bgfx/src/renderer_vk.cpp

9174 lines
284 KiB
C++

/*
* Copyright 2011-2023 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_VULKAN
# include <bx/pixelformat.h>
# include "renderer_vk.h"
# include "shader_spirv.h"
#if BX_PLATFORM_OSX
# import <Cocoa/Cocoa.h>
# import <Foundation/Foundation.h>
# import <QuartzCore/QuartzCore.h>
# import <Metal/Metal.h>
#endif // BX_PLATFORM_OSX
namespace bgfx { namespace vk
{
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
inline void setViewType(ViewId _view, const bx::StringView _str)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION || BGFX_CONFIG_PROFILER) )
{
bx::memCopy(&s_viewName[_view][3], _str.getPtr(), _str.getLength() );
}
}
struct PrimInfo
{
VkPrimitiveTopology m_topology;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 3, 3, 0 },
{ VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 3, 1, 2 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_LIST, 2, 2, 0 },
{ VK_PRIMITIVE_TOPOLOGY_LINE_STRIP, 2, 1, 1 },
{ VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 1, 1, 0 },
{ VK_PRIMITIVE_TOPOLOGY_MAX_ENUM, 0, 0, 0 },
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo)-1);
static MsaaSamplerVK s_msaa[] =
{
{ 1, VK_SAMPLE_COUNT_1_BIT },
{ 2, VK_SAMPLE_COUNT_2_BIT },
{ 4, VK_SAMPLE_COUNT_4_BIT },
{ 8, VK_SAMPLE_COUNT_8_BIT },
{ 16, VK_SAMPLE_COUNT_16_BIT },
};
static const VkBlendFactor s_blendFactor[][2] =
{
{ VkBlendFactor(0), VkBlendFactor(0) }, // ignored
{ VK_BLEND_FACTOR_ZERO, VK_BLEND_FACTOR_ZERO }, // ZERO
{ VK_BLEND_FACTOR_ONE, VK_BLEND_FACTOR_ONE }, // ONE
{ VK_BLEND_FACTOR_SRC_COLOR, VK_BLEND_FACTOR_SRC_ALPHA }, // SRC_COLOR
{ VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA }, // INV_SRC_COLOR
{ VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_SRC_ALPHA }, // SRC_ALPHA
{ VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA }, // INV_SRC_ALPHA
{ VK_BLEND_FACTOR_DST_ALPHA, VK_BLEND_FACTOR_DST_ALPHA }, // DST_ALPHA
{ VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA }, // INV_DST_ALPHA
{ VK_BLEND_FACTOR_DST_COLOR, VK_BLEND_FACTOR_DST_ALPHA }, // DST_COLOR
{ VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR, VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA }, // INV_DST_COLOR
{ VK_BLEND_FACTOR_SRC_ALPHA, VK_BLEND_FACTOR_ONE }, // SRC_ALPHA_SAT
{ VK_BLEND_FACTOR_CONSTANT_COLOR, VK_BLEND_FACTOR_CONSTANT_COLOR }, // FACTOR
{ VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR, VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR }, // INV_FACTOR
};
static const VkBlendOp s_blendEquation[] =
{
VK_BLEND_OP_ADD,
VK_BLEND_OP_SUBTRACT,
VK_BLEND_OP_REVERSE_SUBTRACT,
VK_BLEND_OP_MIN,
VK_BLEND_OP_MAX,
};
static const VkCompareOp s_cmpFunc[] =
{
VkCompareOp(0), // ignored
VK_COMPARE_OP_LESS,
VK_COMPARE_OP_LESS_OR_EQUAL,
VK_COMPARE_OP_EQUAL,
VK_COMPARE_OP_GREATER_OR_EQUAL,
VK_COMPARE_OP_GREATER,
VK_COMPARE_OP_NOT_EQUAL,
VK_COMPARE_OP_NEVER,
VK_COMPARE_OP_ALWAYS,
};
static const VkStencilOp s_stencilOp[] =
{
VK_STENCIL_OP_ZERO,
VK_STENCIL_OP_KEEP,
VK_STENCIL_OP_REPLACE,
VK_STENCIL_OP_INCREMENT_AND_WRAP,
VK_STENCIL_OP_INCREMENT_AND_CLAMP,
VK_STENCIL_OP_DECREMENT_AND_WRAP,
VK_STENCIL_OP_DECREMENT_AND_CLAMP,
VK_STENCIL_OP_INVERT,
};
static const VkCullModeFlagBits s_cullMode[] =
{
VK_CULL_MODE_NONE,
VK_CULL_MODE_FRONT_BIT,
VK_CULL_MODE_BACK_BIT,
};
static const VkSamplerAddressMode s_textureAddress[] =
{
VK_SAMPLER_ADDRESS_MODE_REPEAT,
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
};
struct PresentMode
{
VkPresentModeKHR mode;
bool vsync;
const char* name;
};
static const PresentMode s_presentMode[] =
{
{ VK_PRESENT_MODE_FIFO_KHR, true, "VK_PRESENT_MODE_FIFO_KHR" },
{ VK_PRESENT_MODE_FIFO_RELAXED_KHR, true, "VK_PRESENT_MODE_FIFO_RELAXED_KHR" },
{ VK_PRESENT_MODE_MAILBOX_KHR, true, "VK_PRESENT_MODE_MAILBOX_KHR" },
{ VK_PRESENT_MODE_IMMEDIATE_KHR, false, "VK_PRESENT_MODE_IMMEDIATE_KHR" },
};
#define VK_IMPORT_FUNC(_optional, _func) PFN_##_func _func
#define VK_IMPORT_INSTANCE_FUNC VK_IMPORT_FUNC
#define VK_IMPORT_DEVICE_FUNC VK_IMPORT_FUNC
VK_IMPORT
VK_IMPORT_INSTANCE
VK_IMPORT_DEVICE
#undef VK_IMPORT_DEVICE_FUNC
#undef VK_IMPORT_INSTANCE_FUNC
#undef VK_IMPORT_FUNC
struct TextureFormatInfo
{
VkFormat m_fmt;
VkFormat m_fmtSrv;
VkFormat m_fmtDsv;
VkFormat m_fmtSrgb;
VkComponentMapping m_mapping;
};
static const TextureFormatInfo s_textureFormat[] =
{
#define $_ VK_COMPONENT_SWIZZLE_IDENTITY
#define $0 VK_COMPONENT_SWIZZLE_ZERO
#define $1 VK_COMPONENT_SWIZZLE_ONE
#define $R VK_COMPONENT_SWIZZLE_R
#define $G VK_COMPONENT_SWIZZLE_G
#define $B VK_COMPONENT_SWIZZLE_B
#define $A VK_COMPONENT_SWIZZLE_A
{ VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_BC1_RGB_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC1_RGB_SRGB_BLOCK, { $_, $_, $_, $_ } }, // BC1
{ VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_BC2_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC2_SRGB_BLOCK, { $_, $_, $_, $_ } }, // BC2
{ VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_BC3_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC3_SRGB_BLOCK, { $_, $_, $_, $_ } }, // BC3
{ VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_BC4_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // BC4
{ VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_BC5_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // BC5
{ VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_BC6H_SFLOAT_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // BC6H
{ VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_BC7_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_BC7_SRGB_BLOCK, { $_, $_, $_, $_ } }, // BC7
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // ETC1
{ VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ETC2
{ VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ETC2A
{ VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ETC2A1
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // PTC12
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // PTC14
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // PTC12A
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // PTC14A
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // PTC22
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // PTC24
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // ATC
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // ATCE
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // ATCI
{ VK_FORMAT_ASTC_4x4_UNORM_BLOCK, VK_FORMAT_ASTC_4x4_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_4x4_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC4x4
{ VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_FORMAT_ASTC_5x4_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_5x4_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC5x4
{ VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_ASTC_5x5_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_5x5_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC5x5
{ VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_ASTC_6x5_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_6x5_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC6x5
{ VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_ASTC_6x6_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_6x6_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC6x6
{ VK_FORMAT_ASTC_8x5_UNORM_BLOCK, VK_FORMAT_ASTC_8x5_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_8x5_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC8x5
{ VK_FORMAT_ASTC_8x6_UNORM_BLOCK, VK_FORMAT_ASTC_8x6_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_8x6_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC8x6
{ VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_ASTC_8x8_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_8x8_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC8x8
{ VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_ASTC_10x5_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_10x5_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC10x5
{ VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_ASTC_10x6_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_10x6_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC10x6
{ VK_FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_ASTC_10x8_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_10x8_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC10x8
{ VK_FORMAT_ASTC_10x10_UNORM_BLOCK, VK_FORMAT_ASTC_10x10_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_10x10_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC10x10
{ VK_FORMAT_ASTC_12x10_UNORM_BLOCK, VK_FORMAT_ASTC_12x10_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_12x10_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC12x10
{ VK_FORMAT_ASTC_12x12_UNORM_BLOCK, VK_FORMAT_ASTC_12x12_UNORM_BLOCK, VK_FORMAT_UNDEFINED, VK_FORMAT_ASTC_12x12_SRGB_BLOCK, { $_, $_, $_, $_ } }, // ASTC12x12
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // Unknown
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R1
{ VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $0, $0, $0, $R } }, // A8
{ VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8_SRGB, { $_, $_, $_, $_ } }, // R8
{ VK_FORMAT_R8_SINT, VK_FORMAT_R8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R8I
{ VK_FORMAT_R8_UINT, VK_FORMAT_R8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R8U
{ VK_FORMAT_R8_SNORM, VK_FORMAT_R8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R8S
{ VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R16
{ VK_FORMAT_R16_SINT, VK_FORMAT_R16_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R16I
{ VK_FORMAT_R16_UINT, VK_FORMAT_R16_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R16U
{ VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R16F
{ VK_FORMAT_R16_SNORM, VK_FORMAT_R16_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R16S
{ VK_FORMAT_R32_SINT, VK_FORMAT_R32_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R32I
{ VK_FORMAT_R32_UINT, VK_FORMAT_R32_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R32U
{ VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R32F
{ VK_FORMAT_R8G8_UNORM, VK_FORMAT_R8G8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8_SRGB, { $_, $_, $_, $_ } }, // RG8
{ VK_FORMAT_R8G8_SINT, VK_FORMAT_R8G8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG8I
{ VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG8U
{ VK_FORMAT_R8G8_SNORM, VK_FORMAT_R8G8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG8S
{ VK_FORMAT_R16G16_UNORM, VK_FORMAT_R16G16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG16
{ VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG16I
{ VK_FORMAT_R16G16_UINT, VK_FORMAT_R16G16_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG16U
{ VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG16F
{ VK_FORMAT_R16G16_SNORM, VK_FORMAT_R16G16_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG16S
{ VK_FORMAT_R32G32_SINT, VK_FORMAT_R32G32_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG32I
{ VK_FORMAT_R32G32_UINT, VK_FORMAT_R32G32_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG32U
{ VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG32F
{ VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_R8G8B8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8_SRGB, { $_, $_, $_, $_ } }, // RGB8
{ VK_FORMAT_R8G8B8_SINT, VK_FORMAT_R8G8B8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8_SRGB, { $_, $_, $_, $_ } }, // RGB8I
{ VK_FORMAT_R8G8B8_UINT, VK_FORMAT_R8G8B8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8_SRGB, { $_, $_, $_, $_ } }, // RGB8U
{ VK_FORMAT_R8G8B8_SNORM, VK_FORMAT_R8G8B8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGB8S
{ VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, VK_FORMAT_E5B9G9R9_UFLOAT_PACK32, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGB9E5F
{ VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_B8G8R8A8_SRGB, { $_, $_, $_, $_ } }, // BGRA8
{ VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8A8_SRGB, { $_, $_, $_, $_ } }, // RGBA8
{ VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8A8_SRGB, { $_, $_, $_, $_ } }, // RGBA8I
{ VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_R8G8B8A8_SRGB, { $_, $_, $_, $_ } }, // RGBA8U
{ VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_R8G8B8A8_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA8S
{ VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA16
{ VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA16I
{ VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA16U
{ VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA16F
{ VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA16S
{ VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_R32G32B32A32_SINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA32I
{ VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_R32G32B32A32_UINT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA32U
{ VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RGBA32F
{ VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_R5G6B5_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // B5G6R5
{ VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_B5G6R5_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // R5G6B5
{ VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_B4G4R4A4_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $G, $R, $A, $B } }, // BGRA4
{ VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_R4G4B4A4_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $A, $B, $G, $R } }, // RGBA4
{ VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // BGR5A1
{ VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_A1R5G5B5_UNORM_PACK16, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $B, $G, $R, $A } }, // RGB5A1
{ VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $B, $G, $R, $A } }, // RGB10A2
{ VK_FORMAT_B10G11R11_UFLOAT_PACK32, VK_FORMAT_B10G11R11_UFLOAT_PACK32, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // RG11B10F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // UnknownDepth
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R16_UNORM, VK_FORMAT_D16_UNORM, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D16
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D24
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D24S8
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D32
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D16F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D24F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R32_SFLOAT, VK_FORMAT_D32_SFLOAT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D32F
{ VK_FORMAT_UNDEFINED, VK_FORMAT_R8_UINT, VK_FORMAT_S8_UINT, VK_FORMAT_UNDEFINED, { $_, $_, $_, $_ } }, // D0S8
#undef $_
#undef $0
#undef $1
#undef $R
#undef $G
#undef $B
#undef $A
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
struct LayerInfo
{
bool m_supported;
bool m_initialize;
};
struct Layer
{
enum Enum
{
VK_LAYER_LUNARG_standard_validation,
VK_LAYER_KHRONOS_validation,
Count
};
const char* m_name;
uint32_t m_minVersion;
LayerInfo m_instance;
LayerInfo m_device;
};
// Layer registry
//
static Layer s_layer[] =
{
{ "VK_LAYER_LUNARG_standard_validation", 1, { false, false }, { false, false } },
{ "VK_LAYER_KHRONOS_validation", 1, { false, false }, { false, false } },
{ "", 0, { false, false }, { false, false } },
};
BX_STATIC_ASSERT(Layer::Count == BX_COUNTOF(s_layer)-1);
void updateLayer(const char* _name, uint32_t _version, bool _instanceLayer)
{
bx::StringView layerName(_name);
for (uint32_t ii = 0; ii < Layer::Count; ++ii)
{
Layer& layer = s_layer[ii];
LayerInfo& layerInfo = _instanceLayer
? layer.m_instance
: layer.m_device
;
if (!layerInfo.m_supported && layerInfo.m_initialize)
{
if ( 0 == bx::strCmp(layerName, layer.m_name)
&& _version >= layer.m_minVersion)
{
layerInfo.m_supported = true;
break;
}
}
}
}
struct Extension
{
enum Enum
{
EXT_debug_utils,
EXT_debug_report,
EXT_memory_budget,
KHR_get_physical_device_properties2,
EXT_conservative_rasterization,
EXT_line_rasterization,
EXT_shader_viewport_index_layer,
EXT_custom_border_color,
KHR_draw_indirect_count,
Count
};
const char* m_name;
uint32_t m_minVersion;
bool m_instanceExt;
bool m_supported;
bool m_initialize;
Layer::Enum m_layer;
};
// Extension registry
//
static Extension s_extension[] =
{
{ "VK_EXT_debug_utils", 1, false, false, BGFX_CONFIG_DEBUG_OBJECT_NAME || BGFX_CONFIG_DEBUG_ANNOTATION, Layer::Count },
{ "VK_EXT_debug_report", 1, false, false, false , Layer::Count },
{ "VK_EXT_memory_budget", 1, false, false, true , Layer::Count },
{ "VK_KHR_get_physical_device_properties2", 1, false, false, true , Layer::Count },
{ "VK_EXT_conservative_rasterization", 1, false, false, true , Layer::Count },
{ "VK_EXT_line_rasterization", 1, false, false, true , Layer::Count },
{ "VK_EXT_shader_viewport_index_layer", 1, false, false, true , Layer::Count },
{ "VK_EXT_custom_border_color", 1, false, false, true , Layer::Count },
{ "VK_KHR_draw_indirect_count", 1, false, false, true , Layer::Count },
};
BX_STATIC_ASSERT(Extension::Count == BX_COUNTOF(s_extension) );
bool updateExtension(const char* _name, uint32_t _version, bool _instanceExt, Extension _extensions[Extension::Count])
{
bool supported = false;
if (BX_ENABLED(BGFX_CONFIG_RENDERER_USE_EXTENSIONS) )
{
const bx::StringView ext(_name);
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
Extension& extension = _extensions[ii];
const LayerInfo& layerInfo = _instanceExt
? s_layer[extension.m_layer].m_instance
: s_layer[extension.m_layer].m_device
;
if (!extension.m_supported
&& extension.m_initialize
&& (extension.m_layer == Layer::Count || layerInfo.m_supported) )
{
if ( 0 == bx::strCmp(ext, extension.m_name)
&& _version >= extension.m_minVersion)
{
extension.m_supported = true;
extension.m_instanceExt = _instanceExt;
supported = true;
break;
}
}
}
}
return supported;
}
static const VkFormat s_attribType[][4][2] =
{
{ // Uint8
{ VK_FORMAT_R8_UINT, VK_FORMAT_R8_UNORM },
{ VK_FORMAT_R8G8_UINT, VK_FORMAT_R8G8_UNORM },
{ VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_UNORM },
{ VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_UNORM },
},
{ // Uint10
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
{ VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_UNORM_PACK32 },
},
{ // Int16
{ VK_FORMAT_R16_SINT, VK_FORMAT_R16_SNORM },
{ VK_FORMAT_R16G16_SINT, VK_FORMAT_R16G16_SNORM },
{ VK_FORMAT_R16G16B16_SINT, VK_FORMAT_R16G16B16_SNORM },
{ VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R16G16B16A16_SNORM },
},
{ // Half
{ VK_FORMAT_R16_SFLOAT, VK_FORMAT_R16_SFLOAT },
{ VK_FORMAT_R16G16_SFLOAT, VK_FORMAT_R16G16_SFLOAT },
{ VK_FORMAT_R16G16B16_SFLOAT, VK_FORMAT_R16G16B16_SFLOAT },
{ VK_FORMAT_R16G16B16A16_SFLOAT, VK_FORMAT_R16G16B16A16_SFLOAT },
},
{ // Float
{ VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT },
{ VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R32G32_SFLOAT },
{ VK_FORMAT_R32G32B32_SFLOAT, VK_FORMAT_R32G32B32_SFLOAT },
{ VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R32G32B32A32_SFLOAT },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
void fillVertexLayout(const ShaderVK* _vsh, VkPipelineVertexInputStateCreateInfo& _vertexInputState, const VertexLayout& _layout)
{
uint32_t numBindings = _vertexInputState.vertexBindingDescriptionCount;
uint32_t numAttribs = _vertexInputState.vertexAttributeDescriptionCount;
VkVertexInputBindingDescription* inputBinding = const_cast<VkVertexInputBindingDescription*>(_vertexInputState.pVertexBindingDescriptions + numBindings);
VkVertexInputAttributeDescription* inputAttrib = const_cast<VkVertexInputAttributeDescription*>(_vertexInputState.pVertexAttributeDescriptions + numAttribs);
inputBinding->binding = numBindings;
inputBinding->stride = _layout.m_stride;
inputBinding->inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
for (uint32_t attr = 0; attr < Attrib::Count; ++attr)
{
if (UINT16_MAX != _layout.m_attributes[attr])
{
inputAttrib->location = _vsh->m_attrRemap[attr];
inputAttrib->binding = numBindings;
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
_layout.decode(Attrib::Enum(attr), num, type, normalized, asInt);
inputAttrib->format = s_attribType[type][num-1][normalized];
inputAttrib->offset = _layout.m_offset[attr];
++inputAttrib;
++numAttribs;
}
}
_vertexInputState.vertexBindingDescriptionCount = numBindings + 1;
_vertexInputState.vertexAttributeDescriptionCount = numAttribs;
}
void fillInstanceBinding(const ShaderVK* _vsh, VkPipelineVertexInputStateCreateInfo& _vertexInputState, uint32_t _numInstanceData)
{
BX_UNUSED(_vsh);
uint32_t numBindings = _vertexInputState.vertexBindingDescriptionCount;
uint32_t numAttribs = _vertexInputState.vertexAttributeDescriptionCount;
VkVertexInputBindingDescription* inputBinding = const_cast<VkVertexInputBindingDescription*>(_vertexInputState.pVertexBindingDescriptions + numBindings);
VkVertexInputAttributeDescription* inputAttrib = const_cast<VkVertexInputAttributeDescription*>(_vertexInputState.pVertexAttributeDescriptions + numAttribs);
inputBinding->binding = numBindings;
inputBinding->stride = _numInstanceData * 16;
inputBinding->inputRate = VK_VERTEX_INPUT_RATE_INSTANCE;
for (uint32_t inst = 0; inst < _numInstanceData; ++inst)
{
inputAttrib->location = numAttribs;
inputAttrib->binding = numBindings;
inputAttrib->format = VK_FORMAT_R32G32B32A32_SFLOAT;
inputAttrib->offset = inst * 16;
++numAttribs;
++inputAttrib;
}
_vertexInputState.vertexBindingDescriptionCount = numBindings + 1;
_vertexInputState.vertexAttributeDescriptionCount = numAttribs;
}
static const char* s_deviceTypeName[] =
{
"Other",
"Integrated GPU",
"Discrete GPU",
"Virtual GPU",
"CPU",
"Unknown?!"
