope)); sc->next = scope; scope = sc; } static void leave_scope(void) { scope = scope->next; } // Find a variable by name. static VarScope *find_var(Token *tok) { for (Scope *sc = scope; sc; sc = sc->next) for (VarScope *sc2 = sc->vars; sc2; sc2 = sc2->next) if (equal(tok, sc2->name)) return sc2; return NULL; } static Type *find_tag(Token *tok) { for (Scope *sc = scope; sc; sc = sc->next) for (TagScope *sc2 = sc->tags; sc2; sc2 = sc2->next) if (equal(tok, sc2->name)) return sc2->ty; return NULL; } static Node *new_node(NodeKind kind, Token *tok) { Node *node = calloc(1, sizeof(Node)); node->kind = kind; node->tok = tok; return node; } static Node *new_binary(NodeKind kind, Node *lhs, Node *rhs, Token *tok) { Node *node = new_node(kind, tok); node->lhs = lhs; node->rhs = rhs; return node; } static Node *new_unary(NodeKind kind, Node *expr, Token *tok) { Node *node = new_node(kind, tok); node->lhs = expr; return node; } static Node *new_num(int64_t val, Token *tok) { Node *node = new_node(ND_NUM, tok); node->val = val; return node; } static Node *new_long(int64_t val, Token *tok) { Node *node = new_node(ND_NUM, tok); node->val = val; node->ty = ty_long; return node; } static Node *new_ulong(long val, Token *tok) { Node *node = new_node(ND_NUM, tok); node->val = val; node->ty = ty_ulong; return node; } static Node *new_var_node(Obj *var, Token *tok) { Node *node = new_node(ND_VAR, tok); node->var = var; return node; } Node *new_cast(Node *expr, Type *ty) { add_type(expr); Node *node = calloc(1, sizeof(Node)); node->kind = ND_CAST; node->tok = expr->tok; node->lhs = expr; node->ty = copy_type(ty); return node; } static VarScope *push_scope(char *name) { VarScope *sc = calloc(1, sizeof(VarScope)); sc->name = name; sc->next = scope->vars; scope->vars = sc; return sc; } static Initializer *new_initializer(Type *ty, bool is_flexible) { Initializer *init = calloc(1, sizeof(Initializer)); init->ty = ty; if (ty->kind == TY_ARRAY) { if (is_flexible && ty->size < 0) { init->is_flexible = true; return init; } init->children = calloc(ty->array_len, sizeof(Initializer *)); for (int i = 0; i < ty->array_len; i++) init->children[i] = new_initializer(ty->base, false); return init; } if (ty->kind == TY_STRUCT || ty->kind == TY_UNION) { // Count the number of struct members. int len = 0; for (Member *mem = ty->members; mem; mem = mem->next) len++; init->children = calloc(len, sizeof(Initializer *)); for (Member *mem = ty->members; mem; mem = mem->next) { if (is_flexible && ty->is_flexible && !mem->next) { Initializer *child = calloc(1, sizeof(Initializer)); child->ty = mem->ty; child->is_flexible = true; init->children[mem->idx] = child; } else { init->children[mem->idx] = new_initializer(mem->ty, false); } } return init; } return init; } static Obj *new_var(char *name, Type *ty) { Obj *var = calloc(1, sizeof(Obj)); var->name = name; var->ty = ty; var->align = ty->align; push_scope(name)->var = var; return var; } static Obj *new_lvar(char *name, Type *ty) { Obj *var = new_var(name, ty); var->is_local = true; var->next = locals; locals = var; return var; } static Obj *new_gvar(char *name, Type *ty) { Obj *var = new_var(name, ty); var->next = globals; var->is_static = true; var->is_definition = true; globals = var; return var; } static char *new_unique_name(void) { static int id = 0; return format(".L..%d", id++); } static Obj *new_anon_gvar(Type *ty) { return new_gvar(new_unique_name(), ty); } static Obj *new_string_literal(char *p, Type *ty) { Obj *var = new_anon_gvar(ty); var->init_data = p; return var; } static char *get_ident(Token *tok) { if (tok->kind != TK_IDENT) error_tok(tok, "expected an identifier"); return strndup(tok->loc, tok->len); } static Type *find_typedef(Token *tok) { if (tok->kind == TK_IDENT) { VarScope *sc = find_var(tok); if (sc) return sc->type_def; } return NULL; } static void push_tag_scope(Token *tok, Type *ty) { TagScope *sc = calloc(1, sizeof(TagScope)); sc->name = strndup(tok->loc, tok->len); sc->ty = ty; sc->next = scope->tags; scope->tags = sc; } // declspec = ("void" | "_Bool" | "char" | "short" | "int" | "long" // | "typedef" | "static" | "extern" // | "signed" | "unsigned" // | struct-decl | union-decl | typedef-name // | enum-specifier // | "const" | "volatile" | "auto" | "register" | "restrict" // | "__restrict" | "__restrict__" | "_Noreturn")+ // // The order of typenames in a type-specifier doesn't matter. For // example, `int long static` means the same as `static long int`. // That can also be written as `static long` because you can omit // `int` if `long` or `short` are specified. However, something like // `char int` is not a valid type specifier. We have to accept only a // limited combinations of the typenames. // // In this function, we count the number of occurrences of each typename // while keeping the "current" type object that the typenames up // until that point represent. When we reach a non-typename token, // we returns the current type object. static Type *declspec(Token **rest, Token *tok, VarAttr *attr) { // We use a single integer as counters for all typenames. // For example, bits 0 and 1 represents how many times we saw the // keyword "void" so far. With this, we can use a switch statement // as you can see below. enum { VOID = 1 << 0, BOOL = 1 << 2, CHAR = 1 << 4, SHORT = 1 << 6, INT = 1 << 8, LONG = 1 << 10, FLOAT = 1 << 12, DOUBLE = 1 << 14, OTHER = 1 << 16, SIGNED = 1 << 17, UNSIGNED = 1 << 18, }; Type *ty = ty_int; int counter = 0; while (is_typename(tok)) { // Handle storage class specifiers. if (equal(tok, "typedef") || equal(tok, "static") || equal(tok, "extern")) { if (!attr) error_tok(tok, "storage class specifier is not allowed in this context"); if (equal(tok, "typedef")) attr->is_typedef = true; else if (equal(tok, "static")) attr->is_static = true; else attr->is_extern = true; if (attr->is_typedef && attr->is_static + attr->is_extern > 1) error_tok(tok, "typedef may not be used together with static or extern"); tok = tok->next; continue; } // These keywords are recognized but ignored. if (consume(&tok, tok, "const") || consume(&tok, tok, "volatile") || consume(&tok, tok, "auto") || consume(&tok, tok, "register") || consume(&tok, tok, "restrict") || consume(&tok, tok, "__restrict") || consume(&tok, tok, "__restrict__") || consume(&tok, tok, "_Noreturn")) continue; if (equal(tok, "_Alignas")) { if (!attr) error_tok(tok, "_Alignas is not allowed in this context"); tok = skip(tok->next, "("); if (is_typename(tok)) attr->align = typename(&tok, tok)->align; else attr->align = const_expr(&tok, tok); tok = skip(tok, ")"); continue; } // Handle