1105 lines
24 KiB
C++
1105 lines
24 KiB
C++
/*
|
|
* Copyright 2011-2019 Branimir Karadzic. All rights reserved.
|
|
* License: https://github.com/bkaradzic/bgfx#license-bsd-2-clause
|
|
*/
|
|
|
|
#include <bx/rng.h>
|
|
#include <bx/math.h>
|
|
#include "bounds.h"
|
|
|
|
using namespace bx;
|
|
|
|
Vec3 getCenter(const Aabb& _outAabb)
|
|
{
|
|
return mul(add(_outAabb.min, _outAabb.max), 0.5f);
|
|
}
|
|
|
|
Vec3 getExtents(const Aabb& _outAabb)
|
|
{
|
|
return mul(sub(_outAabb.max, _outAabb.min), 0.5f);
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const Vec3& _center, const Vec3& _extent)
|
|
{
|
|
_outAabb.min = sub(_center, _extent);
|
|
_outAabb.max = add(_center, _extent);
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const Obb& _obb)
|
|
{
|
|
Vec3 xyz = { 1.0f, 1.0f, 1.0f };
|
|
Vec3 tmp = mul(xyz, _obb.mtx);
|
|
|
|
_outAabb.min = tmp;
|
|
_outAabb.max = tmp;
|
|
|
|
for (uint32_t ii = 1; ii < 8; ++ii)
|
|
{
|
|
xyz.x = ii & 1 ? -1.0f : 1.0f;
|
|
xyz.y = ii & 2 ? -1.0f : 1.0f;
|
|
xyz.z = ii & 4 ? -1.0f : 1.0f;
|
|
tmp = mul(xyz, _obb.mtx);
|
|
|
|
_outAabb.min = min(_outAabb.min, tmp);
|
|
_outAabb.max = max(_outAabb.max, tmp);
|
|
}
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const Sphere& _sphere)
|
|
{
|
|
const float radius = _sphere.radius;
|
|
_outAabb.min = sub(_sphere.center, radius);
|
|
_outAabb.max = add(_sphere.center, radius);
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const Disk& _disk)
|
|
{
|
|
// Reference(s):
|
|
// - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm
|
|
//
|
|
const Vec3 nsq = mul(_disk.normal, _disk.normal);
|
|
const Vec3 one = { 1.0f, 1.0f, 1.0f };
|
|
const Vec3 tmp = sub(one, nsq);
|
|
const float inv = 1.0f / (tmp.x*tmp.y*tmp.z);
|
|
|
|
const Vec3 extent =
|
|
{
|
|
_disk.radius * tmp.x * sqrt( (nsq.x + nsq.y * nsq.z) * inv),
|
|
_disk.radius * tmp.y * sqrt( (nsq.y + nsq.z * nsq.x) * inv),
|
|
_disk.radius * tmp.z * sqrt( (nsq.z + nsq.x * nsq.y) * inv),
|
|
};
|
|
|
|
_outAabb.min = sub(_disk.center, extent);
|
|
_outAabb.max = add(_disk.center, extent);
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const Cylinder& _cylinder)
|
|
{
|
|
// Reference(s):
|
|
// - https://web.archive.org/web/20181113055756/http://iquilezles.org/www/articles/diskbbox/diskbbox.htm
|
|
//
|
|
const Vec3 axis = sub(_cylinder.end, _cylinder.pos);
|
|
const Vec3 asq = mul(axis, axis);
|
|
const Vec3 nsq = mul(asq, 1.0f/dot(axis, axis) );
|
|
const Vec3 one = { 1.0f, 1.0f, 1.0f };
|
|
const Vec3 tmp = sub(one, nsq);
|
|
|
|
const float inv = 1.0f / (tmp.x*tmp.y*tmp.z);
|
|
|
|
const Vec3 extent =
|
|
{
|
|
_cylinder.radius * tmp.x * sqrt( (nsq.x + nsq.y * nsq.z) * inv),
|
|
_cylinder.radius * tmp.y * sqrt( (nsq.y + nsq.z * nsq.x) * inv),
|
|
_cylinder.radius * tmp.z * sqrt( (nsq.z + nsq.x * nsq.y) * inv),
|
|
};
|
|
|
|
const Vec3 minP = sub(_cylinder.pos, extent);
|
|
const Vec3 minE = sub(_cylinder.end, extent);
|
|
const Vec3 maxP = add(_cylinder.pos, extent);
|
|
const Vec3 maxE = add(_cylinder.end, extent);
|
|
|
|
_outAabb.min = min(minP, minE);
|
|
_outAabb.max = max(maxP, maxE);
|
|
}
|
|
|
|
void aabbTransformToObb(Obb& _obb, const Aabb& _aabb, const float* _mtx)
|
|
{
|
|
toObb(_obb, _aabb);
|
|
float result[16];
|
|
mtxMul(result, _obb.mtx, _mtx);
|
|
memCopy(_obb.mtx, result, sizeof(result) );