};
const char* getName(VkPhysicalDeviceType _type)
{
return s_deviceTypeName[bx::min<int32_t>(_type, BX_COUNTOF(s_deviceTypeName)-1 )];
}
static const char* s_allocScopeName[] =
{
"vkCommand",
"vkObject",
"vkCache",
"vkDevice",
"vkInstance",
};
BX_STATIC_ASSERT(VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE == BX_COUNTOF(s_allocScopeName)-1);
static void* VKAPI_PTR allocationFunction(void* _userData, size_t _size, size_t _alignment, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _allocationScope);
return bx::alignedAlloc(g_allocator, _size, _alignment, s_allocScopeName[_allocationScope]);
}
static void* VKAPI_PTR reallocationFunction(void* _userData, void* _original, size_t _size, size_t _alignment, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _allocationScope);
return bx::alignedRealloc(g_allocator, _original, _size, _alignment, s_allocScopeName[_allocationScope]);
}
static void VKAPI_PTR freeFunction(void* _userData, void* _memory)
{
BX_UNUSED(_userData);
if (NULL == _memory)
{
return;
}
bx::alignedFree(g_allocator, _memory, 8);
}
static void VKAPI_PTR internalAllocationNotification(void* _userData, size_t _size, VkInternalAllocationType _allocationType, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _size, _allocationType, _allocationScope);
}
static void VKAPI_PTR internalFreeNotification(void* _userData, size_t _size, VkInternalAllocationType _allocationType, VkSystemAllocationScope _allocationScope)
{
BX_UNUSED(_userData, _size, _allocationType, _allocationScope);
}
static VkAllocationCallbacks s_allocationCb =
{
NULL,
allocationFunction,
reallocationFunction,
freeFunction,
internalAllocationNotification,
internalFreeNotification,
};
VkResult VKAPI_PTR stubSetDebugUtilsObjectNameEXT(VkDevice _device, const VkDebugUtilsObjectNameInfoEXT* _nameInfo)
{
BX_UNUSED(_device, _nameInfo);
return VK_SUCCESS;
}
void VKAPI_PTR stubCmdInsertDebugUtilsLabelEXT(VkCommandBuffer _commandBuffer, const VkDebugUtilsLabelEXT* _labelInfo)
{
BX_UNUSED(_commandBuffer, _labelInfo);
}
void VKAPI_PTR stubCmdBeginDebugUtilsLabelEXT(VkCommandBuffer _commandBuffer, const VkDebugUtilsLabelEXT* _labelInfo)
{
BX_UNUSED(_commandBuffer, _labelInfo);
}
void VKAPI_PTR stubCmdEndDebugUtilsLabelEXT(VkCommandBuffer _commandBuffer)
{
BX_UNUSED(_commandBuffer);
}
static const char* s_debugReportObjectType[] =
{
"Unknown",
"Instance",
"PhysicalDevice",
"Device",
"Queue",
"Semaphore",
"CommandBuffer",
"Fence",
"DeviceMemory",
"Buffer",
"Image",
"Event",
"QueryPool",
"BufferView",
"ImageView",
"ShaderModule",
"PipelineCache",
"PipelineLayout",
"RenderPass",
"Pipeline",
"DescriptorSetLayout",
"Sampler",
"DescriptorPool",
"DescriptorSet",
"Framebuffer",
"CommandPool",
"SurfaceKHR",
"SwapchainKHR",
"DebugReport",
};
VkBool32 VKAPI_PTR debugReportCb(
VkDebugReportFlagsEXT _flags,
VkDebugReportObjectTypeEXT _objectType,
uint64_t _object,
size_t _location,
int32_t _messageCode,
const char* _layerPrefix,
const char* _message,
void* _userData
)
{
BX_UNUSED(_flags
, _objectType
, _object
, _location
, _messageCode
, _layerPrefix
, _message
, _userData
, s_debugReportObjectType
);
// For more info about 'VUID-VkSwapchainCreateInfoKHR-imageExtent-01274'
// check https://github.com/KhronosGroup/Vulkan-Docs/issues/1144
if (!bx::strFind(_message, "PointSizeMissing").isEmpty()
|| !bx::strFind(_message, "SwapchainTooManyImages").isEmpty()
|| !bx::strFind(_message, "SwapchainImageNotAcquired").isEmpty()
|| !bx::strFind(_message, "VUID-VkSwapchainCreateInfoKHR-imageExtent-01274").isEmpty() )
{
return VK_FALSE;
}
BX_TRACE("%c%c%c%c%c %19s, %s, %d: %s"
, 0 != (_flags & VK_DEBUG_REPORT_INFORMATION_BIT_EXT ) ? 'I' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_WARNING_BIT_EXT ) ? 'W' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT) ? 'P' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_ERROR_BIT_EXT ) ? 'E' : '-'
, 0 != (_flags & VK_DEBUG_REPORT_DEBUG_BIT_EXT ) ? 'D' : '-'
, s_debugReportObjectType[_objectType]
, _layerPrefix
, _messageCode
, _message
);
return VK_FALSE;
}
VkResult enumerateLayerProperties(VkPhysicalDevice _physicalDevice, uint32_t* _propertyCount, VkLayerProperties* _properties)
{
return (VK_NULL_HANDLE == _physicalDevice)
? vkEnumerateInstanceLayerProperties(_propertyCount, _properties)
: vkEnumerateDeviceLayerProperties(_physicalDevice, _propertyCount, _properties)
;
}
VkResult enumerateExtensionProperties(VkPhysicalDevice _physicalDevice, const char* _layerName, uint32_t* _propertyCount, VkExtensionProperties* _properties)
{
return (VK_NULL_HANDLE == _physicalDevice)
? vkEnumerateInstanceExtensionProperties(_layerName, _propertyCount, _properties)
: vkEnumerateDeviceExtensionProperties(_physicalDevice, _layerName, _propertyCount, _properties)
;
}
void dumpExtensions(VkPhysicalDevice _physicalDevice, Extension _extensions[Extension::Count])
{
{ // Global extensions.
uint32_t numExtensionProperties;
VkResult result = enumerateExtensionProperties(_physicalDevice
, NULL
, &numExtensionProperties
, NULL
);
if (VK_SUCCESS == result
&& 0 < numExtensionProperties)
{
VkExtensionProperties* extensionProperties = (VkExtensionProperties*)BX_ALLOC(g_allocator, numExtensionProperties * sizeof(VkExtensionProperties) );
result = enumerateExtensionProperties(_physicalDevice
, NULL
, &numExtensionProperties
, extensionProperties
);
BX_TRACE("Global extensions (%d):"
, numExtensionProperties
);
for (uint32_t extension = 0; extension < numExtensionProperties; ++extension)
{
bool supported = updateExtension(
extensionProperties[extension].extensionName
, extensionProperties[extension].specVersion
, VK_NULL_HANDLE == _physicalDevice
, _extensions
);
BX_TRACE("\tv%-3d %s%s"
, extensionProperties[extension].specVersion
, extensionProperties[extension].extensionName
, supported ? " (supported)" : "", extensionProperties[extension].extensionName
);
BX_UNUSED(supported);
}
BX_FREE(g_allocator, extensionProperties);
}
}
// Layer extensions.
uint32_t numLayerProperties;
VkResult result = enumerateLayerProperties(_physicalDevice, &numLayerProperties, NULL);
if (VK_SUCCESS == result
&& 0 < numLayerProperties)
{
VkLayerProperties* layerProperties = (VkLayerProperties*)BX_ALLOC(g_allocator, numLayerProperties * sizeof(VkLayerProperties) );
result = enumerateLayerProperties(_physicalDevice, &numLayerProperties, layerProperties);
char indent = VK_NULL_HANDLE == _physicalDevice ? '\0' : '\t';
BX_UNUSED(indent);
BX_TRACE("%cLayer extensions (%d):"
, indent
, numLayerProperties
);
for (uint32_t layer = 0; layer < numLayerProperties; ++layer)
{
updateLayer(
layerProperties[layer].layerName
, layerProperties[layer].implementationVersion
, VK_NULL_HANDLE == _physicalDevice
);
BX_TRACE("%c\t%s (s: 0x%08x, i: 0x%08x), %s"
, indent
, layerProperties[layer].layerName
, layerProperties[layer].specVersion
, layerProperties[layer].implementationVersion
, layerProperties[layer].description
);
uint32_t numExtensionProperties;
result = enumerateExtensionProperties(_physicalDevice
, layerProperties[layer].layerName
, &numExtensionProperties
, NULL
);
if (VK_SUCCESS == result
&& 0 < numExtensionProperties)
{
VkExtensionProperties* extensionProperties = (VkExtensionProperties*)BX_ALLOC(g_allocator, numExtensionProperties * sizeof(VkExtensionProperties) );
result = enumerateExtensionProperties(_physicalDevice
, layerProperties[layer].layerName
, &numExtensionProperties
, extensionProperties
);
for (uint32_t extension = 0; extension < numExtensionProperties; ++extension)
{
bool supported = updateExtension(
extensionProperties[extension].extensionName
, extensionProperties[extension].specVersion
, VK_NULL_HANDLE == _physicalDevice
, _extensions
);
BX_TRACE("%c\t\t%s (s: 0x%08x)"
, indent
, extensionProperties[extension].extensionName
, extensionProperties[extension].specVersion
, supported ? " (supported)" : "", extensionProperties[extension].extensionName
);
BX_UNUSED(supported);
}
BX_FREE(g_allocator, extensionProperties);
}
}
BX_FREE(g_allocator, layerProperties);
}
}
const char* getName(VkResult _result)
{
switch (_result)
{
#define VKENUM(_ty) case _ty: return #_ty
VKENUM(VK_SUCCESS);
VKENUM(VK_NOT_READY);
VKENUM(VK_TIMEOUT);
VKENUM(VK_EVENT_SET);
VKENUM(VK_EVENT_RESET);
VKENUM(VK_INCOMPLETE);
VKENUM(VK_ERROR_OUT_OF_HOST_MEMORY);
VKENUM(VK_ERROR_OUT_OF_DEVICE_MEMORY);
VKENUM(VK_ERROR_OUT_OF_POOL_MEMORY);
VKENUM(VK_ERROR_FRAGMENTED_POOL);
VKENUM(VK_ERROR_INITIALIZATION_FAILED);
VKENUM(VK_ERROR_DEVICE_LOST);
VKENUM(VK_ERROR_MEMORY_MAP_FAILED);
VKENUM(VK_ERROR_LAYER_NOT_PRESENT);
VKENUM(VK_ERROR_EXTENSION_NOT_PRESENT);
VKENUM(VK_ERROR_FEATURE_NOT_PRESENT);
VKENUM(VK_ERROR_INCOMPATIBLE_DRIVER);
VKENUM(VK_ERROR_TOO_MANY_OBJECTS);
VKENUM(VK_ERROR_FORMAT_NOT_SUPPORTED);
VKENUM(VK_ERROR_SURFACE_LOST_KHR);
VKENUM(VK_ERROR_NATIVE_WINDOW_IN_USE_KHR);
VKENUM(VK_SUBOPTIMAL_KHR);
VKENUM(VK_ERROR_OUT_OF_DATE_KHR);
VKENUM(VK_ERROR_INCOMPATIBLE_DISPLAY_KHR);
VKENUM(VK_ERROR_VALIDATION_FAILED_EXT);
#undef VKENUM
default: break;
}
BX_WARN(false, "Unknown VkResult? %x", _result);
return "<VkResult?>";
}
template<typename Ty>
constexpr VkObjectType getType();
template<> VkObjectType getType<VkBuffer >() { return VK_OBJECT_TYPE_BUFFER; }
template<> VkObjectType getType<VkCommandPool >() { return VK_OBJECT_TYPE_COMMAND_POOL; }
template<> VkObjectType getType<VkDescriptorPool >() { return VK_OBJECT_TYPE_DESCRIPTOR_POOL; }
template<> VkObjectType getType<VkDescriptorSet >() { return VK_OBJECT_TYPE_DESCRIPTOR_SET; }
template<> VkObjectType getType<VkDescriptorSetLayout>() { return VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT; }
template<> VkObjectType getType<VkDeviceMemory >() { return VK_OBJECT_TYPE_DEVICE_MEMORY; }
template<> VkObjectType getType<VkFence >() { return VK_OBJECT_TYPE_FENCE; }
template<> VkObjectType getType<VkFramebuffer >() { return VK_OBJECT_TYPE_FRAMEBUFFER; }
template<> VkObjectType getType<VkImage >() { return VK_OBJECT_TYPE_IMAGE; }
template<> VkObjectType getType<VkImageView >() { return VK_OBJECT_TYPE_IMAGE_VIEW; }
template<> VkObjectType getType<VkPipeline >() { return VK_OBJECT_TYPE_PIPELINE; }
template<> VkObjectType getType<VkPipelineCache >() { return VK_OBJECT_TYPE_PIPELINE_CACHE; }
template<> VkObjectType getType<VkPipelineLayout >() { return VK_OBJECT_TYPE_PIPELINE_LAYOUT; }
template<> VkObjectType getType<VkQueryPool >() { return VK_OBJECT_TYPE_QUERY_POOL; }
template<> VkObjectType getType<VkRenderPass >() { return VK_OBJECT_TYPE_RENDER_PASS; }
template<> VkObjectType getType<VkSampler >() { return VK_OBJECT_TYPE_SAMPLER; }
template<> VkObjectType getType<VkSemaphore >() { return VK_OBJECT_TYPE_SEMAPHORE; }
template<> VkObjectType getType<VkShaderModule >() { return VK_OBJECT_TYPE_SHADER_MODULE; }
template<> VkObjectType getType<VkSurfaceKHR >() { return VK_OBJECT_TYPE_SURFACE_KHR; }
template<> VkObjectType getType<VkSwapchainKHR >() { return VK_OBJECT_TYPE_SWAPCHAIN_KHR; }
template<typename Ty>
static BX_NO_INLINE void setDebugObjectName(VkDevice _device, Ty _object, const char* _format, ...)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_OBJECT_NAME)
&& s_extension[Extension::EXT_debug_utils].m_supported)
{
char temp[2048];
va_list argList;
va_start(argList, _format);
int32_t size = bx::min<int32_t>(sizeof(temp)-1, bx::vsnprintf(temp, sizeof(temp), _format, argList) );
va_end(argList);
temp[size] = '\0';
VkDebugUtilsObjectNameInfoEXT ni;
ni.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT;
ni.pNext = NULL;
ni.objectType = getType<Ty>();
ni.objectHandle = uint64_t(_object.vk);
ni.pObjectName = temp;
VK_CHECK(vkSetDebugUtilsObjectNameEXT(_device, &ni) );
}
}
void setMemoryBarrier(
VkCommandBuffer _commandBuffer
, VkPipelineStageFlags _srcStages
, VkPipelineStageFlags _dstStages
)
{
VkMemoryBarrier mb;
mb.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
mb.pNext = NULL;
mb.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
mb.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
vkCmdPipelineBarrier(
_commandBuffer
, _srcStages
, _dstStages
, 0
, 1
, &mb
, 0
, NULL
, 0
, NULL
);
}
void setImageMemoryBarrier(
VkCommandBuffer _commandBuffer
, VkImage _image
, VkImageAspectFlags _aspectMask
, VkImageLayout _oldLayout
, VkImageLayout _newLayout
, uint32_t _baseMipLevel = 0
, uint32_t _levelCount = VK_REMAINING_MIP_LEVELS
, uint32_t _baseArrayLayer = 0
, uint32_t _layerCount = VK_REMAINING_ARRAY_LAYERS
)
{
BX_ASSERT(true
&& _newLayout != VK_IMAGE_LAYOUT_UNDEFINED
&& _newLayout != VK_IMAGE_LAYOUT_PREINITIALIZED
, "_newLayout cannot use VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED."