user-defined types. Type *ty2 = find_typedef(tok); if (equal(tok, "struct") || equal(tok, "union") || equal(tok, "enum") || ty2) { if (counter) break; if (equal(tok, "struct")) { ty = struct_decl(&tok, tok->next); } else if (equal(tok, "union")) { ty = union_decl(&tok, tok->next); } else if (equal(tok, "enum")) { ty = enum_specifier(&tok, tok->next); } else { ty = ty2; tok = tok->next; } counter += OTHER; continue; } // Handle built-in types. if (equal(tok, "void")) counter += VOID; else if (equal(tok, "_Bool")) counter += BOOL; else if (equal(tok, "char")) counter += CHAR; else if (equal(tok, "short")) counter += SHORT; else if (equal(tok, "int")) counter += INT; else if (equal(tok, "long")) counter += LONG; else if (equal(tok, "float")) counter += FLOAT; else if (equal(tok, "double")) counter += DOUBLE; else if (equal(tok, "signed")) counter |= SIGNED; else if (equal(tok, "unsigned")) counter |= UNSIGNED; else unreachable(); switch (counter) { case VOID: ty = ty_void; break; case BOOL: ty = ty_bool; break; case CHAR: case SIGNED + CHAR: ty = ty_char; break; case UNSIGNED + CHAR: ty = ty_uchar; break; case SHORT: case SHORT + INT: case SIGNED + SHORT: case SIGNED + SHORT + INT: ty = ty_short; break; case UNSIGNED + SHORT: case UNSIGNED + SHORT + INT: ty = ty_ushort; break; case INT: case SIGNED: case SIGNED + INT: ty = ty_int; break; case UNSIGNED: case UNSIGNED + INT: ty = ty_uint; break; case LONG: case LONG + INT: case LONG + LONG: case LONG + LONG + INT: case SIGNED + LONG: case SIGNED + LONG + INT: case SIGNED + LONG + LONG: case SIGNED + LONG + LONG + INT: ty = ty_long; break; case UNSIGNED + LONG: case UNSIGNED + LONG + INT: case UNSIGNED + LONG + LONG: case UNSIGNED + LONG + LONG + INT: ty = ty_ulong; break; case FLOAT: ty = ty_float; break; case DOUBLE: case LONG + DOUBLE: ty = ty_double; break; default: error_tok(tok, "invalid type"); } tok = tok->next; } *rest = tok; return ty; } // func-params = ("void" | param ("," param)* ("," "...")?)? ")" // param = declspec declarator static Type *func_params(Token **rest, Token *tok, Type *ty) { if (equal(tok, "void") && equal(tok->next, ")")) { *rest = tok->next->next; return func_type(ty); } Type head = {}; Type *cur = &head; bool is_variadic = false; while (!equal(tok, ")")) { if (cur != &head) tok = skip(tok, ","); if (equal(tok, "...")) { is_variadic = true; tok = tok->next; skip(tok, ")"); break; } Type *ty2 = declspec(&tok, tok, NULL); ty2 = declarator(&tok, tok, ty2); // "array of T" is converted to "pointer to T" only in the parameter // context. For example, *argv[] is converted to **argv by this. if (ty2->kind == TY_ARRAY) { Token *name = ty2->name; ty2 = pointer_to(ty2->base); ty2->name = name; } cur = cur->next = copy_type(ty2); } if (cur == &head) is_variadic = true; ty = func_type(ty); ty->params = head.next; ty->is_variadic = is_variadic; *rest = tok->next; return ty; } // array-dimensions = ("static" | "restrict")* const-expr? "]" type-suffix static Type *array_dimensions(Token **rest, Token *tok, Type *ty) { while (equal(tok, "static") || equal(tok, "restrict")) tok = tok->next; if (equal(tok, "]")) { ty = type_suffix(rest, tok->next, ty); return array_of(ty, -1); } int sz = const_expr(&tok, tok); tok = skip(tok, "]"); ty = type_suffix(rest, tok, ty); return array_of(ty, sz); } // type-suffix = "(" func-params // | "[" array-dimensions // | ε static Type *type_suffix(Token **rest, Token *tok, Type *ty) { if (equal(tok, "(")) return func_params(rest, tok->next, ty); if (equal(tok, "[")) return array_dimensions(rest, tok->next, ty); *rest = tok; return ty; } // pointers = ("*" ("const" | "volatile" | "restrict")*)* static Type *pointers(Token **rest, Token *tok, Type *ty) { while (consume(&tok, tok, "*")) { ty = pointer_to(ty); while (equal(tok, "const") || equal(tok, "volatile") || equal(tok, "restrict") || equal(tok, "__restrict") || equal(tok, "__restrict__")) tok = tok->next; } *rest = tok; return ty; } // declarator = pointers ("(" ident ")" | "(" declarator ")" | ident) type-suffix static Type *declarator(Token **rest, Token *tok, Type *ty) { ty = pointers(&tok, tok, ty); if (equal(tok, "(")) { Token *start = tok; Type dummy = {}; declarator(&tok, start->next, &dummy); tok = skip(tok, ")"); ty = type_suffix(rest, tok, ty); return declarator(&tok, start->next, ty); } Token *name = NULL; Token *name_pos = tok; if (tok->kind == TK_IDENT) { name = tok; tok = tok->next; } ty = type_suffix(rest, tok, ty); ty->name = name; ty->name_pos = name_pos; return ty; } // abstract-declarator = pointers ("(" abstract-declarator ")")? type-suffix static Type *abstract_declarator(Token **rest, Token *tok, Type *ty) { ty = pointers(&tok, tok, ty); if (equal(tok, "(")) { Token *start = tok; Type dummy = {}; abstract_declarator(&tok, start->next, &dummy); tok = skip(tok, ")"); ty = type_suffix(rest, tok, ty); return abstract_declarator(&tok, start->next, ty); } return type_suffix(rest, tok, ty); } // type-name = declspec abstract-declarator static Type *typename(Token **rest, Token *tok) { Type *ty = declspec(&tok, tok, NULL); return abstract_declarator(rest, tok, ty); } static bool is_end(Token *tok) { return equal(tok, "}") || (equal(tok, ",") && equal(tok->next, "}")); } static bool consume_end(Token **rest, Token *tok) { if (equal(tok, "}")) { *rest = tok->next; return true; } if (equal(tok, ",") && equal(tok->next, "}")) { *rest = tok->next->next; return true; } return false; } // enum-specifier = ident? "{" enum-list? "}" // | ident ("{" enum-list? "}")? // // enum-list = ident ("=" num)? ("," ident ("=" num)?)* ","? static Type *enum_specifier(Token **rest, Token *tok) { Type *ty = enum_type(); // Read a struct tag. Token *tag = NULL; if (tok->kind == TK_IDENT) { tag = tok; tok = tok->next; } if (tag && !equal(tok, "{")) { Type *ty = find_tag(tag); if (!ty) error_tok(tag, "unknown enum type"); if (ty->kind != TY_ENUM) error_tok(tag, "not an enum tag"); *rest = tok; return ty; } tok = skip(tok, "{"); // Read an enum-list. int i = 0; int val = 0; while (!consume_end(rest, tok)) { if (i++ > 0) tok = skip(tok, ","); char *name = get_ident(tok); tok = tok->next; if (equal(tok, "=")) val = const_expr(&tok, tok->next); VarScope *sc = push_scope(name); sc->enum_ty = ty; sc->enum_val = val++; } if (tag) push_tag_scope(tag, ty); return ty; } // declaration = declspec (declarator ("=" expr)? ("," declarator ("=" expr)?)