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
|
|
{
|
|
Vec3 mn, mx;
|
|
uint8_t* vertex = (uint8_t*)_vertices;
|
|
|
|
mn = mx = load<Vec3>(vertex);
|
|
vertex += _stride;
|
|
|
|
for (uint32_t ii = 1; ii < _numVertices; ++ii)
|
|
{
|
|
const Vec3 pos = load<Vec3>(vertex);
|
|
vertex += _stride;
|
|
|
|
mn = min(pos, mn);
|
|
mx = max(pos, mx);
|
|
}
|
|
|
|
_outAabb.min = mn;
|
|
_outAabb.max = mx;
|
|
}
|
|
|
|
void toAabb(Aabb& _outAabb, const float* _mtx, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
|
|
{
|
|
Vec3 mn, mx;
|
|
uint8_t* vertex = (uint8_t*)_vertices;
|
|
mn = mx = mul(load<Vec3>(vertex), _mtx);
|
|
|
|
vertex += _stride;
|
|
|
|
for (uint32_t ii = 1; ii < _numVertices; ++ii)
|
|
{
|
|
Vec3 pos = mul(load<Vec3>(vertex), _mtx);
|
|
vertex += _stride;
|
|
|
|
mn = min(pos, mn);
|
|
mx = max(pos, mx);
|
|
}
|
|
|
|
_outAabb.min = mn;
|
|
_outAabb.max = mx;
|
|
}
|
|
|
|
float calcAreaAabb(const Aabb& _aabb)
|
|
{
|
|
const float ww = _aabb.max.x - _aabb.min.x;
|
|
const float hh = _aabb.max.y - _aabb.min.y;
|
|
const float dd = _aabb.max.z - _aabb.min.z;
|
|
return 2.0f * (ww*hh + ww*dd + hh*dd);
|
|
}
|
|
|
|
void aabbExpand(Aabb& _outAabb, float _factor)
|
|
{
|
|
_outAabb.min.x -= _factor;
|
|
_outAabb.min.y -= _factor;
|
|
_outAabb.min.z -= _factor;
|
|
_outAabb.max.x += _factor;
|
|
_outAabb.max.y += _factor;
|
|
_outAabb.max.z += _factor;
|
|
}
|
|
|
|
void aabbExpand(Aabb& _outAabb, const Vec3& _pos)
|
|
{
|
|
_outAabb.min = min(_outAabb.min, _pos);
|
|
_outAabb.max = max(_outAabb.max, _pos);
|
|
}
|
|
|
|
void toObb(Obb& _outObb, const Aabb& _aabb)
|
|
{
|
|
memSet(_outObb.mtx, 0, sizeof(_outObb.mtx) );
|
|
_outObb.mtx[ 0] = (_aabb.max.x - _aabb.min.x) * 0.5f;
|
|
_outObb.mtx[ 5] = (_aabb.max.y - _aabb.min.y) * 0.5f;
|
|
_outObb.mtx[10] = (_aabb.max.z - _aabb.min.z) * 0.5f;
|
|
_outObb.mtx[12] = (_aabb.min.x + _aabb.max.x) * 0.5f;
|
|
_outObb.mtx[13] = (_aabb.min.y + _aabb.max.y) * 0.5f;
|
|
_outObb.mtx[14] = (_aabb.min.z + _aabb.max.z) * 0.5f;
|
|
_outObb.mtx[15] = 1.0f;
|
|
}
|
|
|
|
void calcObb(Obb& _outObb, const void* _vertices, uint32_t _numVertices, uint32_t _stride, uint32_t _steps)
|
|
{
|
|
Aabb aabb;
|
|
toAabb(aabb, _vertices, _numVertices, _stride);
|
|
float minArea = calcAreaAabb(aabb);
|
|
|
|
Obb best;
|
|
toObb(best, aabb);
|
|
|
|
float angleStep = float(kPiHalf/_steps);
|
|
float ax = 0.0f;
|
|
float mtx[16];
|
|
|
|
for (uint32_t ii = 0; ii < _steps; ++ii)
|
|
{
|
|
float ay = 0.0f;
|
|
|
|
for (uint32_t jj = 0; jj < _steps; ++jj)
|
|
{
|
|
float az = 0.0f;
|
|
|
|
for (uint32_t kk = 0; kk < _steps; ++kk)
|
|
{
|
|
mtxRotateXYZ(mtx, ax, ay, az);
|
|
|
|
float mtxT[16];
|
|
mtxTranspose(mtxT, mtx);
|
|
toAabb(aabb, mtxT, _vertices, _numVertices, _stride);
|
|
|
|
float area = calcAreaAabb(aabb);
|
|
if (area < minArea)
|
|
{
|
|
minArea = area;
|
|
aabbTransformToObb(best, aabb, mtx);
|
|
}
|
|
|
|
az += angleStep;
|
|
}
|
|
|
|
ay += angleStep;
|
|
}
|
|
|
|
ax += angleStep;
|
|
}
|
|
|
|
memCopy(&_outObb, &best, sizeof(Obb) );
|
|
}
|
|
|
|
void calcMaxBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride)
|
|
{
|
|
Aabb aabb;
|
|
toAabb(aabb, _vertices, _numVertices, _stride);
|
|
|
|
Vec3 center = getCenter(aabb);
|
|
|
|
float maxDistSq = 0.0f;
|
|
uint8_t* vertex = (uint8_t*)_vertices;
|
|
|
|
for (uint32_t ii = 0; ii < _numVertices; ++ii)