);
constexpr VkPipelineStageFlags depthStageMask = 0
| VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT
;
constexpr VkPipelineStageFlags sampledStageMask = 0
| VK_PIPELINE_STAGE_VERTEX_SHADER_BIT
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
| VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
;
VkPipelineStageFlags srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkAccessFlags srcAccessMask = 0;
VkAccessFlags dstAccessMask = 0;
switch (_oldLayout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
break;
case VK_IMAGE_LAYOUT_GENERAL:
srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
srcStageMask = depthStageMask;
srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
srcStageMask = depthStageMask | sampledStageMask;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
srcStageMask = sampledStageMask;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
srcStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
srcStageMask = VK_PIPELINE_STAGE_HOST_BIT;
srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
break;
default:
BX_ASSERT(false, "Unknown image layout.");
break;
}
switch (_newLayout)
{
case VK_IMAGE_LAYOUT_GENERAL:
dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
dstStageMask = depthStageMask;
dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
dstStageMask = depthStageMask | sampledStageMask;
dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
dstStageMask = sampledStageMask;
dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT;
dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
// vkQueuePresentKHR performs automatic visibility operations
break;
default:
BX_ASSERT(false, "Unknown image layout.");
break;
}
VkImageMemoryBarrier imb;
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = NULL;
imb.srcAccessMask = srcAccessMask;
imb.dstAccessMask = dstAccessMask;
imb.oldLayout = _oldLayout;
imb.newLayout = _newLayout;
imb.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imb.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imb.image = _image;
imb.subresourceRange.aspectMask = _aspectMask;
imb.subresourceRange.baseMipLevel = _baseMipLevel;
imb.subresourceRange.levelCount = _levelCount;
imb.subresourceRange.baseArrayLayer = _baseArrayLayer;
imb.subresourceRange.layerCount = _layerCount;
vkCmdPipelineBarrier(_commandBuffer
, srcStageMask
, dstStageMask
, 0
, 0
, NULL
, 0
, NULL
, 1
, &imb
);
}
#define MAX_DESCRIPTOR_SETS (1024 * BGFX_CONFIG_MAX_FRAME_LATENCY)
struct RendererContextVK : public RendererContextI
{
RendererContextVK()
: m_allocatorCb(NULL)
, m_renderDocDll(NULL)
, m_vulkan1Dll(NULL)
, m_maxAnisotropy(1.0f)
, m_depthClamp(false)
, m_wireframe(false)
, m_captureBuffer(VK_NULL_HANDLE)
, m_captureMemory(VK_NULL_HANDLE)
, m_captureSize(0)
{
}
~RendererContextVK()
{
}
bool init(const Init& _init)
{
struct ErrorState
{
enum Enum
{
Default,
LoadedVulkan1,
InstanceCreated,
DeviceCreated,
CommandQueueCreated,
SwapChainCreated,
DescriptorCreated,
TimerQueryCreated,
};
};
ErrorState::Enum errorState = ErrorState::Default;
const bool headless = NULL == g_platformData.nwh;
const void* nextFeatures = NULL;
VkPhysicalDeviceLineRasterizationFeaturesEXT lineRasterizationFeatures;
VkPhysicalDeviceCustomBorderColorFeaturesEXT customBorderColorFeatures;
bx::memSet(&lineRasterizationFeatures, 0, sizeof(lineRasterizationFeatures) );
bx::memSet(&customBorderColorFeatures, 0, sizeof(customBorderColorFeatures) );
m_fbh.idx = kInvalidHandle;
bx::memSet(m_uniforms, 0, sizeof(m_uniforms) );
bx::memSet(&m_resolution, 0, sizeof(m_resolution) );
bool imported = true;
VkResult result;
m_globalQueueFamily = UINT32_MAX;
if (_init.debug
|| _init.profile)
{
m_renderDocDll = loadRenderDoc();
}
setGraphicsDebuggerPresent(NULL != m_renderDocDll);
m_vulkan1Dll = bx::dlopen(
#if BX_PLATFORM_WINDOWS
"vulkan-1.dll"
#elif BX_PLATFORM_ANDROID
"libvulkan.so"
#elif BX_PLATFORM_OSX
"libvulkan.dylib"
#else
"libvulkan.so.1"
#endif // BX_PLATFORM_*
);
if (NULL == m_vulkan1Dll)
{
BX_TRACE("Init error: Failed to load vulkan dynamic library.");
goto error;
}
errorState = ErrorState::LoadedVulkan1;
BX_TRACE("Shared library functions:");
#define VK_IMPORT_FUNC(_optional, _func) \
_func = (PFN_##_func)bx::dlsym(m_vulkan1Dll, #_func); \
BX_TRACE("\t%p " #_func, _func); \
imported &= _optional || NULL != _func
VK_IMPORT
#undef VK_IMPORT_FUNC
if (!imported)
{
BX_TRACE("Init error: Failed to load shared library functions.");
goto error;
}
{
s_layer[Layer::VK_LAYER_LUNARG_standard_validation].m_device.m_initialize = _init.debug;
s_layer[Layer::VK_LAYER_LUNARG_standard_validation].m_instance.m_initialize = _init.debug;
s_layer[Layer::VK_LAYER_KHRONOS_validation ].m_device.m_initialize = _init.debug;
s_layer[Layer::VK_LAYER_KHRONOS_validation ].m_instance.m_initialize = _init.debug;
s_extension[Extension::EXT_debug_report].m_initialize = _init.debug;
s_extension[Extension::EXT_shader_viewport_index_layer].m_initialize = !!(_init.capabilities & BGFX_CAPS_VIEWPORT_LAYER_ARRAY);
s_extension[Extension::EXT_conservative_rasterization ].m_initialize = !!(_init.capabilities & BGFX_CAPS_CONSERVATIVE_RASTER );
s_extension[Extension::KHR_draw_indirect_count ].m_initialize = !!(_init.capabilities & BGFX_CAPS_DRAW_INDIRECT_COUNT );
dumpExtensions(VK_NULL_HANDLE, s_extension);
if (s_layer[Layer::VK_LAYER_KHRONOS_validation].m_device.m_supported
|| s_layer[Layer::VK_LAYER_KHRONOS_validation].m_instance.m_supported)
{
s_layer[Layer::VK_LAYER_LUNARG_standard_validation].m_device.m_supported = false;
s_layer[Layer::VK_LAYER_LUNARG_standard_validation].m_instance.m_supported = false;
}
uint32_t numEnabledLayers = 0;
const char* enabledLayer[Layer::Count];
BX_TRACE("Enabled instance layers:");
for (uint32_t ii = 0; ii < Layer::Count; ++ii)
{
const Layer& layer = s_layer[ii];
if (layer.m_instance.m_supported
&& layer.m_instance.m_initialize)
{
enabledLayer[numEnabledLayers++] = layer.m_name;
BX_TRACE("\t%s", layer.m_name);
}
}
#if BX_PLATFORM_OSX
uint32_t numEnabledExtensions = headless ? 0 : 3;
const char* enabledExtension[Extension::Count + 3] =
#else
uint32_t numEnabledExtensions = headless ? 0 : 2;
const char* enabledExtension[Extension::Count + 2] =
#endif
{
VK_KHR_SURFACE_EXTENSION_NAME,
KHR_SURFACE_EXTENSION_NAME,
#if BX_PLATFORM_OSX
VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME,
#endif
};
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
const Extension& extension = s_extension[ii];
const LayerInfo& layerInfo = s_layer[extension.m_layer].m_instance;
const bool layerEnabled = false
|| extension.m_layer == Layer::Count
|| (layerInfo.m_supported && layerInfo.m_initialize)
;
if (extension.m_supported
&& extension.m_initialize
&& extension.m_instanceExt
&& layerEnabled)
{
enabledExtension[numEnabledExtensions++] = extension.m_name;
}
}
BX_TRACE("Enabled instance extensions:");
for (uint32_t ii = 0; ii < numEnabledExtensions; ++ii)
{
BX_TRACE("\t%s", enabledExtension[ii]);
}
uint32_t vulkanApiVersionSelector;
if (NULL != vkEnumerateInstanceVersion)
{
result = vkEnumerateInstanceVersion(&vulkanApiVersionSelector);
if (VK_SUCCESS != result)
{
BX_TRACE(
"Init error: vkEnumerateInstanceVersion failed %d: %s."
, result
, getName(result)
);
goto error;
}
}
else
{
vulkanApiVersionSelector = VK_API_VERSION_1_0;
}
VkApplicationInfo appInfo;
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pNext = NULL;
appInfo.pApplicationName = "bgfx";
appInfo.applicationVersion = BGFX_API_VERSION;
appInfo.pEngineName = "bgfx";
appInfo.engineVersion = BGFX_API_VERSION;
appInfo.apiVersion = vulkanApiVersionSelector;
VkInstanceCreateInfo ici;
ici.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
ici.pNext = NULL;
#if BX_PLATFORM_OSX
ici.flags = 0 | VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR;
#else
ici.flags = 0;
#endif
ici.pApplicationInfo = &appInfo;
ici.enabledLayerCount = numEnabledLayers;
ici.ppEnabledLayerNames = enabledLayer;
ici.enabledExtensionCount = numEnabledExtensions;
ici.ppEnabledExtensionNames = enabledExtension;
if (BX_ENABLED(BGFX_CONFIG_DEBUG) )
{
m_allocatorCb = &s_allocationCb;
BX_UNUSED(s_allocationCb);
}
result = vkCreateInstance(
&ici
, m_allocatorCb
, &m_instance
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateInstance failed %d: %s.", result, getName(result) );
goto error;
}
m_instanceApiVersion = vulkanApiVersionSelector;
BX_TRACE("Instance API version: %d.%d.%d"
, VK_API_VERSION_MAJOR(m_instanceApiVersion)
, VK_API_VERSION_MINOR(m_instanceApiVersion)
, VK_API_VERSION_PATCH(m_instanceApiVersion)
);
BX_TRACE("Instance variant: %d", VK_API_VERSION_VARIANT(m_instanceApiVersion) );
}
errorState = ErrorState::InstanceCreated;
BX_TRACE("Instance functions:");
#define VK_IMPORT_INSTANCE_FUNC(_optional, _func) \
_func = (PFN_##_func)vkGetInstanceProcAddr(m_instance, #_func); \
BX_TRACE("\t%p " #_func, _func); \
imported &= _optional || NULL != _func
VK_IMPORT_INSTANCE
#undef VK_IMPORT_INSTANCE_FUNC
if (!imported)
{
BX_TRACE("Init error: Failed to load instance functions.");
goto error;
}
m_debugReportCallback = VK_NULL_HANDLE;
if (s_extension[Extension::EXT_debug_report].m_supported)
{
VkDebugReportCallbackCreateInfoEXT drcb;
drcb.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
drcb.pNext = NULL;
drcb.pfnCallback = debugReportCb;
drcb.pUserData = NULL;
drcb.flags = 0
| VK_DEBUG_REPORT_ERROR_BIT_EXT
| VK_DEBUG_REPORT_WARNING_BIT_EXT
;
result = vkCreateDebugReportCallbackEXT(m_instance
, &drcb
, m_allocatorCb
, &m_debugReportCallback
);
BX_WARN(VK_SUCCESS == result, "vkCreateDebugReportCallbackEXT failed %d: %s.", result, getName(result) );
}
{
BX_TRACE("---");
uint32_t numPhysicalDevices;
result = vkEnumeratePhysicalDevices(m_instance
, &numPhysicalDevices
, NULL
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkEnumeratePhysicalDevices failed %d: %s.", result, getName(result) );
goto error;
}
VkPhysicalDevice physicalDevices[4];
numPhysicalDevices = bx::min<uint32_t>(numPhysicalDevices, BX_COUNTOF(physicalDevices) );
result = vkEnumeratePhysicalDevices(m_instance
, &numPhysicalDevices
, physicalDevices
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkEnumeratePhysicalDevices failed %d: %s.", result, getName(result) );
goto error;
}
Extension physicalDeviceExtensions[4][Extension::Count];
uint32_t physicalDeviceIdx = UINT32_MAX;
uint32_t fallbackPhysicalDeviceIdx = UINT32_MAX;
for (uint32_t ii = 0; ii < numPhysicalDevices; ++ii)
{
VkPhysicalDeviceProperties pdp;
vkGetPhysicalDeviceProperties(physicalDevices[ii], &pdp);
BX_TRACE("Physical device %d:", ii);
BX_TRACE("\t Name: %s", pdp.deviceName);
BX_TRACE("\t API version: %d.%d.%d"
, VK_API_VERSION_MAJOR(pdp.apiVersion)
, VK_API_VERSION_MINOR(pdp.apiVersion)
, VK_API_VERSION_PATCH(pdp.apiVersion)
);
BX_TRACE("\t API variant: %d", VK_API_VERSION_VARIANT(pdp.apiVersion) );
BX_TRACE("\tDriver version: %x", pdp.driverVersion);
BX_TRACE("\t VendorId: %x", pdp.vendorID);
BX_TRACE("\t DeviceId: %x", pdp.deviceID);
BX_TRACE("\t Type: %d", pdp.deviceType);
g_caps.gpu[ii].vendorId = uint16_t(pdp.vendorID);
g_caps.gpu[ii].deviceId = uint16_t(pdp.deviceID);
++g_caps.numGPUs;
if ( (BGFX_PCI_ID_NONE != g_caps.vendorId || 0 != g_caps.deviceId)
&& (BGFX_PCI_ID_NONE == g_caps.vendorId || pdp.vendorID == g_caps.vendorId)
&& (0 == g_caps.deviceId || pdp.deviceID == g_caps.deviceId) )
{
if (pdp.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU
|| pdp.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU)
{
fallbackPhysicalDeviceIdx = ii;
}
physicalDeviceIdx = ii;
}
else
{
if (pdp.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU)
{
fallbackPhysicalDeviceIdx = ii;
}
else if (pdp.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU)
{
physicalDeviceIdx = ii;
}
}
VkPhysicalDeviceMemoryProperties pdmp;
vkGetPhysicalDeviceMemoryProperties(physicalDevices[ii], &pdmp);
BX_TRACE("\tMemory type count: %d", pdmp.memoryTypeCount);
for (uint32_t jj = 0; jj < pdmp.memoryTypeCount; ++jj)
{
BX_TRACE("\t%3d: flags 0x%08x, index %d"
, jj
, pdmp.memoryTypes[jj].propertyFlags
, pdmp.memoryTypes[jj].heapIndex
);
}
BX_TRACE("\tMemory heap count: %d", pdmp.memoryHeapCount);
for (uint32_t jj = 0; jj < pdmp.memoryHeapCount; ++jj)
{
char size[16];
bx::prettify(size, BX_COUNTOF(size), pdmp.memoryHeaps[jj].size);
BX_TRACE("\t%3d: flags 0x%08x, size %10s"
, jj
, pdmp.memoryHeaps[jj].flags
, size
);
}
bx::memCopy(&physicalDeviceExtensions[ii][0], &s_extension[0], sizeof(s_extension) );
dumpExtensions(physicalDevices[ii], physicalDeviceExtensions[ii]);
}
if (UINT32_MAX == physicalDeviceIdx)
{
physicalDeviceIdx = UINT32_MAX == fallbackPhysicalDeviceIdx
? 0
: fallbackPhysicalDeviceIdx
;
}
m_physicalDevice = physicalDevices[physicalDeviceIdx];
bx::memCopy(&s_extension[0], &physicalDeviceExtensions[physicalDeviceIdx][0], sizeof(s_extension) );
vkGetPhysicalDeviceProperties(m_physicalDevice, &m_deviceProperties);
g_caps.vendorId = uint16_t(m_deviceProperties.vendorID);
g_caps.deviceId = uint16_t(m_deviceProperties.deviceID);
BX_TRACE("Using physical device %d: %s", physicalDeviceIdx, m_deviceProperties.deviceName);
VkPhysicalDeviceFeatures supportedFeatures;
if (s_extension[Extension::KHR_get_physical_device_properties2].m_supported)
{
VkPhysicalDeviceFeatures2KHR deviceFeatures2;
deviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR;
deviceFeatures2.pNext = NULL;
VkBaseOutStructure* next = (VkBaseOutStructure*)&deviceFeatures2;
if (s_extension[Extension::EXT_line_rasterization].m_supported)
{
next->pNext = (VkBaseOutStructure*)&lineRasterizationFeatures;
next = (VkBaseOutStructure*)&lineRasterizationFeatures;
lineRasterizationFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT;
lineRasterizationFeatures.pNext = NULL;
}
if (s_extension[Extension::EXT_custom_border_color].m_supported)
{
next->pNext = (VkBaseOutStructure*)&customBorderColorFeatures;
next = (VkBaseOutStructure*)&customBorderColorFeatures;
customBorderColorFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT;
customBorderColorFeatures.pNext = NULL;
}
nextFeatures = deviceFeatures2.pNext;
vkGetPhysicalDeviceFeatures2KHR(m_physicalDevice, &deviceFeatures2);
supportedFeatures = deviceFeatures2.features;
}
else
{
vkGetPhysicalDeviceFeatures(m_physicalDevice, &supportedFeatures);
}
bx::memSet(&m_deviceFeatures, 0, sizeof(m_deviceFeatures) );
m_deviceFeatures.fullDrawIndexUint32 = supportedFeatures.fullDrawIndexUint32;
m_deviceFeatures.imageCubeArray = supportedFeatures.imageCubeArray && (_init.capabilities & BGFX_CAPS_TEXTURE_CUBE_ARRAY);
m_deviceFeatures.independentBlend = supportedFeatures.independentBlend && (_init.capabilities & BGFX_CAPS_BLEND_INDEPENDENT);
m_deviceFeatures.multiDrawIndirect = supportedFeatures.multiDrawIndirect && (_init.capabilities & BGFX_CAPS_DRAW_INDIRECT);
m_deviceFeatures.drawIndirectFirstInstance = supportedFeatures.drawIndirectFirstInstance && (_init.capabilities & BGFX_CAPS_DRAW_INDIRECT);
m_deviceFeatures.depthClamp = supportedFeatures.depthClamp;
m_deviceFeatures.fillModeNonSolid = supportedFeatures.fillModeNonSolid;
m_deviceFeatures.largePoints = supportedFeatures.largePoints;
m_deviceFeatures.samplerAnisotropy = supportedFeatures.samplerAnisotropy;
m_deviceFeatures.textureCompressionETC2 = supportedFeatures.textureCompressionETC2;
m_deviceFeatures.textureCompressionBC = supportedFeatures.textureCompressionBC;
m_deviceFeatures.vertexPipelineStoresAndAtomics = supportedFeatures.vertexPipelineStoresAndAtomics;
m_deviceFeatures.fragmentStoresAndAtomics = supportedFeatures.fragmentStoresAndAtomics;
m_deviceFeatures.shaderImageGatherExtended = supportedFeatures.shaderImageGatherExtended;
m_deviceFeatures.shaderStorageImageExtendedFormats = supportedFeatures.shaderStorageImageExtendedFormats;
m_deviceFeatures.shaderClipDistance = supportedFeatures.shaderClipDistance;
m_deviceFeatures.shaderCullDistance = supportedFeatures.shaderCullDistance;
m_deviceFeatures.shaderResourceMinLod = supportedFeatures.shaderResourceMinLod;
m_lineAASupport = true
&& s_extension[Extension::EXT_line_rasterization].m_supported
&& lineRasterizationFeatures.smoothLines
;
m_borderColorSupport = true
&& s_extension[Extension::EXT_custom_border_color].m_supported
&& customBorderColorFeatures.customBorderColors
;
m_timerQuerySupport = m_deviceProperties.limits.timestampComputeAndGraphics;
const bool indirectDrawSupport = true
&& m_deviceFeatures.multiDrawIndirect
&& m_deviceFeatures.drawIndirectFirstInstance
;
g_caps.supported |= ( 0
| BGFX_CAPS_ALPHA_TO_COVERAGE
| (m_deviceFeatures.independentBlend ? BGFX_CAPS_BLEND_INDEPENDENT : 0)
| BGFX_CAPS_COMPUTE
| (indirectDrawSupport ? BGFX_CAPS_DRAW_INDIRECT : 0)
| BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_IMAGE_RW
| (m_deviceFeatures.fullDrawIndexUint32 ? BGFX_CAPS_INDEX32 : 0)
| BGFX_CAPS_INSTANCING
| BGFX_CAPS_OCCLUSION_QUERY
| (!headless ? BGFX_CAPS_SWAP_CHAIN : 0)
| BGFX_CAPS_TEXTURE_2D_ARRAY
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_TEXTURE_BLIT
| BGFX_CAPS_TEXTURE_COMPARE_ALL