*)? ";" static Node *declaration(Token **rest, Token *tok, Type *basety, VarAttr *attr) { Node head = {}; Node *cur = &head; int i = 0; while (!equal(tok, ";")) { if (i++ > 0) tok = skip(tok, ","); Type *ty = declarator(&tok, tok, basety); if (ty->kind == TY_VOID) error_tok(tok, "variable declared void"); if (!ty->name) error_tok(ty->name_pos, "variable name omitted"); if (attr && attr->is_static) { // static local variable Obj *var = new_anon_gvar(ty); push_scope(get_ident(ty->name))->var = var; if (equal(tok, "=")) gvar_initializer(&tok, tok->next, var); continue; } Obj *var = new_lvar(get_ident(ty->name), ty); if (attr && attr->align) var->align = attr->align; if (equal(tok, "=")) { Node *expr = lvar_initializer(&tok, tok->next, var); cur = cur->next = new_unary(ND_EXPR_STMT, expr, tok); } if (var->ty->size < 0) error_tok(ty->name, "variable has incomplete type"); if (var->ty->kind == TY_VOID) error_tok(ty->name, "variable declared void"); } Node *node = new_node(ND_BLOCK, tok); node->body = head.next; *rest = tok->next; return node; } static Token *skip_excess_element(Token *tok) { if (equal(tok, "{")) { tok = skip_excess_element(tok->next); return skip(tok, "}"); } assign(&tok, tok); return tok; } // string-initializer = string-literal static void string_initializer(Token **rest, Token *tok, Initializer *init) { if (init->is_flexible) *init = *new_initializer(array_of(init->ty->base, tok->ty->array_len), false); int len = MIN(init->ty->array_len, tok->ty->array_len); for (int i = 0; i < len; i++) init->children[i]->expr = new_num(tok->str[i], tok); *rest = tok->next; } static int count_array_init_elements(Token *tok, Type *ty) { Initializer *dummy = new_initializer(ty->base, false); int i = 0; for (; !consume_end(&tok, tok); i++) { if (i > 0) tok = skip(tok, ","); initializer2(&tok, tok, dummy); } return i; } // array-initializer1 = "{" initializer ("," initializer)* ","? "}" static void array_initializer1(Token **rest, Token *tok, Initializer *init) { tok = skip(tok, "{"); if (init->is_flexible) { int len = count_array_init_elements(tok, init->ty); *init = *new_initializer(array_of(init->ty->base, len), false); } for (int i = 0; !consume_end(rest, tok); i++) { if (i > 0) tok = skip(tok, ","); if (i < init->ty->array_len) initializer2(&tok, tok, init->children[i]); else tok = skip_excess_element(tok); } } // array-initializer2 = initializer ("," initializer)* static void array_initializer2(Token **rest, Token *tok, Initializer *init) { if (init->is_flexible) { int len = count_array_init_elements(tok, init->ty); *init = *new_initializer(array_of(init->ty->base, len), false); } for (int i = 0; i < init->ty->array_len && !is_end(tok); i++) { if (i > 0) tok = skip(tok, ","); initializer2(&tok, tok, init->children[i]); } *rest = tok; } // struct-initializer1 = "{" initializer ("," initializer)* ","? "}" static void struct_initializer1(Token **rest, Token *tok, Initializer *init) { tok = skip(tok, "{"); Member *mem = init->ty->members; while (!consume_end(rest, tok)) { if (mem != init->ty->members) tok = skip(tok, ","); if (mem) { initializer2(&tok, tok, init->children[mem->idx]); mem = mem->next; } else { tok = skip_excess_element(tok); } } } // struct-initializer2 = initializer ("," initializer)* static void struct_initializer2(Token **rest, Token *tok, Initializer *init) { bool first = true; for (Member *mem = init->ty->members; mem && !is_end(tok); mem = mem->next) { if (!first) tok = skip(tok, ","); first = false; initializer2(&tok, tok, init->children[mem->idx]); } *rest = tok; } static void union_initializer(Token **rest, Token *tok, Initializer *init) { // Unlike structs, union initializers take only one initializer, // and that initializes the first union member. if (equal(tok, "{")) { initializer2(&tok, tok->next, init->children[0]); consume(&tok, tok, ","); *rest = skip(tok, "}"); } else { initializer2(rest, tok, init->children[0]); } } // initializer = string-initializer | array-initializer // | struct-initializer | union-initializer // | assign static void initializer2(Token **rest, Token *tok, Initializer *init) { if (init->ty->kind == TY_ARRAY && tok->kind == TK_STR) { string_initializer(rest, tok, init); return; } if (init->ty->kind == TY_ARRAY) { if (equal(tok, "{")) array_initializer1(rest, tok, init); else array_initializer2(rest, tok, init); return; } if (init->ty->kind == TY_STRUCT) { if (equal(tok, "{")) { struct_initializer1(rest, tok, init); return; } // A struct can be initialized with another struct. E.g. // `struct T x = y;` where y is a variable of type `struct T`. // Handle that case first. Node *expr = assign(rest, tok); add_type(expr); if (expr->ty->kind == TY_STRUCT) { init->expr = expr; return; } struct_initializer2(rest, tok, init); return; } if (init->ty->kind == TY_UNION) { union_initializer(rest, tok, init); return; } if (equal(tok, "{")) { // An initializer for a scalar variable can be surrounded by // braces. E.g. `int x = {3};`. Handle that case. initializer2(&tok, tok->next, init); *rest = skip(tok, "}"); return; } init->expr = assign(rest, tok); } static Type *copy_struct_type(Type *ty) { ty = copy_type(ty); Member head = {}; Member *cur = &head; for (Member *mem = ty->members; mem; mem = mem->next) { Member *m = calloc(1, sizeof(Member)); *m = *mem; cur = cur->next = m; } ty->members = head.next; return ty; } static Initializer *initializer(Token **rest, Token *tok, Type *ty, Type **new_ty) { Initializer *init = new_initializer(ty, true); initializer2(rest, tok, init); if ((ty->kind == TY_STRUCT || ty->kind == TY_UNION) && ty->is_flexible) { ty = copy_struct_type(ty); Member *mem = ty->members; while (mem->next) mem = mem->next; mem->ty = init->children[mem->idx]->ty; ty->size += mem->ty->size; *new_ty = ty; return init; } *new_ty = init->ty; return init; } static Node *init_desg_expr(InitDesg *desg, Token *tok) { if (desg->var) return new_var_node(desg->var, tok); if (desg->member) { Node *node = new_unary(ND_MEMBER, init_desg_expr(desg->next, tok), tok); node->member = desg->member; return node; } Node *lhs = init_desg_expr(desg->next, tok); Node *rhs = new_num(desg->idx, tok); return new_unary(ND_DEREF, new_add(lhs, rhs, tok), tok); } static Node *create_lvar_init(Initializer *init, Type *ty, InitDesg *desg, Token *tok) { if (ty->kind == TY_ARRAY) { Node *node = new_node(ND_NULL_EXPR, tok); for (int i = 0; i < ty->array_len; i++) { InitDesg desg2 = {desg, i}; Node *rhs = create_lvar_init(init->children[i], ty->base, &desg2, tok); node = new_binary(ND_COMMA, node, rhs, tok); } return node; } if (ty->kind == TY_STRUCT && !init->expr) { Node *node = new_node(ND_NULL_EXPR, tok); for (Member *mem = ty->members; mem; mem = mem->next) { InitDesg desg2 = {desg, 0, mem}; Node *rhs = create_lvar_init(init->children[mem->idx], mem->ty, &desg2, tok); node = new_binary(ND_COMMA, node, rhs, tok); } return node; } if (ty->kind == TY_UNION) { InitDesg desg2 = {desg, 0, ty->members}; return create_lvar_init(init->children[0], ty->members->ty, &desg2, tok); } if (!init->expr) return new_node(ND_NULL_EXPR, tok); Node *lhs = init_desg_expr(desg, tok); return new_binary(ND_ASSIGN, lhs, init->expr, tok); } // A variable definition with an initializer is a shorthand notation // for a variable definition followed by assignments. This function // generates assignment expressions for an initializer. For example, // `int x[2][2] = {{6, 7}, {8, 9}}` is converted to the following // expressions: // // x[0][0] = 6; // x[0][1] = 7; // x[1][0] = 8; // x[1][1] = 9; static Node *lvar_initializer(Token **rest, Token *tok, Obj *var) { Initializer *init = initializer(rest, tok, var->ty, &var->ty); InitDesg desg = {NULL, 0, NULL, var}; // If a partial initializer list is given, the standard requires // that unspecified elements are set to 0. Here, we simply // zero-initialize the entire memory region of a variable before // initializing it with user-supplied values. Node *lhs = new_node(ND_MEMZERO, tok); lhs->var = var; Node *rhs = create_lvar_init(init, var->ty, &desg, tok); return new_binary(ND_COMMA, lhs, rhs, tok); } static void write_buf(char *buf, uint64_t val, int sz) { if (sz == 1) *buf = val; else if (sz == 2) *(uint16_t *)buf = val; else if (sz == 4) *(uint32_t *)buf = val; else if (sz == 8) *(uint64_t *)buf = val; else unreachable(); } static Relocation * write_gvar_data(Relocation *cur, Initializer *init, Type *ty, char *buf, int offset) { if (ty->kind == TY_ARRAY) { int sz = ty->base->size; for (int i = 0; i < ty->array_len; i++) cur = write_gvar_data(cur, init->children[i], ty->base, buf, offset + sz * i); return cur; } if (ty->kind == TY_STRUCT) { for (Member *mem = ty->members; mem; mem = mem->next) cur = write_gvar_data(cur, init->children[mem->idx], mem->ty, buf, offset + mem->offset); return cur; } if (ty->kind == TY_UNION) return write_gvar_data(cur, init->children[0], ty->members->ty, buf, offset); if (!init->expr) return cur; if (ty->kind == TY_FLOAT) { *(float *)(buf + offset) = eval_double(init->expr); return cur; } if (ty->kind == TY_DOUBLE) { *(double *)(buf + offset) = eval_double(init->expr); return cur; } char *label = NULL; uint64_t val = eval2(init->expr, &label); if (!label) { write_buf(buf + offset, val, ty->size); return cur; } Relocation *rel = calloc(1, sizeof(Relocation)); rel->offset = offset; rel->label = label; rel->addend = val; cur->next = rel; return cur->next; } // Initializers for global variables are evaluated at compile-time and // embedded to .data section. This function serializes Initializer // objects to a flat byte array. It is a compile error if an // initializer list contains a non-constant expression. static void gvar_initializer(Token **rest, Token *tok, Obj *var) { Initializer *init = initializer(rest, tok, var->ty, &var->ty); Relocation head = {}; char *buf = calloc(1, var->ty->size); write_gvar_data(&head, init, var->ty, buf, 0); var->init_data = buf; var->rel = head.next; } // Returns true if a given token represents a type. static bool is_typename(Token *tok) { static char *kw[] = { "void", "_Bool", "char", "short", "int", "long", "struct", "union", "typedef", "enum", "static", "extern", "_Alignas", "signed", "unsigned", "const", "volatile", "auto", "register", "restrict", "__restrict", "__restrict__", "_Noreturn", "float", "double", }; for (int i = 0; i < sizeof(kw) / sizeof(*kw); i++) if (equal(tok, kw[i])) return true; return find_typedef(tok); } // stmt = "return" expr? ";" // | "if" "(" expr ")" stmt ("else" stmt)? // | "switch" "(" expr ")" stmt // | "case" const-expr ":" stmt // | "default" ":" stmt // | "for" "(" expr-stmt expr? ";" expr? ")" stmt // | "while" "(" expr ")" stmt // | "do" stmt "while" "(" expr ")" ";" // | "goto" ident ";" // | "break" ";" // | "continue" ";" // | ident ":" stmt // | "{" compound-stmt // | expr-stmt static Node *stmt(Token **rest, Token *tok) { if (equal(tok, "return")) { Node *node = new_node(ND_RETURN, tok); if (consume(rest, tok->next, ";")) return node; Node *exp = expr(&tok, tok->next); *rest = skip(tok, ";"); add_type(exp); node->lhs = new_cast(exp, current_fn->ty->return_ty); return node; } if (equal(tok, "if")) { Node *node = new_node(ND_IF, tok); tok = skip(tok->next, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); node->then = stmt(&tok, tok); if (equal(tok, "else")) node->els = stmt(&tok, tok->next); *rest = tok; return node; } if (equal(tok, "switch")) { Node *node = new_node(ND_SWITCH, tok); tok = skip(tok->next, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); Node *sw = current_switch; current_switch = node; char *brk = brk_label; brk_label = node->brk_label = new_unique_name(); node->then = stmt(rest, tok); current_switch = sw; brk_label = brk; return node; } if (equal(tok, "case")) { if (!current_switch) error_tok(tok, "stray case"); Node *node = new_node(ND_CASE, tok); int val = const_expr(&tok, tok->next); tok = skip(tok, ":"); node->label = new_unique_name(); node->lhs = stmt(rest, tok); node->val = val; node->case_next = current_switch->case_next; current_switch->case_next = node; return node; } if (equal(tok, "default")) { if (!current_switch) error_tok(tok, "stray default"); Node *node = new_node(ND_CASE, tok); tok = skip(tok->next, ":"); node->label = new_unique_name(); node->lhs = stmt(rest, tok); current_switch->default_case = node; return node; } if (equal(tok, "for")) { Node *node = new_node(ND_FOR, tok); tok = skip(tok->next, "("); enter_scope(); char *brk = brk_label; char *cont = cont_label; brk_label = node->brk_label = new_unique_name(); cont_label = node->cont_label = new_unique_name(); if (is_typename(tok)) { Type *basety = declspec(&tok, tok, NULL); node->init = declaration(&tok, tok, basety, NULL); } else { node->init = expr_stmt(&tok, tok); } if (!equal(tok, ";")) node->cond = expr(&tok, tok); tok = skip(tok, ";"); if (!equal(tok, ")")) node->inc = expr(&tok, tok); tok = skip(tok, ")"); node->then = stmt(rest, tok); leave_scope(); brk_label = brk; cont_label = cont; return node; } if (equal(tok, "while")) { Node *node = new_node(ND_FOR, tok); tok = skip(tok->next, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); char *brk = brk_label; char *cont = cont_label; brk_label = node->brk_label = new_unique_name(); cont_label = node->cont_label = new_unique_name(); node->then = stmt(rest, tok); brk_label = brk; cont_label = cont; return node; } if (equal(tok, "do")) { Node *node = new_node(ND_DO, tok); char *brk = brk_label; char *cont = cont_label; brk_label = node->brk_label = new_unique_name(); cont_label = node->cont_label = new_unique_name(); node->then = stmt(&tok, tok->next); brk_label = brk; cont_label = cont; tok = skip(tok, "while"); tok = skip(tok, "("); node->cond = expr(&tok, tok); tok = skip(tok, ")"); *rest = skip(tok, ";"); return node; } if (equal(tok, "goto")) { Node *node = new_node(ND_GOTO, tok); node->label = get_ident(tok->next); node->goto_next = gotos; gotos = node; *rest = skip(tok->next->next, ";"); return node; } if (equal(tok, "break")) { if (!brk_label) error_tok(tok, "stray break"); Node *node = new_node(ND_GOTO, tok); node->unique_label = brk_label; *rest = skip(tok->next, ";"); return node; } if (equal(tok, "continue")) { if (!cont_label) error_tok(tok, "stray continue"); Node *node = new_node(ND_GOTO, tok); node->unique_label = cont_label; *rest = skip(tok->next, ";"); return node; } if (tok->kind == TK_IDENT && equal(tok->next, ":")) { Node *node = new_node(ND_LABEL, tok); node->label = strndup(tok->loc, tok->len); node->unique_label = new_unique_name(); node->lhs = stmt(rest, tok->next->next); node->goto_next = labels; labels = node; return node; } if (equal(tok, "{")) return compound_stmt(rest, tok->next); return expr_stmt(rest, tok); } // compound-stmt = (typedef | declaration | stmt)* "}" static Node *compound_stmt(Token **rest, Token *tok) { Node *node = new_node(ND_BLOCK, tok); Node head = {}; Node *cur = &head; enter_scope(); while (!equal(tok, "}")) { if (is_typename(tok) && !equal(tok->next, ":")) { VarAttr attr = {}; Type *basety = declspec(&tok, tok, &attr); if (attr.is_typedef) { tok = parse_typedef(tok, basety); continue; } if (is_function(tok)) { tok = function(tok, basety, &attr); continue; } if (attr.is_extern) { tok = global_variable(tok, basety, &attr); continue; } cur = cur->next = declaration(&tok, tok, basety, &attr); } else { cur = cur->next = stmt(&tok, tok); } add_type(cur); } leave_scope(); node->body = head.next; *rest = tok->next; return node; } // expr-stmt = expr? ";" static Node *expr_stmt(Token **rest, Token *tok) { if (equal(tok, ";")) { *rest = tok->next; return new_node(ND_BLOCK, tok); } Node *node = new_node(ND_EXPR_STMT, tok); node->lhs = expr(&tok, tok); *rest = skip(tok, ";"); return node; } // expr = assign ("," expr)? static Node *expr(Token **rest, Token *tok) { Node *node = assign(&tok, tok); if (equal(tok, ",")) return new_binary(ND_COMMA, node, expr(rest, tok->next), tok); *rest = tok; return node; } static int64_t eval(Node *node) { return eval2(node, NULL); } // Evaluate a given node as a constant expression. // // A constant expression is either just a number or ptr+n where ptr // is a pointer to a global variable and n is a postiive/negative // number. The latter form is accepted only as an initialization // expression for a global variable. static int64_t eval2(Node *node, char **label) { add_type(node); if (is_flonum(node->ty)) return eval_double(node); switch (node->kind) { case ND_ADD: return eval2(node->lhs, label) + eval(node->rhs); case ND_SUB: return eval2(node->lhs, label) - eval(node->rhs); case ND_MUL: return eval(node->lhs) * eval(node->rhs); case ND_DIV: if (node->ty->is_unsigned) return (uint64_t)eval(node->lhs) / eval(node->rhs); return eval(node->lhs) / eval(node->rhs); case ND_NEG: return -eval(node->lhs); case ND_MOD: if (node->ty->is_unsigned) return (uint64_t)eval(node->lhs) % eval(node->rhs); return eval(node->lhs) % eval(node->rhs); case ND_BITAND: return eval(node->lhs) & eval(node->rhs); case ND_BITOR: return eval(node->lhs) | eval(node->rhs); case ND_BITXOR: return eval(node->lhs) ^ eval(node->rhs); case ND_SHL: return eval(node->lhs) << eval(node->rhs); case ND_SHR: if (node->ty->is_unsigned && node->ty->size == 8) return (uint64_t)eval(node->lhs) >> eval(node->rhs); return eval(node->lhs) >> eval(node->rhs); case ND_EQ: return eval(node->lhs) == eval(node->rhs); case ND_NE: return eval(node->lhs) != eval(node->rhs); case ND_LT: if (node->lhs->ty->is_unsigned) return (uint64_t)eval(node->lhs) < eval(node->rhs); return eval(node->lhs) < eval(node->rhs); case ND_LE: if (node->lhs->ty->is_unsigned) return (uint64_t)eval(node->lhs) <= eval(node->rhs); return eval(node->lhs) <= eval(node->rhs); case ND_COND: return eval(node->cond) ? eval2(node->then, label) : eval2(node->els, label); case ND_COMMA: return eval2(node->rhs, label); case ND_NOT: return !eval(node->lhs); case ND_BITNOT: return ~eval(node->lhs); case ND_LOGAND: return eval(node->lhs) && eval(node->rhs); case ND_LOGOR: return eval(node->lhs) || eval(node->rhs); case ND_CAST: { int64_t val = eval2(node->lhs, label); if (is_integer(node->ty)) { switch (node->ty->size) { case 1: return node->ty->is_unsigned ? (uint8_t)val : (int8_t)val; case 2: return node->ty->is_unsigned ? (uint16_t)val : (int16_t)val; case 4: return node->ty->is_unsigned ? (uint32_t)val : (int32_t)val; } } return val; } case ND_ADDR: return eval_rval(node->lhs, label); case ND_MEMBER: if (!label) error_tok(node->tok, "not a compile-time constant"); if (node->ty->kind != TY_ARRAY) error_tok(node->tok, "invalid initializer"); return eval_rval(node->lhs, label) + node->member->offset; case ND_VAR: if (!label) error_tok(node->tok, "not a compile-time constant"); if (node->var->ty->kind != TY_ARRAY && node->var->ty->kind != TY_FUNC) error_tok(node->tok, "invalid initializer"); *label = node->var->name; return 0; case ND_NUM: return node->val; } error_tok(node->tok, "not a compile-time constant"); } static int64_t eval_rval(Node *node, char **label) { switch (node->kind) { case ND_VAR: if (node->var->is_local) error_tok(node->tok, "not a compile-time constant"); *label = node->var->name; return 0; case ND_DEREF: return eval2(node->lhs, label); case ND_MEMBER: return eval_rval(node->lhs, label) + node->member->offset; } error_tok(node->tok, "invalid initializer"); } static int64_t const_expr(Token **rest, Token *tok) { Node *node = conditional(rest, tok); return eval(node); } static double eval_double(Node *node) { add_type(node); if (is_integer(node->ty)) { if (node->ty->is_unsigned) return (unsigned long)eval(node); return eval(node); } switch (node->kind) { case ND_ADD: return eval_double(node->lhs) + eval_double(node->rhs); case ND_SUB: return eval_double(node->lhs) - eval_double(node->rhs); case ND_MUL: return eval_double(node->lhs) * eval_double(node->rhs); case ND_DIV: return eval_double(node->lhs) / eval_double(node->rhs); case ND_NEG: return -eval_double(node->lhs); case ND_COND: return eval_double(node->cond) ? eval_double(node->then) : eval_double(node->els); case