|
|
{
|
|
const Vec3& pos = load<Vec3>(vertex);
|
|
vertex += _stride;
|
|
|
|
const Vec3 tmp = sub(pos, center);
|
|
const float distSq = dot(tmp, tmp);
|
|
maxDistSq = max(distSq, maxDistSq);
|
|
}
|
|
|
|
_sphere.center = center;
|
|
_sphere.radius = sqrt(maxDistSq);
|
|
}
|
|
|
|
void calcMinBoundingSphere(Sphere& _sphere, const void* _vertices, uint32_t _numVertices, uint32_t _stride, float _step)
|
|
{
|
|
RngMwc rng;
|
|
|
|
uint8_t* vertex = (uint8_t*)_vertices;
|
|
|
|
Vec3 center;
|
|
float* position = (float*)&vertex[0];
|
|
center.x = position[0];
|
|
center.y = position[1];
|
|
center.z = position[2];
|
|
|
|
position = (float*)&vertex[1*_stride];
|
|
center.x += position[0];
|
|
center.y += position[1];
|
|
center.z += position[2];
|
|
|
|
center.x *= 0.5f;
|
|
center.y *= 0.5f;
|
|
center.z *= 0.5f;
|
|
|
|
float xx = position[0] - center.x;
|
|
float yy = position[1] - center.y;
|
|
float zz = position[2] - center.z;
|
|
float maxDistSq = xx*xx + yy*yy + zz*zz;
|
|
|
|
float radiusStep = _step * 0.37f;
|
|
|
|
bool done;
|
|
do
|
|
{
|
|
done = true;
|
|
for (uint32_t ii = 0, index = rng.gen()%_numVertices; ii < _numVertices; ++ii, index = (index + 1)%_numVertices)
|
|
{
|
|
position = (float*)&vertex[index*_stride];
|
|
|
|
xx = position[0] - center.x;
|
|
yy = position[1] - center.y;
|
|
zz = position[2] - center.z;
|
|
float distSq = xx*xx + yy*yy + zz*zz;
|
|
|
|
if (distSq > maxDistSq)
|
|
{
|
|
done = false;
|
|
|
|
center.x += xx * radiusStep;
|
|
center.y += yy * radiusStep;
|
|
center.z += zz * radiusStep;
|
|
maxDistSq = lerp(maxDistSq, distSq, _step);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
} while (!done);
|
|
|
|
_sphere.center = center;
|
|
_sphere.radius = sqrt(maxDistSq);
|
|
}
|
|
|
|
void buildFrustumPlanes(Plane* _result, const float* _viewProj)
|
|
{
|
|
const float xw = _viewProj[ 3];
|
|
const float yw = _viewProj[ 7];
|
|
const float zw = _viewProj[11];
|
|
const float ww = _viewProj[15];
|
|
|
|
const float xz = _viewProj[ 2];
|
|
const float yz = _viewProj[ 6];
|
|
const float zz = _viewProj[10];
|
|
const float wz = _viewProj[14];
|
|
|
|
Plane& near = _result[0];
|
|
Plane& far = _result[1];
|
|
Plane& left = _result[2];
|
|
Plane& right = _result[3];
|
|
Plane& top = _result[4];
|
|
Plane& bottom = _result[5];
|
|
|
|
near.normal.x = xw - xz;
|
|
near.normal.y = yw - yz;
|
|
near.normal.z = zw - zz;
|
|
near.dist = ww - wz;
|
|
|
|
far.normal.x = xw + xz;
|
|
far.normal.y = yw + yz;
|
|
far.normal.z = zw + zz;
|
|
far.dist = ww + wz;
|
|
|
|
const float xx = _viewProj[ 0];
|
|
const float yx = _viewProj[ 4];
|
|
const float zx = _viewProj[ 8];
|
|
const float wx = _viewProj[12];
|
|
|
|
left.normal.x = xw - xx;
|
|
left.normal.y = yw - yx;
|
|
left.normal.z = zw - zx;
|
|
left.dist = ww - wx;
|
|
|
|
right.normal.x = xw + xx;
|
|
right.normal.y = yw + yx;
|
|
right.normal.z = zw + zx;
|
|
right.dist = ww + wx;
|
|
|
|
const float xy = _viewProj[ 1];
|
|
const float yy = _viewProj[ 5];
|
|
const float zy = _viewProj[ 9];
|
|
const float wy = _viewProj[13];
|
|
|
|
top.normal.x = xw + xy;
|
|
top.normal.y = yw + yy;
|
|
top.normal.z = zw + zy;
|
|
top.dist = ww + wy;
|
|
|
|
bottom.normal.x = xw - xy;
|
|
bottom.normal.y = yw - yy;
|
|
bottom.normal.z = zw - zy;
|
|
bottom.dist = ww - wy;
|
|
|
|
Plane* plane = _result;
|
|