| (m_deviceFeatures.imageCubeArray ? BGFX_CAPS_TEXTURE_CUBE_ARRAY : 0)
| BGFX_CAPS_TEXTURE_READ_BACK
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_VERTEX_ATTRIB_UINT10
| BGFX_CAPS_VERTEX_ID
);
g_caps.supported |= 0
| (s_extension[Extension::EXT_conservative_rasterization ].m_supported ? BGFX_CAPS_CONSERVATIVE_RASTER : 0)
| (s_extension[Extension::EXT_shader_viewport_index_layer].m_supported ? BGFX_CAPS_VIEWPORT_LAYER_ARRAY : 0)
| (s_extension[Extension::KHR_draw_indirect_count ].m_supported && indirectDrawSupport ? BGFX_CAPS_DRAW_INDIRECT_COUNT : 0)
;
const uint32_t maxAttachments = bx::min<uint32_t>(m_deviceProperties.limits.maxFragmentOutputAttachments, m_deviceProperties.limits.maxColorAttachments);
g_caps.limits.maxTextureSize = m_deviceProperties.limits.maxImageDimension2D;
g_caps.limits.maxTextureLayers = m_deviceProperties.limits.maxImageArrayLayers;
g_caps.limits.maxFBAttachments = bx::min<uint32_t>(maxAttachments, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS);
g_caps.limits.maxTextureSamplers = bx::min<uint32_t>(m_deviceProperties.limits.maxPerStageResources, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS);
g_caps.limits.maxComputeBindings = bx::min<uint32_t>(m_deviceProperties.limits.maxPerStageResources, BGFX_MAX_COMPUTE_BINDINGS);
g_caps.limits.maxVertexStreams = bx::min<uint32_t>(m_deviceProperties.limits.maxVertexInputBindings, BGFX_CONFIG_MAX_VERTEX_STREAMS);
{
const VkSampleCountFlags sampleMask = ~0
& m_deviceProperties.limits.framebufferColorSampleCounts
& m_deviceProperties.limits.framebufferDepthSampleCounts
;
for (uint16_t ii = 0, last = 0; ii < BX_COUNTOF(s_msaa); ii++)
{
const VkSampleCountFlags sampleBit = s_msaa[ii].Sample;
if (sampleBit & sampleMask)
{
last = ii;
}
else
{
s_msaa[ii] = s_msaa[last];
}
}
}
{
struct ImageTest
{
VkImageType type;
VkImageUsageFlags usage;
VkImageCreateFlags flags;
uint32_t formatCaps[2];
};
const ImageTest imageTest[] =
{
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_SAMPLED_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_2D, BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB } },
{ VK_IMAGE_TYPE_3D, VK_IMAGE_USAGE_SAMPLED_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_3D, BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT, { BGFX_CAPS_FORMAT_TEXTURE_CUBE, BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER, 0 } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER, 0 } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_STORAGE_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_IMAGE_READ, 0 } },
{ VK_IMAGE_TYPE_2D, VK_IMAGE_USAGE_STORAGE_BIT, 0, { BGFX_CAPS_FORMAT_TEXTURE_IMAGE_WRITE, 0 } },
};
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint16_t support = BGFX_CAPS_FORMAT_TEXTURE_NONE;
const bool depth = bimg::isDepth(bimg::TextureFormat::Enum(ii) );
VkFormat fmt = depth
? s_textureFormat[ii].m_fmtDsv
: s_textureFormat[ii].m_fmt
;
for (uint32_t jj = 0, num = depth ? 1 : 2; jj < num; ++jj)
{
if (VK_FORMAT_UNDEFINED != fmt)
{
for (uint32_t test = 0; test < BX_COUNTOF(imageTest); ++test)
{
const ImageTest& it = imageTest[test];
VkImageFormatProperties ifp;
result = vkGetPhysicalDeviceImageFormatProperties(m_physicalDevice
, fmt
, it.type
, VK_IMAGE_TILING_OPTIMAL
, it.usage
, it.flags
, &ifp
);
if (VK_SUCCESS == result)
{
support |= it.formatCaps[jj];
const bool multisample = VK_SAMPLE_COUNT_1_BIT < ifp.sampleCounts;
if (it.usage & VK_IMAGE_USAGE_SAMPLED_BIT)
{
support |= 0
| BGFX_CAPS_FORMAT_TEXTURE_VERTEX
| (multisample ? BGFX_CAPS_FORMAT_TEXTURE_MSAA : 0)
;
}
if (it.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) )
{
support |= 0
| BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN
| (multisample ? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA : 0)
;
}
}
}
}
fmt = s_textureFormat[ii].m_fmtSrgb;
}
g_caps.formats[ii] = support;
}
}
vkGetPhysicalDeviceMemoryProperties(m_physicalDevice, &m_memoryProperties);
}
{
BX_TRACE("---");
uint32_t queueFamilyPropertyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(
m_physicalDevice
, &queueFamilyPropertyCount
, NULL
);
VkQueueFamilyProperties* queueFamilyPropertices = (VkQueueFamilyProperties*)BX_ALLOC(g_allocator, queueFamilyPropertyCount * sizeof(VkQueueFamilyProperties) );
vkGetPhysicalDeviceQueueFamilyProperties(
m_physicalDevice
, &queueFamilyPropertyCount
, queueFamilyPropertices
);
for (uint32_t ii = 0; ii < queueFamilyPropertyCount; ++ii)
{
const VkQueueFamilyProperties& qfp = queueFamilyPropertices[ii];
BX_TRACE("Queue family property %d:", ii);
BX_TRACE("\t Queue flags: 0x%08x", qfp.queueFlags);
BX_TRACE("\t Queue count: %d", qfp.queueCount);
BX_TRACE("\tTS valid bits: 0x%08x", qfp.timestampValidBits);
BX_TRACE("\t Min image: %d x %d x %d"
, qfp.minImageTransferGranularity.width
, qfp.minImageTransferGranularity.height
, qfp.minImageTransferGranularity.depth
);
constexpr VkQueueFlags requiredFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
if (UINT32_MAX == m_globalQueueFamily
&& requiredFlags == (requiredFlags & qfp.queueFlags) )
{
m_globalQueueFamily = ii;
}
}
BX_FREE(g_allocator, queueFamilyPropertices);
if (UINT32_MAX == m_globalQueueFamily)
{
BX_TRACE("Init error: Unable to find combined graphics and compute queue.");
goto error;
}
}
{
uint32_t numEnabledLayers = 0;
const char* enabledLayer[Layer::Count];
BX_TRACE("Enabled device layers:");
for (uint32_t ii = 0; ii < Layer::Count; ++ii)
{
const Layer& layer = s_layer[ii];
if (layer.m_device.m_supported
&& layer.m_device.m_initialize)
{
enabledLayer[numEnabledLayers++] = layer.m_name;
BX_TRACE("\t%s", layer.m_name);
}
}
#if BX_PLATFORM_OSX
uint32_t numEnabledExtensions = headless ? 1 : 3;
const char* enabledExtension[Extension::Count + 3] =
#else
uint32_t numEnabledExtensions = headless ? 1 : 2;
const char* enabledExtension[Extension::Count + 2] =
#endif
{
VK_KHR_MAINTENANCE1_EXTENSION_NAME,
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
#if BX_PLATFORM_OSX
"VK_KHR_portability_subset",
#endif
};
for (uint32_t ii = 0; ii < Extension::Count; ++ii)
{
const Extension& extension = s_extension[ii];
bool layerEnabled = extension.m_layer == Layer::Count ||
(s_layer[extension.m_layer].m_device.m_supported &&
s_layer[extension.m_layer].m_device.m_initialize);
if (extension.m_supported
&& extension.m_initialize
&& !extension.m_instanceExt
&& layerEnabled)
{
enabledExtension[numEnabledExtensions++] = extension.m_name;
}
}
BX_TRACE("Enabled device extensions:");
for (uint32_t ii = 0; ii < numEnabledExtensions; ++ii)
{
BX_TRACE("\t%s", enabledExtension[ii]);
}
float queuePriorities[1] = { 0.0f };
VkDeviceQueueCreateInfo dcqi;
dcqi.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
dcqi.pNext = NULL;
dcqi.flags = 0;
dcqi.queueFamilyIndex = m_globalQueueFamily;
dcqi.queueCount = 1;
dcqi.pQueuePriorities = queuePriorities;
VkDeviceCreateInfo dci;
dci.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
dci.pNext = nextFeatures;
dci.flags = 0;
dci.queueCreateInfoCount = 1;
dci.pQueueCreateInfos = &dcqi;
dci.enabledLayerCount = numEnabledLayers;
dci.ppEnabledLayerNames = enabledLayer;
dci.enabledExtensionCount = numEnabledExtensions;
dci.ppEnabledExtensionNames = enabledExtension;
dci.pEnabledFeatures = &m_deviceFeatures;
result = vkCreateDevice(
m_physicalDevice
, &dci
, m_allocatorCb
, &m_device
);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateDevice failed %d: %s.", result, getName(result) );
goto error;
}
}
errorState = ErrorState::DeviceCreated;
BX_TRACE("Device functions:");
#define VK_IMPORT_DEVICE_FUNC(_optional, _func) \
_func = (PFN_##_func)vkGetDeviceProcAddr(m_device, #_func); \
BX_TRACE("\t%p " #_func, _func); \
imported &= _optional || NULL != _func
VK_IMPORT_DEVICE
#undef VK_IMPORT_DEVICE_FUNC
if (!imported)
{
BX_TRACE("Init error: Failed to load device functions.");
goto error;
}
vkGetDeviceQueue(m_device, m_globalQueueFamily, 0, &m_globalQueue);
{
m_numFramesInFlight = _init.resolution.maxFrameLatency == 0
? BGFX_CONFIG_MAX_FRAME_LATENCY
: _init.resolution.maxFrameLatency
;
result = m_cmd.init(m_globalQueueFamily, m_globalQueue, m_numFramesInFlight);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: creating command queue failed %d: %s.", result, getName(result) );
goto error;
}
result = m_cmd.alloc(&m_commandBuffer);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: allocating command buffer failed %d: %s.", result, getName(result) );
goto error;
}
}
errorState = ErrorState::CommandQueueCreated;
m_presentElapsed = 0;
{
m_resolution = _init.resolution;
m_resolution.reset &= ~BGFX_RESET_INTERNAL_FORCE;
m_numWindows = 0;
if (!headless)
{
m_textVideoMem.resize(false, _init.resolution.width, _init.resolution.height);
m_textVideoMem.clear();
for (uint8_t ii = 0; ii < BX_COUNTOF(m_swapchainFormats); ++ii)
{
m_swapchainFormats[ii] = TextureFormat::Enum(ii);
}
result = m_backBuffer.create(UINT16_MAX, g_platformData.nwh, m_resolution.width, m_resolution.height, m_resolution.format);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: creating swap chain failed %d: %s.", result, getName(result) );
goto error;
}
m_windows[0] = BGFX_INVALID_HANDLE;
m_numWindows++;
postReset();
}
}
errorState = ErrorState::SwapChainCreated;
{
VkDescriptorPoolSize dps[] =
{
{ VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, MAX_DESCRIPTOR_SETS * BGFX_CONFIG_MAX_TEXTURE_SAMPLERS },
{ VK_DESCRIPTOR_TYPE_SAMPLER, MAX_DESCRIPTOR_SETS * BGFX_CONFIG_MAX_TEXTURE_SAMPLERS },
{ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, MAX_DESCRIPTOR_SETS * 2 },
{ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, MAX_DESCRIPTOR_SETS * BGFX_CONFIG_MAX_TEXTURE_SAMPLERS },
{ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, MAX_DESCRIPTOR_SETS * BGFX_CONFIG_MAX_TEXTURE_SAMPLERS },
};
VkDescriptorPoolCreateInfo dpci;
dpci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
dpci.pNext = NULL;
dpci.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
dpci.maxSets = MAX_DESCRIPTOR_SETS;
dpci.poolSizeCount = BX_COUNTOF(dps);
dpci.pPoolSizes = dps;
result = vkCreateDescriptorPool(m_device, &dpci, m_allocatorCb, &m_descriptorPool);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreateDescriptorPool failed %d: %s.", result, getName(result) );
goto error;
}
VkPipelineCacheCreateInfo pcci;
pcci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pcci.pNext = NULL;
pcci.flags = 0;
pcci.initialDataSize = 0;
pcci.pInitialData = NULL;
result = vkCreatePipelineCache(m_device, &pcci, m_allocatorCb, &m_pipelineCache);
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: vkCreatePipelineCache failed %d: %s.", result, getName(result) );
goto error;
}
}
{
const uint32_t size = 128;
const uint32_t count = BGFX_CONFIG_MAX_DRAW_CALLS;
for (uint32_t ii = 0; ii < m_numFramesInFlight; ++ii)
{
BX_TRACE("Create scratch buffer %d", ii);
m_scratchBuffer[ii].create(size, count);
}
}
errorState = ErrorState::DescriptorCreated;
if (NULL == vkSetDebugUtilsObjectNameEXT)
{
vkSetDebugUtilsObjectNameEXT = stubSetDebugUtilsObjectNameEXT;
}
if (NULL == vkCmdBeginDebugUtilsLabelEXT
|| NULL == vkCmdEndDebugUtilsLabelEXT)
{
vkCmdBeginDebugUtilsLabelEXT = stubCmdBeginDebugUtilsLabelEXT;
vkCmdEndDebugUtilsLabelEXT = stubCmdEndDebugUtilsLabelEXT;
}
if (NULL == vkCmdInsertDebugUtilsLabelEXT)
{
vkCmdInsertDebugUtilsLabelEXT = stubCmdInsertDebugUtilsLabelEXT;
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1, "%3d ", ii);
}
if (m_timerQuerySupport)
{
result = m_gpuTimer.init();
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: creating GPU timer failed %d: %s.", result, getName(result) );
goto error;
}
}
errorState = ErrorState::TimerQueryCreated;
result = m_occlusionQuery.init();
if (VK_SUCCESS != result)
{
BX_TRACE("Init error: creating occlusion query failed %d: %s.", result, getName(result) );
goto error;
}
g_internalData.context = m_device;
return true;
error:
BX_TRACE("errorState %d", errorState);
switch (errorState)
{
case ErrorState::TimerQueryCreated:
if (m_timerQuerySupport)
{
m_gpuTimer.shutdown();
}
BX_FALLTHROUGH;
case ErrorState::DescriptorCreated:
for (uint32_t ii = 0; ii < m_numFramesInFlight; ++ii)
{
m_scratchBuffer[ii].destroy();
}
vkDestroy(m_pipelineCache);
vkDestroy(m_descriptorPool);
BX_FALLTHROUGH;
case ErrorState::SwapChainCreated:
m_backBuffer.destroy();
BX_FALLTHROUGH;
case ErrorState::CommandQueueCreated:
m_cmd.shutdown();
BX_FALLTHROUGH;
case ErrorState::DeviceCreated:
vkDestroyDevice(m_device, m_allocatorCb);
BX_FALLTHROUGH;
case ErrorState::InstanceCreated:
if (VK_NULL_HANDLE != m_debugReportCallback)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debugReportCallback, m_allocatorCb);
}
vkDestroyInstance(m_instance, m_allocatorCb);
BX_FALLTHROUGH;
case ErrorState::LoadedVulkan1:
bx::dlclose(m_vulkan1Dll);
m_vulkan1Dll = NULL;
m_allocatorCb = NULL;
unloadRenderDoc(m_renderDocDll);
BX_FALLTHROUGH;
case ErrorState::Default:
break;
};
return false;
}
void shutdown()
{
VK_CHECK(vkDeviceWaitIdle(m_device) );
if (m_timerQuerySupport)
{
m_gpuTimer.shutdown();
}
m_occlusionQuery.shutdown();
preReset();
m_pipelineStateCache.invalidate();
m_descriptorSetLayoutCache.invalidate();
m_renderPassCache.invalidate();
m_samplerCache.invalidate();
m_samplerBorderColorCache.invalidate();
m_imageViewCache.invalidate();
for (uint32_t ii = 0; ii < m_numFramesInFlight; ++ii)
{
m_scratchBuffer[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_indexBuffers); ++ii)
{
m_indexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_vertexBuffers); ++ii)
{
m_vertexBuffers[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
m_backBuffer.destroy();
m_cmd.shutdown();
vkDestroy(m_pipelineCache);
vkDestroy(m_descriptorPool);
vkDestroyDevice(m_device, m_allocatorCb);
if (VK_NULL_HANDLE != m_debugReportCallback)
{
vkDestroyDebugReportCallbackEXT(m_instance, m_debugReportCallback, m_allocatorCb);
}
vkDestroyInstance(m_instance, m_allocatorCb);
bx::dlclose(m_vulkan1Dll);
m_vulkan1Dll = NULL;
m_allocatorCb = NULL;
unloadRenderDoc(m_renderDocDll);
}
RendererType::Enum getRendererType() const override
{
return RendererType::Vulkan;
}
const char* getRendererName() const override
{
return BGFX_RENDERER_VULKAN_NAME;
}
bool isDeviceRemoved() override
{
return false;
}
void flip() override
{
int64_t start = bx::getHPCounter();
for (uint16_t ii = 0; ii < m_numWindows; ++ii)
{
FrameBufferVK& fb = isValid(m_windows[ii])
? m_frameBuffers[m_windows[ii].idx]
: m_backBuffer
;
fb.present();
}
int64_t now = bx::getHPCounter();
m_presentElapsed += now - start;
}
void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(m_commandBuffer, _mem->size, _mem->data, _flags, false);
}
void destroyIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexLayout(VertexLayoutHandle _handle, const VertexLayout& _layout) override
{
VertexLayout& layout = m_vertexLayouts[_handle.idx];
bx::memCopy(&layout, &_layout, sizeof(VertexLayout) );
dump(layout);
}
void destroyVertexLayout(VertexLayoutHandle /*_handle*/) override
{
}
void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexLayoutHandle _layoutHandle, uint16_t _flags) override
{
m_vertexBuffers[_handle.idx].create(m_commandBuffer, _mem->size, _mem->data, _layoutHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(m_commandBuffer, _size, NULL, _flags, false);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_indexBuffers[_handle.idx].update(m_commandBuffer, _offset, bx::min<uint32_t>(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
VertexLayoutHandle layoutHandle = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(m_commandBuffer, _size, NULL, layoutHandle, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_vertexBuffers[_handle.idx].update(m_commandBuffer, _offset, bx::min<uint32_t>(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, const Memory* _mem) override
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) override
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) override
{
m_program[_handle.idx].destroy();
}
void* createTexture(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip) override
{
return m_textures[_handle.idx].create(m_commandBuffer, _mem, _flags, _skip);
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) override
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) override
{
m_textures[_handle.idx].update(m_commandBuffer, _side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() override
{
}
void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) override
{
TextureVK& texture = m_textures[_handle.idx];
uint32_t height = bx::uint32_max(1, texture.m_height >> _mip);
uint32_t pitch = texture.m_readback.pitch(_mip);
uint32_t size = height * pitch;
VkDeviceMemory stagingMemory;
VkBuffer stagingBuffer;
VK_CHECK(createReadbackBuffer(size, &stagingBuffer, &stagingMemory) );
texture.m_readback.copyImageToBuffer(
m_commandBuffer
, stagingBuffer
, texture.m_currentImageLayout
, texture.m_aspectMask
, _mip
);
kick(true);
texture.m_readback.readback(stagingMemory, 0, _data, _mip);
vkDestroy(stagingBuffer);
vkDestroy(stagingMemory);