ND_COMMA: return eval_double(node->rhs); case ND_CAST: if (is_flonum(node->lhs->ty)) return eval_double(node->lhs); return eval(node->lhs); case ND_NUM: return node->fval; } error_tok(node->tok, "not a compile-time constant"); } // Convert `A op= B` to `tmp = &A, *tmp = *tmp op B` // where tmp is a fresh pointer variable. static Node *to_assign(Node *binary) { add_type(binary->lhs); add_type(binary->rhs); Token *tok = binary->tok; Obj *var = new_lvar("", pointer_to(binary->lhs->ty)); Node *expr1 = new_binary(ND_ASSIGN, new_var_node(var, tok), new_unary(ND_ADDR, binary->lhs, tok), tok); Node *expr2 = new_binary(ND_ASSIGN, new_unary(ND_DEREF, new_var_node(var, tok), tok), new_binary(binary->kind, new_unary(ND_DEREF, new_var_node(var, tok), tok), binary->rhs, tok), tok); return new_binary(ND_COMMA, expr1, expr2, tok); } // assign = conditional (assign-op assign)? // assign-op = "=" | "+=" | "-=" | "*=" | "/=" | "%=" | "&=" | "|=" | "^=" // | "<<=" | ">>=" static Node *assign(Token **rest, Token *tok) { Node *node = conditional(&tok, tok); if (equal(tok, "=")) return new_binary(ND_ASSIGN, node, assign(rest, tok->next), tok); if (equal(tok, "+=")) return to_assign(new_add(node, assign(rest, tok->next), tok)); if (equal(tok, "-=")) return to_assign(new_sub(node, assign(rest, tok->next), tok)); if (equal(tok, "*=")) return to_assign(new_binary(ND_MUL, node, assign(rest, tok->next), tok)); if (equal(tok, "/=")) return to_assign(new_binary(ND_DIV, node, assign(rest, tok->next), tok)); if (equal(tok, "%=")) return to_assign(new_binary(ND_MOD, node, assign(rest, tok->next), tok)); if (equal(tok, "&=")) return to_assign(new_binary(ND_BITAND, node, assign(rest, tok->next), tok)); if (equal(tok, "|=")) return to_assign(new_binary(ND_BITOR, node, assign(rest, tok->next), tok)); if (equal(tok, "^=")) return to_assign(new_binary(ND_BITXOR, node, assign(rest, tok->next), tok)); if (equal(tok, "<<=")) return to_assign(new_binary(ND_SHL, node, assign(rest, tok->next), tok)); if (equal(tok, ">>=")) return to_assign(new_binary(ND_SHR, node, assign(rest, tok->next), tok)); *rest = tok; return node; } // conditional = logor ("?" expr ":" conditional)? static Node *conditional(Token **rest, Token *tok) { Node *cond = logor(&tok, tok); if (!equal(tok, "?")) { *rest = tok; return cond; } Node *node = new_node(ND_COND, tok); node->cond = cond; node->then = expr(&tok, tok->next); tok = skip(tok, ":"); node->els = conditional(rest, tok); return node; } // logor = logand ("||" logand)* static Node *logor(Token **rest, Token *tok) { Node *node = logand(&tok, tok); while (equal(tok, "||")) { Token *start = tok; node = new_binary(ND_LOGOR, node, logand(&tok, tok->next), start); } *rest = tok; return node; } // logand = bitor ("&&" bitor)* static Node *logand(Token **rest, Token *tok) { Node *node = bitor(&tok, tok); while (equal(tok, "&&")) { Token *start = tok; node = new_binary(ND_LOGAND, node, bitor(&tok, tok->next), start); } *rest = tok; return node; } // bitor = bitxor ("|" bitxor)* static Node *bitor(Token **rest, Token *tok) { Node *node = bitxor(&tok, tok); while (equal(tok, "|")) { Token *start = tok; node = new_binary(ND_BITOR, node, bitxor(&tok, tok->next), start); } *rest = tok; return node; } // bitxor = bitand ("^" bitand)* static Node *bitxor(Token **rest, Token *tok) { Node *node = bitand(&tok, tok); while (equal(tok, "^")) { Token *start = tok; node = new_binary(ND_BITXOR, node, bitand(&tok, tok->next), start); } *rest = tok; return node; } // bitand = equality ("&" equality)* static Node *bitand(Token **rest, Token *tok) { Node *node = equality(&tok, tok); while (equal(tok, "&")) { Token *start = tok; node = new_binary(ND_BITAND, node, equality(&tok, tok->next), start); } *rest = tok; return node; } // equality = relational ("==" relational | "!=" relational)* static Node *equality(Token **rest, Token *tok) { Node *node = relational(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "==")) { node = new_binary(ND_EQ, node, relational(&tok, tok->next), start); continue; } if (equal(tok, "!=")) { node = new_binary(ND_NE, node, relational(&tok, tok->next), start); continue; } *rest = tok; return node; } } // relational = shift ("<" shift | "<=" shift | ">" shift | ">=" shift)* static Node *relational(Token **rest, Token *tok) { Node *node = shift(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "<")) { node = new_binary(ND_LT, node, shift(&tok, tok->next), start); continue; } if (equal(tok, "<=")) { node = new_binary(ND_LE, node, shift(&tok, tok->next), start); continue; } if (equal(tok, ">")) { node = new_binary(ND_LT, shift(&tok, tok->next), node, start); continue; } if (equal(tok, ">=")) { node = new_binary(ND_LE, shift(&tok, tok->next), node, start); continue; } *rest = tok; return node; } } // shift = add ("<<" add | ">>" add)* static Node *shift(Token **rest, Token *tok) { Node *node = add(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "<<")) { node = new_binary(ND_SHL, node, add(&tok, tok->next), start); continue; } if (equal(tok, ">>")) { node = new_binary(ND_SHR, node, add(&tok, tok->next), start); continue; } *rest = tok; return node; } } // In C, `+` operator is overloaded to perform the pointer arithmetic. // If p is a pointer, p+n adds not n but sizeof(*p)*n to the value of p, // so that p+n points to the location n elements (not bytes) ahead of p. // In other words, we need to scale an integer value before adding to a // pointer value. This function takes care of the scaling. static Node *new_add(Node *lhs, Node *rhs, Token *tok) { add_type(lhs); add_type(rhs); // num + num if (is_numeric(lhs->ty) && is_numeric(rhs->ty)) return new_binary(ND_ADD, lhs, rhs, tok); if (lhs->ty->base && rhs->ty->base) error_tok(tok, "invalid operands"); // Canonicalize `num + ptr` to `ptr + num`. if (!lhs->ty->base && rhs->ty->base) { Node *tmp = lhs; lhs = rhs; rhs = tmp; } // ptr + num rhs = new_binary(ND_MUL, rhs, new_long(lhs->ty->base->size, tok), tok); return new_binary(ND_ADD, lhs, rhs, tok); } // Like `+`, `-` is overloaded for the pointer type. static Node *new_sub(Node *lhs, Node *rhs, Token *tok) { add_type(lhs); add_type(rhs); // num - num if (is_numeric(lhs->ty) && is_numeric(rhs->ty)) return new_binary(ND_SUB, lhs, rhs, tok); // ptr - num if (lhs->ty->base && is_integer(rhs->ty)) { rhs = new_binary(ND_MUL, rhs, new_long(lhs->ty->base->size, tok), tok); add_type(rhs); Node *node = new_binary(ND_SUB, lhs, rhs, tok); node->ty = lhs->ty; return node; } // ptr - ptr, which returns how many elements are between the two. if (lhs->ty->base && rhs->ty->base) { Node *node = new_binary(ND_SUB, lhs, rhs, tok); node->ty = ty_long; return new_binary(ND_DIV, node, new_num(lhs->ty->base->size, tok), tok); } error_tok(tok, "invalid operands"); } // add = mul ("+" mul | "-" mul)* static Node *add(Token **rest, Token *tok) { Node *node = mul(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "+")) { node = new_add(node, mul(&tok, tok->next), start); continue; } if (equal(tok, "-")) { node = new_sub(node, mul(&tok, tok->next), start); continue; } *rest = tok; return node; } } // mul = cast ("*" cast | "/" cast | "%" cast)* static Node *mul(Token **rest, Token *tok) { Node *node = cast(&tok, tok); for (;;) { Token *start = tok; if (equal(tok, "*")) { node = new_binary(ND_MUL, node, cast(&tok, tok->next), start); continue; } if (equal(tok, "/")) { node = new_binary(ND_DIV, node, cast(&tok, tok->next), start); continue; } if (equal(tok, "%")) { node = new_binary(ND_MOD, node, cast(&tok, tok->next), start); continue; } *rest = tok; return node; } } // cast = "(" type-name ")" cast | unary static Node *cast(Token **rest, Token *tok) { if (equal(tok, "(") && is_typename(tok->next)) { Token *start = tok; Type *ty = typename(&tok, tok->next); tok = skip(tok, ")"); // compound literal if (equal(tok, "{")) return unary(rest, start); // type cast Node *node = new_cast(cast(rest, tok), ty); node->tok = start; return node; } return unary(rest, tok); } // unary = ("+" | "-" | "*" | "&" | "!" | "~") cast // | ("++" | "--") unary // | postfix static Node *unary(Token **rest, Token *tok) { if (equal(tok, "+")) return cast(rest, tok->next); if (equal(tok, "-")) return new_unary(ND_NEG, cast(rest, tok->next), tok); if (equal(tok, "&")) return new_unary(ND_ADDR, cast(rest, tok->next), tok); if (equal(tok, "*")) return new_unary(ND_DEREF, cast(rest, tok->next), tok); if (equal(tok, "!")) return new_unary(ND_NOT, cast(rest, tok->next), tok); if (equal(tok, "~")) return new_unary(ND_BITNOT, cast(rest, tok->next), tok); // Read ++i as i+=1 if (equal(tok, "++")) return to_assign(new_add(unary(rest, tok->next), new_num(1, tok), tok)); // Read --i as i-=1 if (equal(tok, "--")) return to_assign(new_sub(unary(rest, tok->next), new_num(1, tok), tok)); return postfix(rest, tok); } // struct-members = (declspec declarator ("," declarator)* ";")* static void struct_members(Token **rest, Token *tok, Type *ty) { Member head = {}; Member *cur = &head; int idx = 0; while (!equal(tok, "}")) { VarAttr attr = {}; Type *basety = declspec(&tok, tok, &attr); bool first = true; while (!consume(&tok, tok, ";")) { if (!first) tok = skip(tok, ","); first = false; Member *mem = calloc(1, sizeof(Member)); mem->ty = declarator(&tok, tok, basety); mem->name = mem->ty->name; mem->idx = idx++; mem->align = attr.align ? attr.align : mem->ty->align; cur = cur->next = mem; } } // If the last element is an array of incomplete type, it's // called a "flexible array member". It should behave as if // if were a zero-sized array. if (cur != &head && cur->ty->kind == TY_ARRAY && cur->ty->array_len < 0) { cur->ty = array_of(cur->ty->base, 0); ty->is_flexible = true; } *rest = tok->next; ty->members = head.next; } // struct-union-decl = ident? ("{" struct-members)? static Type *struct_union_decl(Token **rest, Token *tok) { // Read a tag. Token *tag = NULL; if (tok->kind == TK_IDENT) { tag = tok; tok = tok->next; } if (tag && !equal(tok, "{")) { *rest = tok; Type *ty = find_tag(tag); if (ty) return ty; ty = struct_type(); ty->size = -1; push_tag_scope(tag, ty); return ty; } tok = skip(tok, "{"); // Construct a struct object. Type *ty = struct_type(); struct_members(rest, tok, ty); if (tag) { // If this is a redefinition, overwrite a previous type. // Otherwise, register the struct type. for (TagScope *sc = scope->tags; sc; sc = sc->next) { if (equal(tag, sc->name)) { *sc->ty = *ty; return sc->ty; } } push_tag_scope(tag, ty); } return ty; } // struct-decl = struct-union-decl static Type *struct_decl(Token **rest, Token *tok) { Type *ty = struct_union_decl(rest, tok); ty->kind = TY_STRUCT; if (ty->size < 0) return ty; // Assign offsets within the struct to members. int offset = 0; for (Member *mem = ty->members; mem; mem = mem->next) { offset = align_to(offset, mem->align); mem->offset = offset; offset += mem->ty->size; if (ty->align < mem->align) ty->align = mem->align; } ty->size = align_to(offset, ty->align); return ty; } // union-decl = struct-union-decl static Type *union_decl(Token **rest, Token *tok) { Type *ty = struct_union_decl(rest, tok); ty->kind = TY_UNION; if (ty->size < 0) return ty; // If union, we don't have to assign offsets because they // are already initialized to zero. We need to compute the // alignment and the size though. for (Member *mem = ty->members; mem; mem = mem->next) { if (ty->align < mem->align) ty->align = mem->align; if (ty->size < mem->ty->size) ty->size = mem->ty->size; } ty->size = align_to(ty->size, ty->align); return ty; } static Member *get_struct_member(Type *ty, Token *tok) { for (Member *mem = ty->members; mem; mem = mem->next) if (mem->name->len == tok->len && !strncmp(mem->name->loc, tok->loc, tok->len)) return mem; error_tok(tok, "no such member"); } static Node *struct_ref(Node *lhs, Token *tok) { add_type(lhs); if (lhs->ty->kind != TY_STRUCT && lhs->ty->kind != TY_UNION) error_tok(lhs->tok, "not a struct nor a union"); Node *node = new_unary(ND_MEMBER, lhs, tok); node->member = get_struct_member(lhs->ty, tok); return node; } // Convert A++ to `(typeof A)((A += 1) - 1)` static Node *new_inc_dec(Node *node, Token *tok, int addend) { add_type(node); return new_cast(new_add(to_assign(new_add(node, new_num(addend, tok), tok)), new_num(-addend, tok), tok), node->ty); } // postfix = "(" type-name ")" "{" initializer-list "}" // | primary ("[" expr "]" | "." ident | "->" ident | "++" | "--")* static Node *postfix(Token **rest, Token *tok) { if (equal(tok, "(") && is_typename(tok->next)) { // Compound literal Token *start = tok; Type *ty = typename(&tok, tok->next); tok = skip(tok, ")"); if (scope->next == NULL) { Obj *var = new_anon_gvar(ty); gvar_initializer(rest, tok, var); return new_var_node(var, start); } Obj *var = new_lvar("", ty); Node *lhs = lvar_initializer(rest, tok, var); Node *rhs = new_var_node(var, tok); return new_binary(ND_COMMA, lhs, rhs, start); } Node *node = primary(&tok, tok); for (;;) { if (equal(tok, "[")) { // x[y] is short for *(x+y) Token *start = tok; Node *idx = expr(&tok, tok->next); tok = skip(tok, "]"); node = new_unary(ND_DEREF, new_add(node, idx, start), start); continue; } if (equal(tok, ".")) { node = struct_ref(node, tok->next); tok = tok->next->next; continue; } if (equal(tok, "->")) { // x->y is short for (*x).y node = new_unary(ND_DEREF, node, tok); node = struct_ref(node, tok->next); tok = tok->next->next; continue; } if (equal(tok, "++")) { node = new_inc_dec(node, tok, 1); tok = tok->next; continue; } if (equal(tok, "--")) { node = new_inc_dec(node, tok, -1); tok = tok->next; continue; } *rest = tok; return node; } } // funcall = ident "(" (assign ("," assign)*)? ")" static Node *funcall(Token **rest, Token *tok) { Token *start = tok; tok = tok->next->next; VarScope *sc = find_var(start); if (!sc) error_tok(start, "implicit declaration of a function"); if (!sc->var || sc->var->ty->kind != TY_FUNC) error_tok(start, "not a function"); Type *ty = sc->var->ty; Type *param_ty = ty->params; Node head = {}; Node *cur = &head; while (!equal(tok, ")")) { if (cur != &head) tok = skip(tok, ","); Node *arg = assign(&tok, tok); add_type(arg); if (!param_ty && !ty->is_variadic) error_tok(tok, "too many arguments"); if (param_ty) { if (param_ty->kind == TY_STRUCT || param_ty->kind == TY_UNION) error_tok(arg->tok, "passing struct or union is not supported yet"); arg = new_cast(arg, param_ty); param_ty = param_ty->next; } else if (arg->ty->kind == TY_FLOAT) { // If parameter type is omitted (e.g. in "..."), float // arguments are promoted to double. arg = new_cast(arg, ty_double); } cur = cur->next = arg; } if (param_ty) error_tok(tok, "too few arguments"); *rest = skip(tok, ")"); Node *node = new_node(ND_FUNCALL, start); node->funcname = strndup(start->loc, start->len); node->func_ty = ty; node->ty = ty->return_ty; node->args = head.next; return node; } // primary = "(" "{" stmt+ "}" ")" // | "(" expr ")" // | "sizeof" "(" type-name ")" // | "sizeof" unary // | "_Alignof" "(" type-name ")" // | "_Alignof" unary // | ident func-args? // | str // | num static Node *primary(Token **rest, Token *tok) { Token *start = tok; if (equal(tok, "(") && equal(tok->next, "{")) { // This is a GNU statement expresssion. Node *node = new_node(ND_STMT_EXPR, tok); node->body = compound_stmt(&tok, tok->next->next)->body; *rest = skip(tok, ")"); return node; } if (equal(tok, "(")) { Node *node = expr(&tok, tok->next); *rest = skip(tok, ")"); return node; } if (equal(tok, "sizeof") && equal(tok->next, "(") && is_typename(tok->next->next)) { Type *ty = typename(&tok, tok->next->next); *rest = skip(tok, ")"); return new_ulong(ty->size, start); } if (equal(tok, "sizeof")) { Node *node = unary(rest, tok->next); add_type(node); return new_ulong(node->ty->size, tok); } if (equal(tok, "_Alignof") && equal(tok->next, "(") && is_typename(tok->next->next)) { Type *ty = typename(&tok, tok->next->next); *rest = skip(tok, ")"); return new_ulong(ty->align, tok); } if (equal(tok, "_Alignof")) { Node *node = unary(rest, tok->next); add_type(node); return new_ulong(node->ty->align, tok); } if (tok->kind == TK_IDENT) { // Function call if (equal(tok->next, "(")) return funcall(rest, tok); // Variable or enum constant VarScope *sc = find_var(tok); if (!sc || (!sc->var && !sc->enum_ty)) error_tok(tok, "undefined variable"); Node *node; if (sc->var) node = new_var_node(sc->var, tok); else node = new_num(sc->enum_val, tok); *rest = tok->next; return node; } if (tok->kind == TK_STR) { Obj *var = new_string_literal(tok->str, tok->ty); *rest = tok->next; return new_var_node(var, tok); } if (tok->kind == TK_NUM) { Node *node; if (is_flonum(tok->ty)) { node = new_node(ND_NUM, tok); node->fval = tok->fval; } else { node = new_num(tok->val, tok); } node->ty = tok->ty; *rest = tok->next; return node; } error_tok(tok, "expected an expression"); } static Token *parse_typedef(Token *tok, Type *basety) { bool first = true; while (!consume(&tok, tok, ";")) { if (!first) tok = skip(tok, ","); first = false; Type *ty = declarator(&tok, tok, basety); if (!ty->name) error_tok(ty->name_pos, "typedef name omitted"); push_scope(get_ident(ty->name))->type_def = ty; } return tok; } static void create_param_lvars(Type *param) { if (param) { create_param_lvars(param->next); if (!param->name) error_tok(param->name_pos, "parameter name omitted"); new_lvar(get_ident(param->name), param); } } // This function matches gotos with labels. // // We cannot resolve gotos as we parse a function because gotos // can refer a label that appears later in the function. // So, we need to do this after we parse the entire function. static void resolve_goto_labels(void) { for (Node *x = gotos; x; x = x->goto_next) { for (Node *y = labels; y; y = y->goto_next) { if (!strcmp(x->label, y->label)) { x->unique_label = y->unique_label; break; } } if (x->unique_label == NULL) error_tok(x->tok->next, "use of undeclared label"); } gotos = labels = NULL; } static Token *function(Token *tok, Type *basety, VarAttr *attr) { Type *ty = declarator(&tok, tok, basety); if (!ty->name) error_tok(ty->name_pos, "function name omitted"); Obj *fn = new_gvar(get_ident(ty->name), ty); fn->is_function = true; fn->is_definition = !consume(&tok, tok, ";"); fn->is_static = attr->is_static; if (!fn->is_definition) return tok; current_fn = fn; locals = NULL; enter_scope(); create_param_lvars(ty->params); fn->params = locals; if (ty->is_variadic) fn->va_area = new_lvar("__va_area__", array_of(ty_char, 136)); tok = skip(tok, "{"); fn->body = compound_stmt(&tok, tok); fn->locals = locals; leave_scope(); resolve_goto_labels(); return tok; } static Token *global_variable(Token *tok, Type *basety, VarAttr *attr) { bool first = true; while (!consume(&tok, tok, ";")) { if (!first) tok = skip(tok, ","); first = false; Type *ty = declarator(&tok, tok, basety); if (!ty->name) error_tok(ty->name_pos, "variable name omitted"); Obj *var = new_gvar(get_ident(ty->name), ty); var->is_definition = !attr->is_extern; var->is_static = attr->is_static; if (attr->align) var->align = attr->align; if (equal(tok, "=")) gvar_initializer(&tok, tok->next, var); } return tok; } // Lookahead tokens and returns true if a given token is a start // of a function definition or declaration. static bool is_function(Token *tok) { if (equal(tok, ";")) return false; Type dummy = {}; Type *ty = declarator(&tok, tok, &dummy); return ty->kind == TY_FUNC; } // program = (typedef | function-definition | global-variable)* Obj *parse(Token *tok) { globals = NULL; while (tok->kind != TK_EOF) { VarAttr attr = {}; Type *basety = declspec(&tok, tok, &attr); // Typedef if (attr.is_typedef) { tok = parse_typedef(tok, basety); continue; } // Function if (is_function(tok)) { tok = function(tok, basety, &attr); continue; } // Global variable tok = global_variable(tok, basety, &attr); } return globals; }