for (uint32_t ii = 0; ii < 6; ++ii)
|
|
{
|
|
const float len = length(plane->normal);
|
|
plane->normal = normalize(plane->normal);
|
|
float invLen = 1.0f / len;
|
|
plane->dist *= invLen;
|
|
++plane;
|
|
}
|
|
}
|
|
|
|
Vec3 intersectPlanes(const Plane& _pa, const Plane& _pb, const Plane& _pc)
|
|
{
|
|
const Vec3 axb = cross(_pa.normal, _pb.normal);
|
|
const Vec3 bxc = cross(_pb.normal, _pc.normal);
|
|
const Vec3 cxa = cross(_pc.normal, _pa.normal);
|
|
const Vec3 tmp0 = mul(bxc, _pa.dist);
|
|
const Vec3 tmp1 = mul(cxa, _pb.dist);
|
|
const Vec3 tmp2 = mul(axb, _pc.dist);
|
|
const Vec3 tmp3 = add(tmp0, tmp1);
|
|
const Vec3 tmp4 = add(tmp3, tmp2);
|
|
|
|
const float denom = dot(_pa.normal, bxc);
|
|
const Vec3 result = mul(tmp4, -1.0f/denom);
|
|
|
|
return result;
|
|
}
|
|
|
|
Ray makeRay(float _x, float _y, const float* _invVp)
|
|
{
|
|
Ray ray;
|
|
|
|
const Vec3 near = { _x, _y, 0.0f };
|
|
ray.pos = mulH(near, _invVp);
|
|
|
|
const Vec3 far = { _x, _y, 1.0f };
|
|
Vec3 tmp = mulH(far, _invVp);
|
|
|
|
const Vec3 dir = sub(tmp, ray.pos);
|
|
ray.dir = normalize(dir);
|
|
|
|
return ray;
|
|
}
|
|
|
|
inline Vec3 getPointAt(const Ray& _ray, float _t)
|
|
{
|
|
return add(mul(_ray.dir, _t), _ray.pos);
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Aabb& _aabb, Hit* _hit)
|
|
{
|
|
const Vec3 invDir = rcp(_ray.dir);
|
|
const Vec3 tmp0 = sub(_aabb.min, _ray.pos);
|
|
const Vec3 t0 = mul(tmp0, invDir);
|
|
const Vec3 tmp1 = sub(_aabb.max, _ray.pos);
|
|
const Vec3 t1 = mul(tmp1, invDir);
|
|
|
|
const Vec3 mn = min(t0, t1);
|
|
const Vec3 mx = max(t0, t1);
|
|
|
|
const float tmin = max(mn.x, mn.y, mn.z);
|
|
const float tmax = min(mx.x, mx.y, mx.z);
|
|
|
|
if (0.0f > tmax
|
|
|| tmin > tmax)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (NULL != _hit)
|
|
{
|
|
_hit->plane.normal.x = float( (t1.x == tmin) - (t0.x == tmin) );
|
|
_hit->plane.normal.y = float( (t1.y == tmin) - (t0.y == tmin) );
|
|
_hit->plane.normal.z = float( (t1.z == tmin) - (t0.z == tmin) );
|
|
|
|
_hit->plane.dist = tmin;
|
|
_hit->pos = getPointAt(_ray, tmin);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static constexpr Aabb kUnitAabb =
|
|
{
|
|
{ -1.0f, -1.0f, -1.0f },
|
|
{ 1.0f, 1.0f, 1.0f },
|
|
};
|
|
|
|
bool intersect(const Ray& _ray, const Obb& _obb, Hit* _hit)
|
|
{
|
|
Aabb aabb;
|
|
toAabb(aabb, _obb);
|
|
|
|
if (!intersect(_ray, aabb) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
float mtxInv[16];
|
|
mtxInverse(mtxInv, _obb.mtx);
|
|
|
|
Ray obbRay;
|
|
obbRay.pos = mul(_ray.pos, mtxInv);
|
|
obbRay.dir = mulXyz0(_ray.dir, mtxInv);
|
|
|
|
if (intersect(obbRay, kUnitAabb, _hit) )
|
|
{
|
|
if (NULL != _hit)
|
|
{
|
|
_hit->pos = mul(_hit->pos, _obb.mtx);
|
|
|
|
const Vec3 tmp = mulXyz0(_hit->plane.normal, _obb.mtx);
|
|
_hit->plane.normal = normalize(tmp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Disk& _disk, Hit* _hit)
|
|
{
|
|
Plane plane;
|
|
plane.normal = _disk.normal;
|
|
plane.dist = -dot(_disk.center, _disk.normal);
|
|
|
|
Hit tmpHit;
|
|
_hit = NULL != _hit ? _hit : &tmpHit;
|
|
|
|
if (intersect(_ray, plane, _hit) )
|
|
{
|
|
const Vec3 tmp = sub(_disk.center, _hit->pos);
|
|
return dot(tmp, tmp) <= square(_disk.radius);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool intersect(const Ray& _ray, const Cylinder& _cylinder, bool _capsule, Hit* _hit)