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, uint16_t _numLayers) override
{
const TextureVK& texture = m_textures[_handle.idx];
const TextureFormat::Enum format = TextureFormat::Enum(texture.m_requestedFormat);
const uint64_t flags = texture.m_flags;
const uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic, bx::ErrorAssert{});
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = _numLayers;
tc.m_numMips = _numMips;
tc.m_format = format;
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc, bx::ErrorAssert{});
destroyTexture(_handle);
createTexture(_handle, mem, flags, 0);
bgfx::release(mem);
}
void overrideInternal(TextureHandle /*_handle*/, uintptr_t /*_ptr*/) override
{
}
uintptr_t getInternal(TextureHandle /*_handle*/) override
{
return 0;
}
void destroyTexture(TextureHandle _handle) override
{
m_imageViewCache.invalidateWithParent(_handle.idx);
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) override
{
m_frameBuffers[_handle.idx].create(_num, _attachment);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) override
{
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferHandle handle = m_windows[ii];
if (isValid(handle)
&& m_frameBuffers[handle.idx].m_nwh == _nwh)
{
destroyFrameBuffer(handle);
}
}
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
VK_CHECK(m_frameBuffers[_handle.idx].create(denseIdx, _nwh, _width, _height, _format, _depthFormat) );
}
void destroyFrameBuffer(FrameBufferHandle _handle) override
{
FrameBufferVK& frameBuffer = m_frameBuffers[_handle.idx];
if (_handle.idx == m_fbh.idx)
{
setFrameBuffer(BGFX_INVALID_HANDLE, false);
}
uint16_t denseIdx = frameBuffer.destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[m_numWindows] = {kInvalidHandle};
if (m_numWindows != denseIdx)
{
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
const uint32_t size = bx::alignUp(g_uniformTypeSize[_type] * _num, 16);
void* data = BX_ALLOC(g_allocator, size);
bx::memSet(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name);
}
void destroyUniform(UniformHandle _handle) override
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
}
void requestScreenShot(FrameBufferHandle _fbh, const char* _filePath) override
{
const FrameBufferVK& frameBuffer = isValid(_fbh)
? m_frameBuffers[_fbh.idx]
: m_backBuffer
;
const SwapChainVK& swapChain = frameBuffer.m_swapChain;
if (!isSwapChainReadable(swapChain) )
{
BX_TRACE("Unable to capture screenshot %s.", _filePath);
return;
}
auto callback = [](void* _src, uint32_t _width, uint32_t _height, uint32_t _pitch, const void* _userData)
{
const char* filePath = (const char*)_userData;
g_callback->screenShot(
filePath
, _width
, _height
, _pitch
, _src
, _height * _pitch
, false
);
};
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(swapChain.m_colorFormat) );
const uint32_t size = frameBuffer.m_width * frameBuffer.m_height * bpp / 8;
VkDeviceMemory stagingMemory;
VkBuffer stagingBuffer;
VK_CHECK(createReadbackBuffer(size, &stagingBuffer, &stagingMemory) );
readSwapChain(swapChain, stagingBuffer, stagingMemory, callback, _filePath);
vkDestroy(stagingBuffer);
vkDestroy(stagingMemory);
}
void updateViewName(ViewId _id, const char* _name) override
{
bx::strCopy(&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, BX_COUNTOF(s_viewName[0]) - BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
, _name
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override
{
bx::memCopy(m_uniforms[_loc], _data, _size);
}
void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override
{
m_occlusionQuery.invalidate(_handle);
}
void setMarker(const char* _marker, uint16_t _len) override
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
BX_UNUSED(_len);
const uint32_t abgr = kColorMarker;
VkDebugUtilsLabelEXT dul;
dul.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT;
dul.pNext = NULL;
dul.pLabelName = _marker;
dul.color[0] = ((abgr >> 24) & 0xff) / 255.0f;
dul.color[1] = ((abgr >> 16) & 0xff) / 255.0f;
dul.color[2] = ((abgr >> 8) & 0xff) / 255.0f;
dul.color[3] = ((abgr >> 0) & 0xff) / 255.0f;
vkCmdInsertDebugUtilsLabelEXT(m_commandBuffer, &dul);
}
}
virtual void setName(Handle _handle, const char* _name, uint16_t _len) override
{
switch (_handle.type)
{
case Handle::IndexBuffer:
setDebugObjectName(m_device, m_indexBuffers[_handle.idx].m_buffer, "%.*s", _len, _name);
break;
case Handle::Shader:
setDebugObjectName(m_device, m_shaders[_handle.idx].m_module, "%.*s", _len, _name);
break;
case Handle::Texture:
setDebugObjectName(m_device, m_textures[_handle.idx].m_textureImage, "%.*s", _len, _name);
if (VK_NULL_HANDLE != m_textures[_handle.idx].m_singleMsaaImage)
{
setDebugObjectName(m_device, m_textures[_handle.idx].m_singleMsaaImage, "%.*s", _len, _name);
}
break;
case Handle::VertexBuffer:
setDebugObjectName(m_device, m_vertexBuffers[_handle.idx].m_buffer, "%.*s", _len, _name);
break;
default:
BX_ASSERT(false, "Invalid handle type?! %d", _handle.type);
break;
}
}
template<typename Ty>
void release(Ty& _object)
{
if (VK_NULL_HANDLE != _object)
{
m_cmd.release(uint64_t(_object.vk), getType<Ty>() );
_object = VK_NULL_HANDLE;
}
}
void submitBlit(BlitState& _bs, uint16_t _view);
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override;
void blitSetup(TextVideoMemBlitter& _blitter) override
{
const uint32_t width = m_backBuffer.m_width;
const uint32_t height = m_backBuffer.m_height;
setFrameBuffer(BGFX_INVALID_HANDLE);
VkViewport vp;
vp.x = 0.0f;
vp.y = float(height);
vp.width = float(width);
vp.height = -float(height);
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
vkCmdSetViewport(m_commandBuffer, 0, 1, &vp);
VkRect2D rc;
rc.offset.x = 0;
rc.offset.y = 0;
rc.extent.width = width;
rc.extent.height = height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
const uint64_t state = 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_DEPTH_TEST_ALWAYS
| BGFX_STATE_MSAA
;
const VertexLayout* layout = &m_vertexLayouts[_blitter.m_vb->layoutHandle.idx];
VkPipeline pso = getPipeline(state
, 0
, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT)
, 1
, &layout
, _blitter.m_program
, 0
);
vkCmdBindPipeline(m_commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pso);
ProgramVK& program = m_program[_blitter.m_program.idx];
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f, 0.0f, false);
PredefinedUniform& predefined = m_program[_blitter.m_program.idx].m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
ScratchBufferVK& scratchBuffer = m_scratchBuffer[m_cmd.m_currentFrameInFlight];
const uint32_t bufferOffset = scratchBuffer.write(m_vsScratch, program.m_vsh->m_size);
const TextureVK& texture = m_textures[_blitter.m_texture.idx];
RenderBind bind;
bind.clear();
bind.m_bind[0].m_type = Binding::Texture;
bind.m_bind[0].m_idx = _blitter.m_texture.idx;
bind.m_bind[0].m_samplerFlags = (uint32_t)(texture.m_flags & BGFX_SAMPLER_BITS_MASK);
const VkDescriptorSet descriptorSet = getDescriptorSet(program, bind, scratchBuffer, NULL);
vkCmdBindDescriptorSets(
m_commandBuffer
, VK_PIPELINE_BIND_POINT_GRAPHICS
, program.m_pipelineLayout
, 0
, 1
, &descriptorSet
, 1
, &bufferOffset
);
const VertexBufferVK& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
const VkDeviceSize offset = 0;
vkCmdBindVertexBuffers(m_commandBuffer, 0, 1, &vb.m_buffer, &offset);
const BufferVK& ib = m_indexBuffers[_blitter.m_ib->handle.idx];
vkCmdBindIndexBuffer(
m_commandBuffer
, ib.m_buffer
, 0
, VK_INDEX_TYPE_UINT16
);
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) override
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices && m_backBuffer.isRenderable() )
{
m_indexBuffers[_blitter.m_ib->handle.idx].update(m_commandBuffer, 0, _numIndices*2, _blitter.m_ib->data);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(m_commandBuffer, 0, numVertices*_blitter.m_layout.m_stride, _blitter.m_vb->data, true);
VkRenderPassBeginInfo rpbi;
rpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpbi.pNext = NULL;
rpbi.renderPass = m_backBuffer.m_renderPass;
rpbi.framebuffer = m_backBuffer.m_currentFramebuffer;
rpbi.renderArea.offset.x = 0;
rpbi.renderArea.offset.y = 0;
rpbi.renderArea.extent.width = m_backBuffer.m_width;
rpbi.renderArea.extent.height = m_backBuffer.m_height;
rpbi.clearValueCount = 0;
rpbi.pClearValues = NULL;
vkCmdBeginRenderPass(m_commandBuffer, &rpbi, VK_SUBPASS_CONTENTS_INLINE);
vkCmdDrawIndexed(m_commandBuffer, _numIndices, 1, 0, 0, 0);
vkCmdEndRenderPass(m_commandBuffer);
}
}
void preReset()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].preReset();
}
if (m_captureSize > 0)
{
g_callback->captureEnd();
release(m_captureBuffer);
release(m_captureMemory);
m_captureSize = 0;
}
}
void postReset()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
if (m_resolution.reset & BGFX_RESET_CAPTURE)
{
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_backBuffer.m_swapChain.m_colorFormat) );
const uint32_t captureSize = m_backBuffer.m_width * m_backBuffer.m_height * bpp / 8;
const uint8_t dstBpp = bimg::getBitsPerPixel(bimg::TextureFormat::BGRA8);
const uint32_t dstPitch = m_backBuffer.m_width * dstBpp / 8;
if (captureSize > m_captureSize)
{
release(m_captureBuffer);
release(m_captureMemory);
m_captureSize = captureSize;
VK_CHECK(createReadbackBuffer(m_captureSize, &m_captureBuffer, &m_captureMemory) );
}
g_callback->captureBegin(m_resolution.width, m_resolution.height, dstPitch, TextureFormat::BGRA8, false);
}
}
bool updateResolution(const Resolution& _resolution)
{
const bool suspended = !!(_resolution.reset & BGFX_RESET_SUSPEND);
float maxAnisotropy = 1.0f;
if (!!(_resolution.reset & BGFX_RESET_MAXANISOTROPY) )
{
maxAnisotropy = m_deviceProperties.limits.maxSamplerAnisotropy;
}
if (m_maxAnisotropy != maxAnisotropy)
{
m_maxAnisotropy = maxAnisotropy;
m_samplerCache.invalidate();
m_samplerBorderColorCache.invalidate();
}
bool depthClamp = m_deviceFeatures.depthClamp && !!(_resolution.reset & BGFX_RESET_DEPTH_CLAMP);
if (m_depthClamp != depthClamp)
{
m_depthClamp = depthClamp;
m_pipelineStateCache.invalidate();
}
if (NULL == m_backBuffer.m_nwh)
{
return suspended;
}
uint32_t flags = _resolution.reset & ~(0
| BGFX_RESET_SUSPEND
| BGFX_RESET_MAXANISOTROPY
| BGFX_RESET_DEPTH_CLAMP
);
// Note: m_needToRefreshSwapchain is deliberately ignored when deciding whether to recreate the swapchain
// because it can happen several frames before submit is called with the new resolution.
// Instead, vkAcquireNextImageKHR and all draws to the backbuffer are skipped until the window size is updated.
// That also fixes a related issue where VK_ERROR_OUT_OF_DATE_KHR is returned from
// vkQueuePresentKHR when the window doesn't exist anymore, and vkGetPhysicalDeviceSurfaceCapabilitiesKHR
// fails with VK_ERROR_SURFACE_LOST_KHR.
if (false
|| m_resolution.format != _resolution.format
|| m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| m_resolution.reset != flags
|| m_backBuffer.m_swapChain.m_needToRecreateSurface)
{
flags &= ~BGFX_RESET_INTERNAL_FORCE;
if (m_backBuffer.m_nwh != g_platformData.nwh)
{
m_backBuffer.m_nwh = g_platformData.nwh;
}
m_resolution = _resolution;
m_resolution.reset = flags;
m_textVideoMem.resize(false, _resolution.width, _resolution.height);
m_textVideoMem.clear();
preReset();
m_backBuffer.update(m_commandBuffer, m_resolution);
postReset();
}
return suspended;
}
void setShaderUniform(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
if (_flags & kUniformFragmentBit)
{
bx::memCopy(&m_fsScratch[_regIndex], _val, _numRegs*16);
}
else
{
bx::memCopy(&m_vsScratch[_regIndex], _val, _numRegs*16);
}
}
void setShaderUniform4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _regIndex, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _regIndex, _val, _numRegs);
}
void setFrameBuffer(FrameBufferHandle _fbh, bool _acquire = true)
{
BX_ASSERT(false
|| isValid(_fbh)
|| NULL != m_backBuffer.m_nwh
, "Rendering to backbuffer in headless mode."
);
FrameBufferVK& newFrameBuffer = isValid(_fbh)
? m_frameBuffers[_fbh.idx]
: m_backBuffer
;
FrameBufferVK& oldFrameBuffer = isValid(m_fbh)
? m_frameBuffers[m_fbh.idx]
: m_backBuffer
;
if (NULL == oldFrameBuffer.m_nwh
&& m_fbh.idx != _fbh.idx)
{
oldFrameBuffer.resolve();
for (uint8_t ii = 0, num = oldFrameBuffer.m_num; ii < num; ++ii)
{
TextureVK& texture = m_textures[oldFrameBuffer.m_texture[ii].idx];
texture.setImageMemoryBarrier(m_commandBuffer, texture.m_sampledLayout);
if (VK_NULL_HANDLE != texture.m_singleMsaaImage)
{
texture.setImageMemoryBarrier(m_commandBuffer, texture.m_sampledLayout, true);
}
}
if (isValid(oldFrameBuffer.m_depth) )
{
TextureVK& texture = m_textures[oldFrameBuffer.m_depth.idx];
const bool writeOnly = 0 != (texture.m_flags&BGFX_TEXTURE_RT_WRITE_ONLY);
if (!writeOnly)
{
texture.setImageMemoryBarrier(m_commandBuffer, texture.m_sampledLayout);
}
}
}
if (NULL == newFrameBuffer.m_nwh)
{
for (uint8_t ii = 0, num = newFrameBuffer.m_num; ii < num; ++ii)
{
TextureVK& texture = m_textures[newFrameBuffer.m_texture[ii].idx];
texture.setImageMemoryBarrier(
m_commandBuffer
, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
);
}
if (isValid(newFrameBuffer.m_depth) )
{
TextureVK& texture = m_textures[newFrameBuffer.m_depth.idx];
texture.setImageMemoryBarrier(
m_commandBuffer
, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
);
}
newFrameBuffer.acquire(m_commandBuffer);
}
if (_acquire)
{
int64_t start = bx::getHPCounter();
newFrameBuffer.acquire(m_commandBuffer);
int64_t now = bx::getHPCounter();
if (NULL != newFrameBuffer.m_nwh)
{
m_presentElapsed += now - start;
}
}
m_fbh = _fbh;
}
void setDebugWireframe(bool _wireframe)
{
const bool wireframe = m_deviceFeatures.fillModeNonSolid && _wireframe;
if (m_wireframe != wireframe)
{
m_wireframe = wireframe;
m_pipelineStateCache.invalidate();
}
}
void setBlendState(VkPipelineColorBlendStateCreateInfo& _desc, uint64_t _state, uint32_t _rgba = 0)
{
VkPipelineColorBlendAttachmentState* bas = const_cast<VkPipelineColorBlendAttachmentState*>(_desc.pAttachments);
uint8_t writeMask = 0;
writeMask |= (_state & BGFX_STATE_WRITE_R) ? VK_COLOR_COMPONENT_R_BIT : 0;
writeMask |= (_state & BGFX_STATE_WRITE_G) ? VK_COLOR_COMPONENT_G_BIT : 0;
writeMask |= (_state & BGFX_STATE_WRITE_B) ? VK_COLOR_COMPONENT_B_BIT : 0;
writeMask |= (_state & BGFX_STATE_WRITE_A) ? VK_COLOR_COMPONENT_A_BIT : 0;
bas->blendEnable = !!(BGFX_STATE_BLEND_MASK & _state);
{
const uint32_t blend = uint32_t( (_state & BGFX_STATE_BLEND_MASK ) >> BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state & BGFX_STATE_BLEND_EQUATION_MASK) >> BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend ) & 0xf;
const uint32_t dstRGB = (blend >> 4) & 0xf;
const uint32_t srcA = (blend >> 8) & 0xf;
const uint32_t dstA = (blend >> 12) & 0xf;
const uint32_t equRGB = (equation ) & 0x7;
const uint32_t equA = (equation >> 3) & 0x7;
bas->srcColorBlendFactor = s_blendFactor[srcRGB][0];
bas->dstColorBlendFactor = s_blendFactor[dstRGB][0];
bas->colorBlendOp = s_blendEquation[equRGB];
bas->srcAlphaBlendFactor = s_blendFactor[srcA][1];
bas->dstAlphaBlendFactor = s_blendFactor[dstA][1];
bas->alphaBlendOp = s_blendEquation[equA];
bas->colorWriteMask = writeMask;
}
const FrameBufferVK& frameBuffer = isValid(m_fbh)
? m_frameBuffers[m_fbh.idx]
: m_backBuffer
;
const uint32_t numAttachments = NULL == frameBuffer.m_nwh
? frameBuffer.m_num
: 1
;
if (!!(BGFX_STATE_BLEND_INDEPENDENT & _state)
&& m_deviceFeatures.independentBlend )
{
for (uint32_t ii = 1, rgba = _rgba; ii < numAttachments; ++ii, rgba >>= 11)
{
++bas;
bas->blendEnable = 0 != (rgba & 0x7ff);
const uint32_t src = (rgba ) & 0xf;
const uint32_t dst = (rgba >> 4) & 0xf;
const uint32_t equation = (rgba >> 8) & 0x7;
bas->srcColorBlendFactor = s_blendFactor[src][0];
bas->dstColorBlendFactor = s_blendFactor[dst][0];
bas->colorBlendOp = s_blendEquation[equation];
bas->srcAlphaBlendFactor = s_blendFactor[src][1];
bas->dstAlphaBlendFactor = s_blendFactor[dst][1];
bas->alphaBlendOp = s_blendEquation[equation];
bas->colorWriteMask = writeMask;
}
}
else
{
for (uint32_t ii = 1; ii < numAttachments; ++ii)
{
bx::memCopy(&bas[ii], bas, sizeof(VkPipelineColorBlendAttachmentState) );
}
}
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.logicOpEnable = VK_FALSE;
_desc.logicOp = VK_LOGIC_OP_CLEAR;
_desc.attachmentCount = numAttachments;
_desc.blendConstants[0] = 0.0f;
_desc.blendConstants[1] = 0.0f;
_desc.blendConstants[2] = 0.0f;
_desc.blendConstants[3] = 0.0f;
}
void setRasterizerState(VkPipelineRasterizationStateCreateInfo& _desc, uint64_t _state, bool _wireframe = false)
{
const uint32_t cull = (_state&BGFX_STATE_CULL_MASK) >> BGFX_STATE_CULL_SHIFT;
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.depthClampEnable = m_deviceFeatures.depthClamp && m_depthClamp;
_desc.rasterizerDiscardEnable = VK_FALSE;
_desc.polygonMode = m_deviceFeatures.fillModeNonSolid && _wireframe
? VK_POLYGON_MODE_LINE
: VK_POLYGON_MODE_FILL
;
_desc.cullMode = s_cullMode[cull];
_desc.frontFace = (_state&BGFX_STATE_FRONT_CCW) ? VK_FRONT_FACE_COUNTER_CLOCKWISE : VK_FRONT_FACE_CLOCKWISE;