|
|
{
|
|
Vec3 axis = sub(_cylinder.end, _cylinder.pos);
|
|
const Vec3 rc = sub(_ray.pos, _cylinder.pos);
|
|
const Vec3 dxa = cross(_ray.dir, axis);
|
|
|
|
const float len = length(dxa);
|
|
const Vec3 normal = normalize(dxa);
|
|
const float dist = bx::abs(dot(rc, normal) );
|
|
|
|
if (dist > _cylinder.radius)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
Vec3 vo = cross(rc, axis);
|
|
const float t0 = -dot(vo, normal) / len;
|
|
|
|
vo = normalize(cross(normal, axis) );
|
|
|
|
const float rsq = square(_cylinder.radius);
|
|
const float ddoto = dot(_ray.dir, vo);
|
|
const float ss = t0 - bx::abs(sqrt(rsq - square(dist) ) / ddoto);
|
|
|
|
if (0.0f > ss)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const Vec3 point = getPointAt(_ray, ss);
|
|
|
|
const float axisLen = length(axis);
|
|
axis = normalize(axis);
|
|
const float pdota = dot(_cylinder.pos, axis);
|
|
const float height = dot(point, axis) - pdota;
|
|
|
|
if (0.0f < height
|
|
&& axisLen > height)
|
|
{
|
|
if (NULL != _hit)
|
|
{
|
|
const float t1 = height / axisLen;
|
|
const Vec3 pointOnAxis = lerp(_cylinder.pos, _cylinder.end, t1);
|
|
|
|
_hit->pos = point;
|
|
|
|
const Vec3 tmp = sub(point, pointOnAxis);
|
|
_hit->plane.normal = normalize(tmp);
|
|
|
|
_hit->plane.dist = ss;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (_capsule)
|
|
{
|
|
const float rdota = dot(_ray.pos, axis);
|
|
const float pp = rdota - pdota;
|
|
const float t1 = pp / axisLen;
|
|
|
|
const Vec3 pointOnAxis = lerp(_cylinder.pos, _cylinder.end, t1);
|
|
const Vec3 axisToRay = sub(_ray.pos, pointOnAxis);
|
|
|
|
if (_cylinder.radius < length(axisToRay)
|
|
&& 0.0f > ss)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
Sphere sphere;
|
|
sphere.radius = _cylinder.radius;
|
|
|
|
sphere.center = 0.0f >= height
|
|
? _cylinder.pos
|
|
: _cylinder.end
|
|
;
|
|
|
|
return intersect(_ray, sphere, _hit);
|
|
}
|
|
|
|
Plane plane;
|
|
Vec3 pos;
|
|
|
|
if (0.0f >= height)
|
|
{
|
|
plane.normal = neg(axis);
|
|
pos = _cylinder.pos;
|
|
}
|
|
else
|
|
{
|
|
plane.normal = axis;
|
|
pos = _cylinder.end;
|
|
}
|
|
|
|
plane.dist = -dot(pos, plane.normal);
|
|
|
|
Hit tmpHit;
|
|
_hit = NULL != _hit ? _hit : &tmpHit;
|
|
|
|
if (intersect(_ray, plane, _hit) )
|
|
{
|
|
const Vec3 tmp = sub(pos, _hit->pos);
|
|
return dot(tmp, tmp) <= rsq;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Cylinder& _cylinder, Hit* _hit)
|
|
{
|
|
return intersect(_ray, _cylinder, false, _hit);
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Capsule& _capsule, Hit* _hit)
|
|
{
|
|
BX_STATIC_ASSERT(sizeof(Capsule) == sizeof(Cylinder) );
|
|
return intersect(_ray, *( (const Cylinder*)&_capsule), true, _hit);
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Cone& _cone, Hit* _hit)
|
|
{
|
|
const Vec3 axis = sub(_cone.pos, _cone.end);
|
|
|
|
const float len = length(axis);
|
|
const Vec3 normal = normalize(axis);
|
|
|
|
Disk disk;
|
|
disk.center = _cone.pos;
|
|
disk.normal = normal;
|
|
disk.radius = _cone.radius;
|
|
|
|
Hit tmpInt;
|
|
Hit* out = NULL != _hit ? _hit : &tmpInt;
|
|
bool hit = intersect(_ray, disk, out);
|
|
|
|
const Vec3 ro = sub(_ray.pos, _cone.end);
|
|
|
|
const float hyp = sqrt(square(_cone.radius) + square(len) );
|
|
const float cosaSq = square(len/hyp);
|
|
const float ndoto = dot(normal, ro);
|
|
const float ndotd = dot(normal, _ray.dir);
|
|
|
|
const float aa = square(ndotd) - cosaSq;
|
|
const float bb = 2.0f * (ndotd*ndoto - dot(_ray.dir, ro)*cosaSq);
|
|
const float cc = square(ndoto) - dot(ro, ro)*cosaSq;
|
|
|
|
float det = bb*bb - 4.0f*aa*cc;
|
|
|
|
if (0.0f > det)
|
|
{
|
|
return hit;
|
|
}
|
|
|
|
det = sqrt(det);
|
|
const float invA2 = 1.0f / (2.0f*aa);
|
|
const float t1 = (-bb - det) * invA2;
|
|
const float t2 = (-bb + det) * invA2;
|
|
|
|
float tt = t1;
|
|
if (0.0f > t1
|
|
|| (0.0f < t2 && t2 < t1) )
|
|
{
|
|
tt = t2;
|
|
}
|
|
|
|
if (0.0f > tt)
|
|
{
|
|
return hit;
|
|
}
|
|
|
|
const Vec3 hitPos = getPointAt(_ray, tt);
|
|
const Vec3 point = sub(hitPos, _cone.end);
|
|
|
|
const float hh = dot(normal, point);
|
|
|
|
if (0.0f > hh
|
|
|| len < hh)
|
|
{
|
|
return hit;
|
|
}
|
|
|
|
if (NULL != _hit)
|
|
{
|
|
if (!hit
|
|
|| tt < _hit->plane.dist)
|
|
{
|
|
_hit->plane.dist = tt;
|
|
_hit->pos = hitPos;
|
|
|
|
const float scale = hh / dot(point, point);
|
|
const Vec3 pointScaled = mul(point, scale);
|
|
|
|
const Vec3 tmp = sub(pointScaled, normal);
|
|
_hit->plane.normal = normalize(tmp);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Plane& _plane, Hit* _hit)
|
|
{
|
|
const float dist = distance(_plane, _ray.pos);
|
|
if (0.0f > dist)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const float ndotd = dot(_ray.dir, _plane.normal);
|
|
if (0.0f < ndotd)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (NULL != _hit)
|
|
{
|
|
_hit->plane.normal = _plane.normal;
|
|
|
|
float tt = -dist/ndotd;
|
|
_hit->plane.dist = tt;
|
|
_hit->pos = getPointAt(_ray, tt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Sphere& _sphere, Hit* _hit)
|
|
{
|
|
const Vec3 rs = sub(_ray.pos, _sphere.center);
|
|
|
|
const float bb = dot(rs, _ray.dir);
|
|
if (0.0f < bb)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const float aa = dot(_ray.dir, _ray.dir);
|
|
const float cc = dot(rs, rs) - square(_sphere.radius);
|
|
|
|
const float discriminant = bb*bb - aa*cc;
|
|
|
|
if (0.0f >= discriminant)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const float sqrtDiscriminant = sqrt(discriminant);
|
|
const float invA = 1.0f / aa;
|
|
const float tt = -(bb + sqrtDiscriminant)*invA;
|
|
|
|
if (0.0f >= tt)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (NULL != _hit)
|
|
{
|
|
_hit->plane.dist = tt;
|
|
|
|
const Vec3 point = getPointAt(_ray, tt);
|
|
_hit->pos = point;
|
|
|
|
const Vec3 tmp = sub(point, _sphere.center);
|
|
_hit->plane.normal = normalize(tmp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool intersect(const Ray& _ray, const Triangle& _triangle, Hit* _hit)
|
|
{
|
|
const Vec3 edge10 = sub(_triangle.v1, _triangle.v0);
|
|
const Vec3 edge02 = sub(_triangle.v0, _triangle.v2);
|
|
const Vec3 normal = cross(edge02, edge10);
|
|
const Vec3 vo = sub(_triangle.v0, _ray.pos);
|
|
const Vec3 dxo = cross(_ray.dir, vo);
|
|
const float det = dot(normal, _ray.dir);
|
|
|
|
if (0.0f < det)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const float invDet = 1.0f/det;
|
|
const float bz = dot(dxo, edge02) * invDet;
|
|
const float by = dot(dxo, edge10) * invDet;
|
|
const float bx = 1.0f - by - bz;
|
|
|
|
if (0.0f > bx
|
|
|| 0.0f > by
|
|
|| 0.0f > bz)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (NULL != _hit)
|
|
{
|
|
_hit->plane.normal = normalize(normal);