_desc.depthBiasEnable = VK_FALSE;
_desc.depthBiasConstantFactor = 0.0f;
_desc.depthBiasClamp = 0.0f;
_desc.depthBiasSlopeFactor = 0.0f;
_desc.lineWidth = 1.0f;
}
void setConservativeRasterizerState(VkPipelineRasterizationConservativeStateCreateInfoEXT& _desc, uint64_t _state)
{
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.conservativeRasterizationMode = (_state&BGFX_STATE_CONSERVATIVE_RASTER)
? VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT
: VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT
;
_desc.extraPrimitiveOverestimationSize = 0.0f;
}
void setLineRasterizerState(VkPipelineRasterizationLineStateCreateInfoEXT& _desc, uint64_t _state)
{
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT;
_desc.pNext = NULL;
_desc.lineRasterizationMode = (_state & BGFX_STATE_LINEAA)
? VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT
: VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT
;
_desc.stippledLineEnable = VK_FALSE;
_desc.lineStippleFactor = 0;
_desc.lineStipplePattern = 0;
}
void setDepthStencilState(VkPipelineDepthStencilStateCreateInfo& _desc, uint64_t _state, uint64_t _stencil = 0)
{
const uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
_desc.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
_desc.pNext = NULL;
_desc.flags = 0;
_desc.depthTestEnable = 0 != func;
_desc.depthWriteEnable = !!(BGFX_STATE_WRITE_Z & _state);
_desc.depthCompareOp = s_cmpFunc[func];
_desc.depthBoundsTestEnable = VK_FALSE;
_desc.stencilTestEnable = 0 != _stencil;
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
_desc.front.failOp = s_stencilOp[(fstencil & BGFX_STENCIL_OP_FAIL_S_MASK) >> BGFX_STENCIL_OP_FAIL_S_SHIFT];
_desc.front.passOp = s_stencilOp[(fstencil & BGFX_STENCIL_OP_PASS_Z_MASK) >> BGFX_STENCIL_OP_PASS_Z_SHIFT];
_desc.front.depthFailOp = s_stencilOp[(fstencil & BGFX_STENCIL_OP_FAIL_Z_MASK) >> BGFX_STENCIL_OP_FAIL_Z_SHIFT];
_desc.front.compareOp = s_cmpFunc[(fstencil & BGFX_STENCIL_TEST_MASK) >> BGFX_STENCIL_TEST_SHIFT];
_desc.front.compareMask = UINT32_MAX;
_desc.front.writeMask = UINT32_MAX;
_desc.front.reference = 0;
_desc.back.failOp = s_stencilOp[(bstencil & BGFX_STENCIL_OP_FAIL_S_MASK) >> BGFX_STENCIL_OP_FAIL_S_SHIFT];
_desc.back.passOp = s_stencilOp[(bstencil & BGFX_STENCIL_OP_PASS_Z_MASK) >> BGFX_STENCIL_OP_PASS_Z_SHIFT];
_desc.back.depthFailOp = s_stencilOp[(bstencil & BGFX_STENCIL_OP_FAIL_Z_MASK) >> BGFX_STENCIL_OP_FAIL_Z_SHIFT];
_desc.back.compareOp = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK) >> BGFX_STENCIL_TEST_SHIFT];
_desc.back.compareMask = UINT32_MAX;
_desc.back.writeMask = UINT32_MAX;
_desc.back.reference = 0;
_desc.minDepthBounds = 0.0f;
_desc.maxDepthBounds = 1.0f;
}
void setInputLayout(VkPipelineVertexInputStateCreateInfo& _vertexInputState, uint8_t _numStream, const VertexLayout** _layout, const ProgramVK& _program, uint8_t _numInstanceData)
{
_vertexInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
_vertexInputState.pNext = NULL;
_vertexInputState.flags = 0;
_vertexInputState.vertexBindingDescriptionCount = 0;
_vertexInputState.vertexAttributeDescriptionCount = 0;
uint16_t unsettedAttr[Attrib::Count];
bx::memCopy(unsettedAttr, _program.m_vsh->m_attrMask, sizeof(uint16_t) * Attrib::Count);
for (uint8_t stream = 0; stream < _numStream; ++stream)
{
VertexLayout layout;
bx::memCopy(&layout, _layout[stream], sizeof(VertexLayout) );
const uint16_t* attrMask = _program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint16_t mask = attrMask[ii];
uint16_t attr = (layout.m_attributes[ii] & mask);
layout.m_attributes[ii] = attr == 0 || attr == UINT16_MAX ? UINT16_MAX : attr;
if (unsettedAttr[ii] && attr != UINT16_MAX)
{
unsettedAttr[ii] = 0;
}
}
fillVertexLayout(_program.m_vsh, _vertexInputState, layout);
}
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
if (0 < unsettedAttr[ii])
{
uint32_t numAttribs = _vertexInputState.vertexAttributeDescriptionCount;
VkVertexInputAttributeDescription* inputAttrib = const_cast<VkVertexInputAttributeDescription*>(_vertexInputState.pVertexAttributeDescriptions + numAttribs);
inputAttrib->location = _program.m_vsh->m_attrRemap[ii];
inputAttrib->binding = 0;
inputAttrib->format = VK_FORMAT_R32G32B32_SFLOAT;
inputAttrib->offset = 0;
_vertexInputState.vertexAttributeDescriptionCount++;
}
}
if (0 < _numInstanceData)
{
fillInstanceBinding(_program.m_vsh, _vertexInputState, _numInstanceData);
}
}
VkResult getRenderPass(uint8_t _num, const VkFormat* _formats, const VkImageAspectFlags* _aspects, const bool* _resolve, VkSampleCountFlagBits _samples, ::VkRenderPass* _renderPass)
{
VkResult result = VK_SUCCESS;
if (VK_SAMPLE_COUNT_1_BIT == _samples)
{
_resolve = NULL;
}
bx::HashMurmur2A hash;
hash.begin();
hash.add(_samples);
hash.add(_formats, sizeof(VkFormat) * _num);
if (NULL != _resolve)
{
hash.add(_resolve, sizeof(bool) * _num);
}
uint32_t hashKey = hash.end();
VkRenderPass renderPass = m_renderPassCache.find(hashKey);
if (VK_NULL_HANDLE != renderPass)
{
*_renderPass = renderPass;
return result;
}
VkAttachmentDescription ad[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS * 2];
for (uint8_t ii = 0; ii < (_num * 2); ++ii)
{
ad[ii].flags = 0;
ad[ii].format = VK_FORMAT_UNDEFINED;
ad[ii].samples = _samples;
ad[ii].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
ad[ii].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
ad[ii].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
ad[ii].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
ad[ii].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
ad[ii].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
VkAttachmentReference colorAr[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkAttachmentReference resolveAr[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkAttachmentReference depthAr;
uint32_t numColorAr = 0;
uint32_t numResolveAr = 0;
colorAr[0].attachment = VK_ATTACHMENT_UNUSED;
colorAr[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
resolveAr[0].attachment = VK_ATTACHMENT_UNUSED;
resolveAr[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
depthAr.attachment = VK_ATTACHMENT_UNUSED;
depthAr.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
for (uint8_t ii = 0; ii < _num; ++ii)
{
ad[ii].format = _formats[ii];
if (_aspects[ii] & VK_IMAGE_ASPECT_COLOR_BIT)
{
colorAr[numColorAr].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAr[numColorAr].attachment = ii;
resolveAr[numColorAr].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
resolveAr[numColorAr].attachment = VK_ATTACHMENT_UNUSED;
if (NULL != _resolve
&& _resolve[ii])
{
const uint32_t resolve = _num + numResolveAr;
ad[resolve].format = _formats[ii];
ad[resolve].samples = VK_SAMPLE_COUNT_1_BIT;
ad[resolve].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
resolveAr[numColorAr].attachment = resolve;
numResolveAr++;
}
numColorAr++;
}
else if (_aspects[ii] & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) )
{
ad[ii].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
ad[ii].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
ad[ii].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
ad[ii].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthAr.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthAr.attachment = ii;
}
}
VkSubpassDescription sd[1];
sd[0].flags = 0;
sd[0].pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
sd[0].inputAttachmentCount = 0;
sd[0].pInputAttachments = NULL;
sd[0].colorAttachmentCount = bx::max<uint32_t>(numColorAr, 1);
sd[0].pColorAttachments = colorAr;
sd[0].pResolveAttachments = resolveAr;
sd[0].pDepthStencilAttachment = &depthAr;
sd[0].preserveAttachmentCount = 0;
sd[0].pPreserveAttachments = NULL;
const VkPipelineStageFlags graphicsStages = 0
| VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
| VK_PIPELINE_STAGE_VERTEX_INPUT_BIT
| VK_PIPELINE_STAGE_VERTEX_SHADER_BIT
| VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
| VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT
| VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT
| VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
;
const VkPipelineStageFlags outsideStages = 0
| graphicsStages
| VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
| VK_PIPELINE_STAGE_TRANSFER_BIT
;
VkSubpassDependency dep[2];
dep[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dep[0].dstSubpass = 0;
dep[0].srcStageMask = outsideStages;
dep[0].dstStageMask = graphicsStages;
dep[0].srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
dep[0].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
dep[0].dependencyFlags = 0;
dep[1].srcSubpass = BX_COUNTOF(sd)-1;
dep[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dep[1].srcStageMask = graphicsStages;
dep[1].dstStageMask = outsideStages;
dep[1].srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
dep[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
dep[1].dependencyFlags = 0;
VkRenderPassCreateInfo rpi;
rpi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rpi.pNext = NULL;
rpi.flags = 0;
rpi.attachmentCount = _num + numResolveAr;
rpi.pAttachments = ad;
rpi.subpassCount = BX_COUNTOF(sd);
rpi.pSubpasses = sd;
rpi.dependencyCount = BX_COUNTOF(dep);
rpi.pDependencies = dep;
result = vkCreateRenderPass(m_device, &rpi, m_allocatorCb, &renderPass);
if (VK_SUCCESS != result)
{
BX_TRACE("Create render pass error: vkCreateRenderPass failed %d: %s.", result, getName(result) );
return result;
}
m_renderPassCache.add(hashKey, renderPass);
*_renderPass = renderPass;
return result;
}
VkResult getRenderPass(uint8_t _num, const Attachment* _attachments, ::VkRenderPass* _renderPass)
{
VkFormat formats[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkImageAspectFlags aspects[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkSampleCountFlagBits samples = VK_SAMPLE_COUNT_1_BIT;
for (uint8_t ii = 0; ii < _num; ++ii)
{
const TextureVK& texture = m_textures[_attachments[ii].handle.idx];
formats[ii] = texture.m_format;
aspects[ii] = texture.m_aspectMask;
samples = texture.m_sampler.Sample;
}
return getRenderPass(_num, formats, aspects, NULL, samples, _renderPass);
}
VkResult getRenderPass(const SwapChainVK& swapChain, ::VkRenderPass* _renderPass)
{
const VkFormat formats[2] =
{
swapChain.m_sci.imageFormat,
swapChain.m_backBufferDepthStencil.m_format
};
const VkImageAspectFlags aspects[2] =
{
VK_IMAGE_ASPECT_COLOR_BIT,
swapChain.m_backBufferDepthStencil.m_aspectMask
};
const bool resolve[2] =
{
swapChain.m_supportsManualResolve ? false : true,
false
};
const VkSampleCountFlagBits samples = swapChain.m_sampler.Sample;
return getRenderPass(BX_COUNTOF(formats), formats, aspects, resolve, samples, _renderPass);
}
VkSampler getSampler(uint32_t _flags, VkFormat _format, const float _palette[][4])
{
uint32_t index = ((_flags & BGFX_SAMPLER_BORDER_COLOR_MASK) >> BGFX_SAMPLER_BORDER_COLOR_SHIFT);
index = bx::min<uint32_t>(BGFX_CONFIG_MAX_COLOR_PALETTE - 1, index);
_flags &= BGFX_SAMPLER_BITS_MASK;
_flags &= ~(m_deviceFeatures.samplerAnisotropy ? 0 : (BGFX_SAMPLER_MIN_ANISOTROPIC | BGFX_SAMPLER_MAG_ANISOTROPIC) );
// Force both min+max anisotropic, can't be set individually.
_flags |= 0 != (_flags & (BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC) )
? BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC
: 0
;
const float* rgba = NULL == _palette
? NULL
: _palette[index]
;
const bool needColor = true
&& needBorderColor(_flags)
&& NULL != rgba
&& m_borderColorSupport
;
uint32_t hashKey;
VkSampler sampler = VK_NULL_HANDLE;
if (!needColor)
{
bx::HashMurmur2A hash;
hash.begin();
hash.add(_flags);
hash.add(-1);
hash.add(VK_FORMAT_UNDEFINED);
hashKey = hash.end();
sampler = m_samplerCache.find(hashKey);
}
else
{
bx::HashMurmur2A hash;
hash.begin();
hash.add(_flags);
hash.add(index);
hash.add(_format);
hashKey = hash.end();
const uint32_t colorHashKey = m_samplerBorderColorCache.find(hashKey);
const uint32_t newColorHashKey = bx::hash<bx::HashMurmur2A>(rgba, sizeof(float) * 4);
if (newColorHashKey == colorHashKey)
{
sampler = m_samplerCache.find(hashKey);
}
else
{
m_samplerBorderColorCache.add(hashKey, newColorHashKey);
}
}
if (VK_NULL_HANDLE != sampler)
{
return sampler;
}
const uint32_t cmpFunc = (_flags&BGFX_SAMPLER_COMPARE_MASK)>>BGFX_SAMPLER_COMPARE_SHIFT;
const float maxLodBias = m_deviceProperties.limits.maxSamplerLodBias;
const float lodBias = bx::clamp(float(BGFX_CONFIG_MIP_LOD_BIAS), -maxLodBias, maxLodBias);
VkSamplerCreateInfo sci;
sci.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sci.pNext = NULL;
sci.flags = 0;
sci.magFilter = _flags & BGFX_SAMPLER_MAG_POINT ? VK_FILTER_NEAREST : VK_FILTER_LINEAR;
sci.minFilter = _flags & BGFX_SAMPLER_MIN_POINT ? VK_FILTER_NEAREST : VK_FILTER_LINEAR;
sci.mipmapMode = _flags & BGFX_SAMPLER_MIP_POINT ? VK_SAMPLER_MIPMAP_MODE_NEAREST : VK_SAMPLER_MIPMAP_MODE_LINEAR;
sci.addressModeU = s_textureAddress[(_flags&BGFX_SAMPLER_U_MASK)>>BGFX_SAMPLER_U_SHIFT];
sci.addressModeV = s_textureAddress[(_flags&BGFX_SAMPLER_V_MASK)>>BGFX_SAMPLER_V_SHIFT];
sci.addressModeW = s_textureAddress[(_flags&BGFX_SAMPLER_W_MASK)>>BGFX_SAMPLER_W_SHIFT];
sci.mipLodBias = lodBias;
sci.anisotropyEnable = !!(_flags & (BGFX_SAMPLER_MIN_ANISOTROPIC | BGFX_SAMPLER_MAG_ANISOTROPIC) );
sci.maxAnisotropy = m_maxAnisotropy;
sci.compareEnable = 0 != cmpFunc;
sci.compareOp = s_cmpFunc[cmpFunc];
sci.minLod = 0.0f;
sci.maxLod = VK_LOD_CLAMP_NONE;
sci.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK;
sci.unnormalizedCoordinates = VK_FALSE;
VkSamplerCustomBorderColorCreateInfoEXT cbcci;
if (needColor)
{
cbcci.sType = VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT;
cbcci.pNext = NULL;
cbcci.format = _format;
bx::memCopy(cbcci.customBorderColor.float32, rgba, sizeof(cbcci.customBorderColor.float32) );
sci.pNext = &cbcci;
sci.borderColor = VK_BORDER_COLOR_FLOAT_CUSTOM_EXT;
}
VK_CHECK(vkCreateSampler(m_device, &sci, m_allocatorCb, &sampler) );
m_samplerCache.add(hashKey, sampler);
return sampler;
}
VkImageView getCachedImageView(TextureHandle _handle, uint32_t _mip, uint32_t _numMips, VkImageViewType _type, bool _stencil = false)
{
const TextureVK& texture = m_textures[_handle.idx];
_stencil = _stencil && !!(texture.m_aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT);
bx::HashMurmur2A hash;
hash.begin();
hash.add(_handle.idx);
hash.add(_mip);
hash.add(_numMips);
hash.add(_type);
hash.add(_stencil);
uint32_t hashKey = hash.end();
VkImageView* viewCached = m_imageViewCache.find(hashKey);
if (NULL != viewCached)
{
return *viewCached;
}
const VkImageAspectFlags aspectMask = 0
| VK_IMAGE_ASPECT_COLOR_BIT
| ( _stencil ? VK_IMAGE_ASPECT_STENCIL_BIT : VK_IMAGE_ASPECT_DEPTH_BIT)
;
VkImageView view;
VK_CHECK(texture.createView(0, texture.m_numSides, _mip, _numMips, _type, aspectMask, false, &view) );
m_imageViewCache.add(hashKey, view, _handle.idx);
return view;
}
VkPipeline getPipeline(ProgramHandle _program)
{
ProgramVK& program = m_program[_program.idx];
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(program.m_vsh->m_hash);
const uint32_t hash = murmur.end();
VkPipeline pipeline = m_pipelineStateCache.find(hash);
if (VK_NULL_HANDLE != pipeline)
{
return pipeline;
}
VkComputePipelineCreateInfo cpci;
cpci.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
cpci.pNext = NULL;
cpci.flags = 0;
cpci.stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
cpci.stage.pNext = NULL;
cpci.stage.flags = 0;
cpci.stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
cpci.stage.module = program.m_vsh->m_module;
cpci.stage.pName = "main";
cpci.stage.pSpecializationInfo = NULL;
cpci.layout = program.m_pipelineLayout;
cpci.basePipelineHandle = VK_NULL_HANDLE;
cpci.basePipelineIndex = 0;
VK_CHECK(vkCreateComputePipelines(m_device, m_pipelineCache, 1, &cpci, m_allocatorCb, &pipeline) );
m_pipelineStateCache.add(hash, pipeline);
return pipeline;
}
VkPipeline getPipeline(uint64_t _state, uint64_t _rgba, uint64_t _stencil, uint8_t _numStreams, const VertexLayout** _layouts, ProgramHandle _program, uint8_t _numInstanceData)
{
ProgramVK& program = m_program[_program.idx];
_state &= 0
| BGFX_STATE_WRITE_MASK
| BGFX_STATE_DEPTH_TEST_MASK
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| (g_caps.supported & BGFX_CAPS_BLEND_INDEPENDENT ? BGFX_STATE_BLEND_INDEPENDENT : 0)
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
| BGFX_STATE_CULL_MASK
| BGFX_STATE_FRONT_CCW
| BGFX_STATE_MSAA
| (m_lineAASupport ? BGFX_STATE_LINEAA : 0)
| (g_caps.supported & BGFX_CAPS_CONSERVATIVE_RASTER ? BGFX_STATE_CONSERVATIVE_RASTER : 0)
| BGFX_STATE_PT_MASK
;
_stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, ~BGFX_STENCIL_FUNC_REF_MASK);
VertexLayout layout;
if (0 < _numStreams)
{
bx::memCopy(&layout, _layouts[0], sizeof(VertexLayout) );
const uint16_t* attrMask = program.m_vsh->m_attrMask;
for (uint32_t ii = 0; ii < Attrib::Count; ++ii)
{
uint16_t mask = attrMask[ii];
uint16_t attr = (layout.m_attributes[ii] & mask);
layout.m_attributes[ii] = attr == 0 ? UINT16_MAX : attr == UINT16_MAX ? 0 : attr;
}
}
const FrameBufferVK& frameBuffer = isValid(m_fbh)
? m_frameBuffers[m_fbh.idx]
: m_backBuffer
;
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
murmur.add(program.m_vsh->m_hash);
murmur.add(program.m_vsh->m_attrMask, sizeof(program.m_vsh->m_attrMask) );
if (NULL != program.m_fsh)
{
murmur.add(program.m_fsh->m_hash);
}
for (uint8_t ii = 0; ii < _numStreams; ++ii)
{
murmur.add(_layouts[ii]->m_hash);
}
murmur.add(layout.m_attributes, sizeof(layout.m_attributes) );
murmur.add(_numInstanceData);
murmur.add(frameBuffer.m_renderPass);
const uint32_t hash = murmur.end();
VkPipeline pipeline = m_pipelineStateCache.find(hash);
if (VK_NULL_HANDLE != pipeline)
{
return pipeline;
}
VkPipelineColorBlendAttachmentState blendAttachmentState[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkPipelineColorBlendStateCreateInfo colorBlendState;
colorBlendState.pAttachments = blendAttachmentState;
setBlendState(colorBlendState, _state, _rgba);
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState;
inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssemblyState.pNext = NULL;
inputAssemblyState.flags = 0;
inputAssemblyState.topology = s_primInfo[(_state&BGFX_STATE_PT_MASK) >> BGFX_STATE_PT_SHIFT].m_topology;
inputAssemblyState.primitiveRestartEnable = VK_FALSE;
VkPipelineRasterizationStateCreateInfo rasterizationState;
setRasterizerState(rasterizationState, _state, m_wireframe);
VkBaseInStructure* nextRasterizationState = (VkBaseInStructure*)&rasterizationState;
VkPipelineRasterizationConservativeStateCreateInfoEXT conservativeRasterizationState;
if (s_extension[Extension::EXT_conservative_rasterization].m_supported)
{
nextRasterizationState->pNext = (VkBaseInStructure*)&conservativeRasterizationState;
nextRasterizationState = (VkBaseInStructure*)&conservativeRasterizationState;
setConservativeRasterizerState(conservativeRasterizationState, _state);
}
VkPipelineRasterizationLineStateCreateInfoEXT lineRasterizationState;
if (m_lineAASupport)
{
nextRasterizationState->pNext = (VkBaseInStructure*)&lineRasterizationState;
nextRasterizationState = (VkBaseInStructure*)&lineRasterizationState;
setLineRasterizerState(lineRasterizationState, _state);
}
VkPipelineDepthStencilStateCreateInfo depthStencilState;
setDepthStencilState(depthStencilState, _state, _stencil);
VkVertexInputBindingDescription inputBinding[BGFX_CONFIG_MAX_VERTEX_STREAMS + 1];
VkVertexInputAttributeDescription inputAttrib[Attrib::Count + BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT];
VkPipelineVertexInputStateCreateInfo vertexInputState;
vertexInputState.pVertexBindingDescriptions = inputBinding;
vertexInputState.pVertexAttributeDescriptions = inputAttrib;
setInputLayout(vertexInputState, _numStreams, _layouts, program, _numInstanceData);
const VkDynamicState dynamicStates[] =
{
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
};
VkPipelineDynamicStateCreateInfo dynamicState;
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pNext = NULL;
dynamicState.flags = 0;
dynamicState.dynamicStateCount = BX_COUNTOF(dynamicStates);
dynamicState.pDynamicStates = dynamicStates;
VkPipelineShaderStageCreateInfo shaderStages[2];
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[0].pNext = NULL;
shaderStages[0].flags = 0;
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT;
shaderStages[0].module = program.m_vsh->m_module;
shaderStages[0].pName = "main";
shaderStages[0].pSpecializationInfo = NULL;
if (NULL != program.m_fsh)
{
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[1].pNext = NULL;
shaderStages[1].flags = 0;
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT;
shaderStages[1].module = program.m_fsh->m_module;
shaderStages[1].pName = "main";
shaderStages[1].pSpecializationInfo = NULL;
}
VkPipelineViewportStateCreateInfo viewportState;
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.pNext = NULL;
viewportState.flags = 0;
viewportState.viewportCount = 1;
viewportState.pViewports = NULL;
viewportState.scissorCount = 1;
viewportState.pScissors = NULL;
VkPipelineMultisampleStateCreateInfo multisampleState;
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleState.pNext = NULL;
multisampleState.flags = 0;
multisampleState.rasterizationSamples = frameBuffer.m_sampler.Sample;
multisampleState.sampleShadingEnable = VK_FALSE;
multisampleState.minSampleShading = 0.0f;
multisampleState.pSampleMask = NULL;
multisampleState.alphaToCoverageEnable = !!(BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & _state);
multisampleState.alphaToOneEnable = VK_FALSE;
VkGraphicsPipelineCreateInfo graphicsPipeline;
graphicsPipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
graphicsPipeline.pNext = NULL;
graphicsPipeline.flags = 0;
graphicsPipeline.stageCount = NULL == program.m_fsh ? 1 : 2;
graphicsPipeline.pStages = shaderStages;
graphicsPipeline.pVertexInputState = &vertexInputState;
graphicsPipeline.pInputAssemblyState = &inputAssemblyState;
graphicsPipeline.pTessellationState = NULL;
graphicsPipeline.pViewportState = &viewportState;
graphicsPipeline.pRasterizationState = &rasterizationState;
graphicsPipeline.pMultisampleState = &multisampleState;
graphicsPipeline.pDepthStencilState = &depthStencilState;
graphicsPipeline.pColorBlendState = &colorBlendState;
graphicsPipeline.pDynamicState = &dynamicState;
graphicsPipeline.layout = program.m_pipelineLayout;
graphicsPipeline.renderPass = frameBuffer.m_renderPass;
graphicsPipeline.subpass = 0;
graphicsPipeline.basePipelineHandle = VK_NULL_HANDLE;
graphicsPipeline.basePipelineIndex = 0;
uint32_t length = g_callback->cacheReadSize(hash);
bool cached = length > 0;
void* cachedData = NULL;
VkPipelineCacheCreateInfo pcci;
pcci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pcci.pNext = NULL;
pcci.flags = 0;
pcci.initialDataSize = 0;
pcci.pInitialData = NULL;
if (cached)
{
cachedData = BX_ALLOC(g_allocator, length);
if (g_callback->cacheRead(hash, cachedData, length) )
{
BX_TRACE("Loading cached pipeline state (size %d).", length);
bx::MemoryReader reader(cachedData, length);
pcci.initialDataSize = (size_t)reader.remaining();
pcci.pInitialData = reader.getDataPtr();
}
}
VkPipelineCache cache;
VK_CHECK(vkCreatePipelineCache(m_device, &pcci, m_allocatorCb, &cache) );
VK_CHECK(vkCreateGraphicsPipelines(
m_device
, cache
, 1
, &graphicsPipeline
, m_allocatorCb
, &pipeline
) );
m_pipelineStateCache.add(hash, pipeline);
size_t dataSize;
VK_CHECK(vkGetPipelineCacheData(m_device, cache, &dataSize, NULL) );
if (0 < dataSize)
{
if (length < dataSize)
{
cachedData = BX_REALLOC(g_allocator, cachedData, dataSize);
}
VK_CHECK(vkGetPipelineCacheData(m_device, cache, &dataSize, cachedData) );
g_callback->cacheWrite(hash, cachedData, (uint32_t)dataSize);
}
VK_CHECK(vkMergePipelineCaches(m_device, m_pipelineCache, 1, &cache) );
vkDestroy(cache);
if (NULL != cachedData)
{
BX_FREE(g_allocator, cachedData);
}
return pipeline;
}
VkDescriptorSet getDescriptorSet(const ProgramVK& program, const RenderBind& renderBind, const ScratchBufferVK& scratchBuffer, const float _palette[][4])
{
VkDescriptorSet descriptorSet;
VkDescriptorSetAllocateInfo dsai;
dsai.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
dsai.pNext = NULL;
dsai.descriptorPool = m_descriptorPool;
dsai.descriptorSetCount = 1;
dsai.pSetLayouts = &program.m_descriptorSetLayout;
VK_CHECK(vkAllocateDescriptorSets(m_device, &dsai, &descriptorSet) );
VkDescriptorImageInfo imageInfo[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
VkDescriptorBufferInfo bufferInfo[BGFX_CONFIG_MAX_TEXTURE_SAMPLERS];
constexpr uint32_t kMaxDescriptorSets = 2 * BGFX_CONFIG_MAX_TEXTURE_SAMPLERS + 2;
VkWriteDescriptorSet wds[kMaxDescriptorSets] = {};
uint32_t wdsCount = 0;
uint32_t bufferCount = 0;
uint32_t imageCount = 0;
for (uint32_t stage = 0; stage < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++stage)
{
const Binding& bind = renderBind.m_bind[stage];
const BindInfo& bindInfo = program.m_bindInfo[stage];
if (kInvalidHandle != bind.m_idx
&& isValid(bindInfo.uniformHandle) )
{
switch (bind.m_type)
{
case Binding::Image:
{
const bool isImageDescriptor = BindType::Image == bindInfo.type;
wds[wdsCount].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[wdsCount].pNext = NULL;
wds[wdsCount].dstSet = descriptorSet;
wds[wdsCount].dstBinding = bindInfo.binding;
wds[wdsCount].dstArrayElement = 0;
wds[wdsCount].descriptorCount = 1;
wds[wdsCount].descriptorType = isImageDescriptor
? VK_DESCRIPTOR_TYPE_STORAGE_IMAGE
: VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE
;
wds[wdsCount].pImageInfo = NULL;
wds[wdsCount].pBufferInfo = NULL;
wds[wdsCount].pTexelBufferView = NULL;
const TextureVK& texture = m_textures[bind.m_idx];
VkImageViewType type = texture.m_type;
if (UINT32_MAX != bindInfo.index)
{
type = program.m_textures[bindInfo.index].type;
}
else if (type == VK_IMAGE_VIEW_TYPE_CUBE
|| type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
{
type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
}
BX_ASSERT(
texture.m_currentImageLayout == texture.m_sampledLayout
, "Mismatching image layout. Texture currently used as a framebuffer attachment?"
);
imageInfo[imageCount].imageLayout = texture.m_sampledLayout;
imageInfo[imageCount].sampler = VK_NULL_HANDLE;
imageInfo[imageCount].imageView = getCachedImageView(
{ bind.m_idx }
, bind.m_mip
, 1
, type
);
wds[wdsCount].pImageInfo = &imageInfo[imageCount];
++imageCount;
++wdsCount;
}
break;
case Binding::VertexBuffer:
case Binding::IndexBuffer:
{
wds[wdsCount].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[wdsCount].pNext = NULL;
wds[wdsCount].dstSet = descriptorSet;
wds[wdsCount].dstBinding = bindInfo.binding;
wds[wdsCount].dstArrayElement = 0;
wds[wdsCount].descriptorCount = 1;
wds[wdsCount].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
wds[wdsCount].pImageInfo = NULL;
wds[wdsCount].pBufferInfo = NULL;
wds[wdsCount].pTexelBufferView = NULL;
const BufferVK& sb = bind.m_type == Binding::VertexBuffer
? m_vertexBuffers[bind.m_idx]
: m_indexBuffers[bind.m_idx]
;
bufferInfo[bufferCount].buffer = sb.m_buffer;
bufferInfo[bufferCount].offset = 0;
bufferInfo[bufferCount].range = sb.m_size;
wds[wdsCount].pBufferInfo = &bufferInfo[bufferCount];
++bufferCount;
++wdsCount;
}
break;
case Binding::Texture:
{
TextureVK& texture = m_textures[bind.m_idx];
const uint32_t samplerFlags = 0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & bind.m_samplerFlags)
? bind.m_samplerFlags
: (uint32_t)texture.m_flags
;
const bool sampleStencil = !!(samplerFlags & BGFX_SAMPLER_SAMPLE_STENCIL);
VkSampler sampler = getSampler(samplerFlags, texture.m_format, _palette);
const VkImageViewType type = UINT32_MAX == bindInfo.index
? texture.m_type
: program.m_textures[bindInfo.index].type
;
BX_ASSERT(
texture.m_currentImageLayout == texture.m_sampledLayout
, "Mismatching image layout. Texture currently used as a framebuffer attachment?"
);
imageInfo[imageCount].imageLayout = texture.m_sampledLayout;
imageInfo[imageCount].sampler = sampler;
imageInfo[imageCount].imageView = getCachedImageView(
{ bind.m_idx }
, 0
, texture.m_numMips
, type
, sampleStencil
);
wds[wdsCount].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[wdsCount].pNext = NULL;
wds[wdsCount].dstSet = descriptorSet;
wds[wdsCount].dstBinding = bindInfo.binding;
wds[wdsCount].dstArrayElement = 0;
wds[wdsCount].descriptorCount = 1;
wds[wdsCount].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
wds[wdsCount].pImageInfo = &imageInfo[imageCount];
wds[wdsCount].pBufferInfo = NULL;
wds[wdsCount].pTexelBufferView = NULL;
++wdsCount;
wds[wdsCount].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[wdsCount].pNext = NULL;
wds[wdsCount].dstSet = descriptorSet;
wds[wdsCount].dstBinding = bindInfo.samplerBinding;
wds[wdsCount].dstArrayElement = 0;
wds[wdsCount].descriptorCount = 1;
wds[wdsCount].descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
wds[wdsCount].pImageInfo = &imageInfo[imageCount];
wds[wdsCount].pBufferInfo = NULL;
wds[wdsCount].pTexelBufferView = NULL;
++wdsCount;
++imageCount;
}
break;
}
}
}
const uint32_t vsize = program.m_vsh->m_size;
const uint32_t fsize = NULL != program.m_fsh ? program.m_fsh->m_size : 0;
if (vsize > 0)
{
bufferInfo[bufferCount].buffer = scratchBuffer.m_buffer;
bufferInfo[bufferCount].offset = 0;
bufferInfo[bufferCount].range = vsize;
wds[wdsCount].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[wdsCount].pNext = NULL;
wds[wdsCount].dstSet = descriptorSet;
wds[wdsCount].dstBinding = program.m_vsh->m_uniformBinding;
wds[wdsCount].dstArrayElement = 0;
wds[wdsCount].descriptorCount = 1;
wds[wdsCount].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
wds[wdsCount].pImageInfo = NULL;
wds[wdsCount].pBufferInfo = &bufferInfo[bufferCount];
wds[wdsCount].pTexelBufferView = NULL;
++wdsCount;
++bufferCount;
}
if (fsize > 0)
{
bufferInfo[bufferCount].buffer = scratchBuffer.m_buffer;
bufferInfo[bufferCount].offset = 0;
bufferInfo[bufferCount].range = fsize;
wds[wdsCount].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wds[wdsCount].pNext = NULL;
wds[wdsCount].dstSet = descriptorSet;
wds[wdsCount].dstBinding = program.m_fsh->m_uniformBinding;
wds[wdsCount].dstArrayElement = 0;
wds[wdsCount].descriptorCount = 1;
wds[wdsCount].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
wds[wdsCount].pImageInfo = NULL;
wds[wdsCount].pBufferInfo = &bufferInfo[bufferCount];
wds[wdsCount].pTexelBufferView = NULL;
++wdsCount;
++bufferCount;
}
vkUpdateDescriptorSets(m_device, wdsCount, wds, 0, NULL);
VkDescriptorSet temp = descriptorSet;
release(temp);
return descriptorSet;
}
bool isSwapChainReadable(const SwapChainVK& _swapChain)
{
return true
&& NULL != _swapChain.m_nwh
&& _swapChain.m_needPresent
&& _swapChain.m_supportsReadback
&& bimg::imageConvert(bimg::TextureFormat::BGRA8, bimg::TextureFormat::Enum(_swapChain.m_colorFormat) )
;
}
typedef void (*SwapChainReadFunc)(void* /*src*/, uint32_t /*width*/, uint32_t /*height*/, uint32_t /*pitch*/, const void* /*userData*/);
bool readSwapChain(const SwapChainVK& _swapChain, VkBuffer _buffer, VkDeviceMemory _memory, SwapChainReadFunc _func, const void* _userData = NULL)
{
if (isSwapChainReadable(_swapChain) )
{
// source for the copy is the last rendered swapchain image
const VkImage image = _swapChain.m_backBufferColorImage[_swapChain.m_backBufferColorIdx];
const VkImageLayout layout = _swapChain.m_backBufferColorImageLayout[_swapChain.m_backBufferColorIdx];
const uint32_t width = _swapChain.m_sci.imageExtent.width;
const uint32_t height = _swapChain.m_sci.imageExtent.height;
ReadbackVK readback;
readback.create(image, width, height, _swapChain.m_colorFormat);
const uint32_t pitch = readback.pitch();
readback.copyImageToBuffer(m_commandBuffer, _buffer, layout, VK_IMAGE_ASPECT_COLOR_BIT);
// stall for commandbuffer to finish
kick(true);
uint8_t* src;
VK_CHECK(vkMapMemory(m_device, _memory, 0, VK_WHOLE_SIZE, 0, (void**)&src) );
if (_swapChain.m_colorFormat == TextureFormat::RGBA8)
{
bimg::imageSwizzleBgra8(src, pitch, width, height, src, pitch);
_func(src, width, height, pitch, _userData);
}
else if (_swapChain.m_colorFormat == TextureFormat::BGRA8)
{
_func(src, width, height, pitch, _userData);
}
else
{
const uint8_t dstBpp = bimg::getBitsPerPixel(bimg::TextureFormat::BGRA8);
const uint32_t dstPitch = width * dstBpp / 8;
const uint32_t dstSize = height * dstPitch;
void* dst = BX_ALLOC(g_allocator, dstSize);
bimg::imageConvert(g_allocator, dst, bimg::TextureFormat::BGRA8, src, bimg::TextureFormat::Enum(_swapChain.m_colorFormat), width, height, 1);
_func(dst, width, height, dstPitch, _userData);
BX_FREE(g_allocator, dst);
}
vkUnmapMemory(m_device, _memory);
readback.destroy();
return true;
}
return false;
}
void capture()
{
if (m_captureSize > 0)
{
m_backBuffer.resolve();
auto callback = [](void* _src, uint32_t /*_width*/, uint32_t _height, uint32_t _pitch, const void* /*_userData*/)
{
const uint32_t size = _height * _pitch;
g_callback->captureFrame(_src, size);
};
readSwapChain(m_backBuffer.m_swapChain, m_captureBuffer, m_captureMemory, callback);
}
}
bool isVisible(Frame* _render, OcclusionQueryHandle _handle, bool _visible)
{
return _visible == (0 != _render->m_occlusion[_handle.idx]);
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
switch ( (uint32_t)type)
{
case UniformType::Mat3:
case UniformType::Mat3|kUniformFragmentBit:
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3);
}
}
break;
case UniformType::Sampler:
case UniformType::Sampler|kUniformFragmentBit:
// do nothing, but VkDescriptorSetImageInfo would be set before drawing
break;
case UniformType::Vec4:
case UniformType::Vec4 | kUniformFragmentBit:
case UniformType::Mat4:
case UniformType::Mat4 | kUniformFragmentBit:
{
setShaderUniform(uint8_t(type), loc, data, num);
}
break;
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
}
}
void clearQuad(const Rect& _rect, const Clear& _clear, const float _palette[][4])
{
VkClearRect rect[1];
rect[0].rect.offset.x = _rect.m_x;
rect[0].rect.offset.y = _rect.m_y;