|
|
|
|
const float tt = dot(normal, vo) * invDet;
|
|
_hit->plane.dist = tt;
|
|
_hit->pos = getPointAt(_ray, tt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Vec3 closestPoint(const Plane& _plane, const Vec3 _pos)
|
|
{
|
|
const float dist = distance(_plane, _pos);
|
|
return sub(_pos, mul(_plane.normal, dist) );
|
|
}
|
|
|
|
Vec3 closestPoint(const Aabb& _aabb, const Vec3 _pos)
|
|
{
|
|
return clamp(_pos, _aabb.min, _aabb.max);
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Vec3& _pos)
|
|
{
|
|
const Vec3 ba = sub(_sphere.center, _pos);
|
|
const float rsq = square(_sphere.radius);
|
|
return dot(ba, ba) <= rsq;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphereA, const Sphere& _sphereB)
|
|
{
|
|
const Vec3 ba = sub(_sphereA.center, _sphereB.center);
|
|
const float rsq = square(_sphereA.radius + _sphereB.radius);
|
|
return dot(ba, ba) <= rsq;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Aabb& _aabb)
|
|
{
|
|
const Vec3 pos = closestPoint(_aabb, _sphere.center);
|
|
return overlap(_sphere, pos);
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Plane& _plane)
|
|
{
|
|
return bx::abs(distance(_plane, _sphere.center) ) <= _sphere.radius;
|
|
}
|
|
|
|
void barycentric(float& _outU, float& _outV, float& _outW, const Triangle& _triangle, const Vec3& _pos)
|
|
{
|
|
const Vec3 v0 = sub(_triangle.v1, _triangle.v0);
|
|
const Vec3 v1 = sub(_triangle.v2, _triangle.v0);
|
|
const Vec3 v2 = sub(_pos, _triangle.v0);
|
|
|
|
const float dot00 = dot(v0, v0);
|
|
const float dot01 = dot(v0, v1);
|
|
const float dot02 = dot(v0, v2);
|
|
const float dot11 = dot(v1, v1);
|
|
const float dot12 = dot(v1, v2);
|
|
|
|
const float invDenom = 1.0f/(dot00*dot11 - square(dot01) );
|
|
_outU = (dot11*dot02 - dot01*dot12)*invDenom;
|
|
_outV = (dot00*dot12 - dot01*dot02)*invDenom;
|
|
_outW = 1.0f - _outU - _outV;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Triangle& _triangle)
|
|
{
|
|
Plane plane;
|
|
calcPlane(plane, _triangle.v0, _triangle.v1, _triangle.v2);
|
|
|
|
if (!overlap(_sphere, plane) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const Vec3 pos = closestPoint(plane, _sphere.center);
|
|
|
|
float uu, vv, ww;
|
|
barycentric(uu, vv, ww, _triangle, pos);
|
|
|
|
const float nr = -_sphere.radius;
|
|
|
|
return uu >= nr
|
|
&& vv >= nr
|
|
&& ww >= nr
|
|
;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Cylinder& _cylinder)
|
|
{
|
|
BX_UNUSED(_sphere, _cylinder);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Capsule& _capsule)
|
|
{
|
|
BX_UNUSED(_sphere, _capsule);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Cone& _cone)
|
|
{
|
|
BX_UNUSED(_sphere, _cone);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Disk& _disk)
|
|
{
|
|
BX_UNUSED(_sphere, _disk);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Sphere& _sphere, const Obb& _obb)
|
|
{
|
|
BX_UNUSED(_sphere, _obb);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Vec3& _pos)
|
|
{
|
|
const Vec3 ac = getCenter(_aabb);
|
|
const Vec3 ae = getExtents(_aabb);
|
|
const Vec3 abc = bx::abs(sub(ac, _pos) );
|
|
|
|
return abc.x <= ae.x
|
|
&& abc.y <= ae.y
|
|
&& abc.z <= ae.z
|
|
;
|
|
}
|
|
|
|
uint32_t overlapTestMask(const Aabb& _aabbA, const Aabb& _aabbB)
|
|
{
|
|
/// Returns 0 is two AABB don't overlap, otherwise returns flags of overlap
|
|
/// test.
|
|
const uint32_t ltMinX = _aabbA.max.x < _aabbB.min.x;
|
|
const uint32_t gtMaxX = _aabbA.min.x > _aabbB.max.x;
|
|
const uint32_t ltMinY = _aabbA.max.y < _aabbB.min.y;
|
|
const uint32_t gtMaxY = _aabbA.min.y > _aabbB.max.y;
|
|
const uint32_t ltMinZ = _aabbA.max.z < _aabbB.min.z;
|
|
const uint32_t gtMaxZ = _aabbA.min.z > _aabbB.max.z;
|
|
|
|
return 0
|
|
| (ltMinX << 0)
|
|
| (gtMaxX << 1)
|
|
| (ltMinY << 2)
|
|
| (gtMaxY << 3)
|
|
| (ltMinZ << 4)
|
|
| (gtMaxZ << 5)
|
|
;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabbA, const Aabb& _aabbB)
|
|
{
|
|
#if 0
|
|
return 0 != overlapTestMask(_aabbA, _aabbB);
|
|
#else
|
|
const Vec3 ac = getCenter(_aabbA);
|
|
const Vec3 bc = getCenter(_aabbB);
|
|
const Vec3 abc = bx::abs(sub(ac, bc) );
|
|
const Vec3 ae = getExtents(_aabbA);
|
|
const Vec3 be = getExtents(_aabbB);
|
|
const Vec3 abe = add(ae, be);
|
|
|
|
return abc.x <= abe.x
|
|
&& abc.y <= abe.y
|
|
&& abc.z <= abe.z
|
|
;
|
|
#endif // 0
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Plane& _plane)
|
|
{
|
|
const Vec3 center = getCenter(_aabb);
|
|
const float dist = distance(_plane, center);
|
|
|
|
const Vec3 extents = getExtents(_aabb);
|
|
const Vec3 normal = bx::abs(_plane.normal);
|
|
const float radius = dot(extents, normal);
|
|
|
|
return bx::abs(dist) <= radius;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Triangle& _triangle)
|
|
{
|
|
Plane plane;
|
|
calcPlane(plane, _triangle.v0, _triangle.v1, _triangle.v2);
|
|
|
|
if (!overlap(_aabb, plane) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
BX_UNUSED(_aabb, _triangle);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Cylinder& _cylinder)
|
|
{
|
|
BX_UNUSED(_aabb, _cylinder);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Capsule& _capsule)
|
|
{
|
|
BX_UNUSED(_aabb, _capsule);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Cone& _cone)
|
|
{
|
|
BX_UNUSED(_aabb, _cone);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Disk& _disk)
|
|
{
|
|
BX_UNUSED(_aabb, _disk);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Aabb& _aabb, const Obb& _obb)
|
|
{
|
|
BX_UNUSED(_aabb, _obb);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const bx::Vec3& _pos)
|
|
{
|
|
float uu, vv, ww;
|
|
barycentric(uu, vv, ww, _triangle, _pos);
|
|
|
|
return uu >= 0.0f
|
|
&& vv >= 0.0f
|
|
&& ww >= 0.0f
|
|
;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const bx::Plane& _plane)
|
|
{
|
|
const float dist0 = distance(_plane, _triangle.v0);
|
|
const float dist1 = distance(_plane, _triangle.v1);
|
|
const float dist2 = distance(_plane, _triangle.v2);
|
|
|
|
const float minDist = min(dist0, dist1, dist2);
|
|
const float maxDist = max(dist0, dist1, dist2);
|
|
|
|
return 0.0f > minDist
|
|
&& 0.0f < maxDist
|
|
;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangleA, const Triangle& _triangleB)
|
|
{
|
|
BX_UNUSED(_triangleA, _triangleB);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const Cylinder& _cylinder)
|
|
{
|
|
BX_UNUSED(_triangle, _cylinder);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const Capsule& _capsule)
|
|
{
|
|
BX_UNUSED(_triangle, _capsule);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const Cone& _cone)
|
|
{
|
|
BX_UNUSED(_triangle, _cone);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const Disk& _disk)
|
|
{
|
|
BX_UNUSED(_triangle, _disk);
|
|
return false;
|
|
}
|
|
|
|
bool overlap(const Triangle& _triangle, const Obb& _obb)
|
|
{
|
|
BX_UNUSED(_triangle, _obb);
|
|
return false;
|
|
}
|
|
|