rect[0].rect.extent.width = _rect.m_width;
rect[0].rect.extent.height = _rect.m_height;
rect[0].baseArrayLayer = 0;
rect[0].layerCount = 1;
uint32_t numMrt;
bgfx::TextureFormat::Enum mrtFormat[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS];
VkImageAspectFlags depthAspectMask;
const FrameBufferVK& fb = isValid(m_fbh)
? m_frameBuffers[m_fbh.idx]
: m_backBuffer
;
if (NULL == fb.m_nwh)
{
numMrt = fb.m_num;
for (uint8_t ii = 0; ii < fb.m_num; ++ii)
{
mrtFormat[ii] = bgfx::TextureFormat::Enum(m_textures[fb.m_texture[ii].idx].m_requestedFormat);
}
depthAspectMask = isValid(fb.m_depth) ? m_textures[fb.m_depth.idx].m_aspectMask : 0;
rect[0].layerCount = fb.m_attachment[0].numLayers;
}
else
{
numMrt = 1;
mrtFormat[0] = fb.m_swapChain.m_colorFormat;
depthAspectMask = fb.m_swapChain.m_backBufferDepthStencil.m_aspectMask;
}
VkClearAttachment attachments[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS + 1];
uint32_t mrt = 0;
if (BGFX_CLEAR_COLOR & _clear.m_flags)
{
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
attachments[mrt].colorAttachment = mrt;
attachments[mrt].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkClearColorValue& clearValue = attachments[mrt].clearValue.color;
const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(mrtFormat[ii]) );
const bx::EncodingType::Enum type = bx::EncodingType::Enum(blockInfo.encoding);
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
const uint8_t index = bx::min<uint8_t>(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[ii]);
switch (type)
{
case bx::EncodingType::Int:
case bx::EncodingType::Uint:
clearValue.int32[0] = int32_t(_palette[index][0]);
clearValue.int32[1] = int32_t(_palette[index][1]);
clearValue.int32[2] = int32_t(_palette[index][2]);
clearValue.int32[3] = int32_t(_palette[index][3]);
break;
default:
bx::memCopy(&clearValue.float32, _palette[index], sizeof(clearValue.float32) );
break;
}
}
else
{
switch (type)
{
case bx::EncodingType::Int:
case bx::EncodingType::Uint:
clearValue.uint32[0] = _clear.m_index[0];
clearValue.uint32[1] = _clear.m_index[1];
clearValue.uint32[2] = _clear.m_index[2];
clearValue.uint32[3] = _clear.m_index[3];
break;
default:
bx::unpackRgba8(clearValue.float32, _clear.m_index);
break;
}
}
++mrt;
}
}
depthAspectMask &= 0
| (_clear.m_flags & BGFX_CLEAR_DEPTH ? VK_IMAGE_ASPECT_DEPTH_BIT : 0)
| (_clear.m_flags & BGFX_CLEAR_STENCIL ? VK_IMAGE_ASPECT_STENCIL_BIT : 0)
;
if (0 != depthAspectMask)
{
attachments[mrt].aspectMask = depthAspectMask;
attachments[mrt].clearValue.depthStencil.stencil = _clear.m_stencil;
attachments[mrt].clearValue.depthStencil.depth = _clear.m_depth;
++mrt;
}
if (mrt > 0)
{
vkCmdClearAttachments(m_commandBuffer, mrt, attachments, BX_COUNTOF(rect), rect);
}
}
void kick(bool _finishAll = false)
{
m_cmd.kick(_finishAll);
VK_CHECK(m_cmd.alloc(&m_commandBuffer) );
m_cmd.finish(_finishAll);
}
int32_t selectMemoryType(uint32_t _memoryTypeBits, uint32_t _propertyFlags, int32_t _startIndex = 0) const
{
for (int32_t ii = _startIndex, num = m_memoryProperties.memoryTypeCount; ii < num; ++ii)
{
const VkMemoryType& memType = m_memoryProperties.memoryTypes[ii];
if ( (0 != ( (1<<ii) & _memoryTypeBits) )
&& ( (memType.propertyFlags & _propertyFlags) == _propertyFlags) )
{
return ii;
}
}
BX_TRACE("Failed to find memory that supports flags 0x%08x.", _propertyFlags);
return -1;
}
VkResult allocateMemory(const VkMemoryRequirements* requirements, VkMemoryPropertyFlags propertyFlags, ::VkDeviceMemory* memory) const
{
VkMemoryAllocateInfo ma;
ma.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
ma.pNext = NULL;
ma.allocationSize = requirements->size;
VkResult result = VK_ERROR_UNKNOWN;
int32_t searchIndex = -1;
do
{
searchIndex++;
searchIndex = selectMemoryType(requirements->memoryTypeBits, propertyFlags, searchIndex);
if (searchIndex >= 0)
{
ma.memoryTypeIndex = searchIndex;
result = vkAllocateMemory(m_device, &ma, m_allocatorCb, memory);
}
}
while (result != VK_SUCCESS
&& searchIndex >= 0);
return result;
}
VkResult createHostBuffer(uint32_t _size, VkMemoryPropertyFlags _flags, ::VkBuffer* _buffer, ::VkDeviceMemory* _memory, const void* _data = NULL)
{
VkResult result = VK_SUCCESS;
VkBufferCreateInfo bci;
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.pNext = NULL;
bci.flags = 0;
bci.size = _size;
bci.queueFamilyIndexCount = 0;
bci.pQueueFamilyIndices = NULL;
bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bci.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
result = vkCreateBuffer(m_device, &bci, m_allocatorCb, _buffer);
if (VK_SUCCESS != result)
{
BX_TRACE("Create host buffer error: vkCreateBuffer failed %d: %s.", result, getName(result) );
return result;
}
VkMemoryRequirements mr;
vkGetBufferMemoryRequirements(m_device, *_buffer, &mr);
result = allocateMemory(&mr, _flags, _memory);
if (VK_SUCCESS != result
&& (_flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) )
{
result = allocateMemory(&mr, _flags & ~VK_MEMORY_PROPERTY_HOST_CACHED_BIT, _memory);
}
if (VK_SUCCESS != result)
{
BX_TRACE("Create host buffer error: vkAllocateMemory failed %d: %s.", result, getName(result) );
return result;
}
result = vkBindBufferMemory(m_device, *_buffer, *_memory, 0);
if (VK_SUCCESS != result)
{
BX_TRACE("Create host buffer error: vkBindBufferMemory failed %d: %s.", result, getName(result) );
return result;
}
if (_data != NULL)
{
void* dst;
result = vkMapMemory(m_device, *_memory, 0, _size, 0, &dst);
if (VK_SUCCESS != result)
{
BX_TRACE("Create host buffer error: vkMapMemory failed %d: %s.", result, getName(result) );
return result;
}
bx::memCopy(dst, _data, _size);
vkUnmapMemory(m_device, *_memory);
}
return result;
}
VkResult createStagingBuffer(uint32_t _size, ::VkBuffer* _buffer, ::VkDeviceMemory* _memory, const void* _data = NULL)
{
const VkMemoryPropertyFlags flags = 0
| VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
;
return createHostBuffer(_size, flags, _buffer, _memory, _data);
}
VkResult createReadbackBuffer(uint32_t _size, ::VkBuffer* _buffer, ::VkDeviceMemory* _memory)
{
const VkMemoryPropertyFlags flags = 0
| VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
| VK_MEMORY_PROPERTY_HOST_CACHED_BIT
;
return createHostBuffer(_size, flags, _buffer, _memory, NULL);
}
VkAllocationCallbacks* m_allocatorCb;
VkDebugReportCallbackEXT m_debugReportCallback;
VkInstance m_instance;
VkPhysicalDevice m_physicalDevice;
uint32_t m_instanceApiVersion;
VkPhysicalDeviceProperties m_deviceProperties;
VkPhysicalDeviceMemoryProperties m_memoryProperties;
VkPhysicalDeviceFeatures m_deviceFeatures;
bool m_lineAASupport;
bool m_borderColorSupport;
bool m_timerQuerySupport;
FrameBufferVK m_backBuffer;
TextureFormat::Enum m_swapchainFormats[TextureFormat::Count];
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
int64_t m_presentElapsed;
ScratchBufferVK m_scratchBuffer[BGFX_CONFIG_MAX_FRAME_LATENCY];
uint32_t m_numFramesInFlight;
CommandQueueVK m_cmd;
VkCommandBuffer m_commandBuffer;
VkDevice m_device;
uint32_t m_globalQueueFamily;
VkQueue m_globalQueue;
VkDescriptorPool m_descriptorPool;
VkPipelineCache m_pipelineCache;
TimerQueryVK m_gpuTimer;
OcclusionQueryVK m_occlusionQuery;
void* m_renderDocDll;
void* m_vulkan1Dll;
IndexBufferVK m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferVK m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderVK m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramVK m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureVK m_textures[BGFX_CONFIG_MAX_TEXTURES];
VertexLayout m_vertexLayouts[BGFX_CONFIG_MAX_VERTEX_LAYOUTS];
FrameBufferVK m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
Matrix4 m_predefinedUniforms[PredefinedUniform::Count];
UniformRegistry m_uniformReg;
StateCacheT<VkPipeline> m_pipelineStateCache;
StateCacheT<VkDescriptorSetLayout> m_descriptorSetLayoutCache;
StateCacheT<VkRenderPass> m_renderPassCache;
StateCacheT<VkSampler> m_samplerCache;
StateCacheT<uint32_t> m_samplerBorderColorCache;
StateCacheLru<VkImageView, 1024> m_imageViewCache;
Resolution m_resolution;
float m_maxAnisotropy;
bool m_depthClamp;
bool m_wireframe;
VkBuffer m_captureBuffer;
VkDeviceMemory m_captureMemory;
uint32_t m_captureSize;
TextVideoMem m_textVideoMem;
uint8_t m_fsScratch[64<<10];
uint8_t m_vsScratch[64<<10];
FrameBufferHandle m_fbh;
};
static RendererContextVK* s_renderVK;
RendererContextI* rendererCreate(const Init& _init)
{
s_renderVK = BX_NEW(g_allocator, RendererContextVK);
if (!s_renderVK->init(_init) )
{
BX_DELETE(g_allocator, s_renderVK);
s_renderVK = NULL;
}
return s_renderVK;
}
void rendererDestroy()
{
s_renderVK->shutdown();
BX_DELETE(g_allocator, s_renderVK);
s_renderVK = NULL;
}
#define VK_DESTROY_FUNC(_name) \
void vkDestroy(Vk##_name& _obj) \
{ \
if (VK_NULL_HANDLE != _obj) \
{ \
vkDestroy##_name(s_renderVK->m_device, _obj.vk, s_renderVK->m_allocatorCb); \
_obj = VK_NULL_HANDLE; \
} \
} \
void release(Vk##_name& _obj) \
{ \
s_renderVK->release(_obj); \
}
VK_DESTROY
#undef VK_DESTROY_FUNC
void vkDestroy(VkDeviceMemory& _obj)
{
if (VK_NULL_HANDLE != _obj)
{
vkFreeMemory(s_renderVK->m_device, _obj.vk, s_renderVK->m_allocatorCb);
_obj = VK_NULL_HANDLE;
}
}
void vkDestroy(VkSurfaceKHR& _obj)
{
if (VK_NULL_HANDLE != _obj)
{
vkDestroySurfaceKHR(s_renderVK->m_instance, _obj.vk, s_renderVK->m_allocatorCb);
_obj = VK_NULL_HANDLE;
}
}
void vkDestroy(VkDescriptorSet& _obj)
{
if (VK_NULL_HANDLE != _obj)
{
vkFreeDescriptorSets(s_renderVK->m_device, s_renderVK->m_descriptorPool, 1, &_obj);
_obj = VK_NULL_HANDLE;
}
}
void release(VkDeviceMemory& _obj)
{
s_renderVK->release(_obj);
}
void release(VkSurfaceKHR& _obj)
{
s_renderVK->release(_obj);
}
void release(VkDescriptorSet& _obj)
{
s_renderVK->release(_obj);
}
void ScratchBufferVK::create(uint32_t _size, uint32_t _count)
{
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
const VkDevice device = s_renderVK->m_device;
const VkPhysicalDeviceLimits& deviceLimits = s_renderVK->m_deviceProperties.limits;
const uint32_t align = uint32_t(deviceLimits.minUniformBufferOffsetAlignment);
const uint32_t entrySize = bx::strideAlign(_size, align);
const uint32_t totalSize = entrySize * _count;
VkBufferCreateInfo bci;
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.pNext = NULL;
bci.flags = 0;
bci.size = totalSize;
bci.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bci.queueFamilyIndexCount = 0;
bci.pQueueFamilyIndices = NULL;
VK_CHECK(vkCreateBuffer(
device
, &bci
, allocatorCb
, &m_buffer
) );
VkMemoryRequirements mr;
vkGetBufferMemoryRequirements(
device
, m_buffer
, &mr
);
VkMemoryPropertyFlags flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VkResult result = s_renderVK->allocateMemory(&mr, flags, &m_deviceMem);
if (VK_SUCCESS != result)
{
flags &= ~VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VK_CHECK(s_renderVK->allocateMemory(&mr, flags, &m_deviceMem) );
}
m_size = (uint32_t)mr.size;
m_pos = 0;
VK_CHECK(vkBindBufferMemory(device, m_buffer, m_deviceMem, 0) );
VK_CHECK(vkMapMemory(device, m_deviceMem, 0, m_size, 0, (void**)&m_data) );
}
void ScratchBufferVK::destroy()
{
reset();
vkUnmapMemory(s_renderVK->m_device, m_deviceMem);
s_renderVK->release(m_buffer);
s_renderVK->release(m_deviceMem);
}
void ScratchBufferVK::reset()
{
m_pos = 0;
}
uint32_t ScratchBufferVK::write(const void* _data, uint32_t _size)
{
BX_ASSERT(m_pos < m_size, "Out of scratch buffer memory");
const uint32_t offset = m_pos;
if (_size > 0)
{
bx::memCopy(&m_data[m_pos], _data, _size);
const VkPhysicalDeviceLimits& deviceLimits = s_renderVK->m_deviceProperties.limits;
const uint32_t align = uint32_t(deviceLimits.minUniformBufferOffsetAlignment);
const uint32_t alignedSize = bx::strideAlign(_size, align);
m_pos += alignedSize;
}
return offset;
}
void ScratchBufferVK::flush()
{
const VkPhysicalDeviceLimits& deviceLimits = s_renderVK->m_deviceProperties.limits;
VkDevice device = s_renderVK->m_device;
const uint32_t align = uint32_t(deviceLimits.nonCoherentAtomSize);
const uint32_t size = bx::min(bx::strideAlign(m_pos, align), m_size);
VkMappedMemoryRange range;
range.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range.pNext = NULL;
range.memory = m_deviceMem;
range.offset = 0;
range.size = size;
VK_CHECK(vkFlushMappedMemoryRanges(device, 1, &range) );
}
void BufferVK::create(VkCommandBuffer _commandBuffer, uint32_t _size, void* _data, uint16_t _flags, bool _vertex, uint32_t _stride)
{
BX_UNUSED(_stride);
m_size = _size;
m_flags = _flags;
m_dynamic = NULL == _data;
const bool storage = m_flags & BGFX_BUFFER_COMPUTE_READ_WRITE;
const bool indirect = m_flags & BGFX_BUFFER_DRAW_INDIRECT;
VkBufferCreateInfo bci;
bci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bci.pNext = NULL;
bci.flags = 0;
bci.size = _size;
bci.usage = 0
| (_vertex ? VK_BUFFER_USAGE_VERTEX_BUFFER_BIT : VK_BUFFER_USAGE_INDEX_BUFFER_BIT)
| (storage || indirect ? VK_BUFFER_USAGE_STORAGE_BUFFER_BIT : 0)
| (indirect ? VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT : 0)
| VK_BUFFER_USAGE_TRANSFER_DST_BIT
;
bci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
bci.queueFamilyIndexCount = 0;
bci.pQueueFamilyIndices = NULL;
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
const VkDevice device = s_renderVK->m_device;
VK_CHECK(vkCreateBuffer(device, &bci, allocatorCb, &m_buffer) );
VkMemoryRequirements mr;
vkGetBufferMemoryRequirements(device, m_buffer, &mr);
VK_CHECK(s_renderVK->allocateMemory(&mr, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &m_deviceMem) );
VK_CHECK(vkBindBufferMemory(device, m_buffer, m_deviceMem, 0) );
if (!m_dynamic)
{
update(_commandBuffer, 0, _size, _data);
}
}
void BufferVK::update(VkCommandBuffer _commandBuffer, uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
BX_UNUSED(_discard);
VkBuffer stagingBuffer;
VkDeviceMemory stagingMem;
VK_CHECK(s_renderVK->createStagingBuffer(_size, &stagingBuffer, &stagingMem, _data) );
VkBufferCopy region;
region.srcOffset = 0;
region.dstOffset = _offset;
region.size = _size;
vkCmdCopyBuffer(_commandBuffer, stagingBuffer, m_buffer, 1, &region);
setMemoryBarrier(
_commandBuffer
, VK_PIPELINE_STAGE_TRANSFER_BIT
, VK_PIPELINE_STAGE_TRANSFER_BIT
);
s_renderVK->release(stagingBuffer);
s_renderVK->release(stagingMem);
}
void BufferVK::destroy()
{
if (VK_NULL_HANDLE != m_buffer)
{
s_renderVK->release(m_buffer);
s_renderVK->release(m_deviceMem);
m_dynamic = false;
}
}
void VertexBufferVK::create(VkCommandBuffer _commandBuffer, uint32_t _size, void* _data, VertexLayoutHandle _layoutHandle, uint16_t _flags)
{
BufferVK::create(_commandBuffer, _size, _data, _flags, true);
m_layoutHandle = _layoutHandle;
}
void ShaderVK::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
bx::ErrorAssert err;
uint32_t magic;
bx::read(&reader, magic, &err);
VkShaderStageFlagBits shaderStage = VK_SHADER_STAGE_ALL;
if (isShaderType(magic, 'C') )
{
shaderStage = VK_SHADER_STAGE_COMPUTE_BIT;
}
else if (isShaderType(magic, 'F') )
{
shaderStage = VK_SHADER_STAGE_FRAGMENT_BIT;
}
else if (isShaderType(magic, 'V') )
{
shaderStage = VK_SHADER_STAGE_VERTEX_BIT;
}
const bool fragment = isShaderType(magic, 'F');
uint32_t hashIn;
bx::read(&reader, hashIn, &err);
uint32_t hashOut;
if (isShaderVerLess(magic, 6) )
{
hashOut = hashIn;
}
else
{
bx::read(&reader, hashOut, &err);
}
uint16_t count;
bx::read(&reader, count, &err);
m_numPredefined = 0;
m_numUniforms = count;
m_numTextures = 0;
m_oldBindingModel = isShaderVerLess(magic, 11);
BX_TRACE("%s Shader consts %d"
, getShaderTypeName(magic)
, count
);
uint8_t fragmentBit = fragment ? kUniformFragmentBit : 0;
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_TEXTURE_SAMPLERS; ++ii)
{
m_bindInfo[ii].uniformHandle = BGFX_INVALID_HANDLE;
m_bindInfo[ii].type = BindType::Count;
m_bindInfo[ii].binding = 0;
m_bindInfo[ii].samplerBinding = 0;
m_bindInfo[ii].index = UINT32_MAX;
}
if (0 < count)
{
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize = 0;
bx::read(&reader, nameSize, &err);
char name[256];
bx::read(&reader, &name, nameSize, &err);
name[nameSize] = '\0';
uint8_t type = 0;
bx::read(&reader, type, &err);
uint8_t num;
bx::read(&reader, num, &err);
uint16_t regIndex;
bx::read(&reader, regIndex, &err);
uint16_t regCount;
bx::read(&reader, regCount, &err);
const bool hasTexData = !isShaderVerLess(magic, 8);
const bool hasTexFormat = !isShaderVerLess(magic, 10);
uint8_t texComponent = 0;
uint8_t texDimension = 0;
uint16_t texFormat = 0;
if (hasTexData)
{
bx::read(&reader, texComponent, &err);
bx::read(&reader, texDimension, &err);
}
if (hasTexFormat)
{
bx::read(&reader, texFormat, &err);
}
const char* kind = "invalid";
BX_UNUSED(num, texComponent, texFormat);
auto textureDimensionToViewType = [](TextureDimension::Enum dimension)
{
switch (dimension)
{
case TextureDimension::Dimension1D: return VK_IMAGE_VIEW_TYPE_1D;
case TextureDimension::Dimension2D: return VK_IMAGE_VIEW_TYPE_2D;
case TextureDimension::Dimension2DArray: return VK_IMAGE_VIEW_TYPE_2D_ARRAY;
case TextureDimension::DimensionCube: return VK_IMAGE_VIEW_TYPE_CUBE;
case TextureDimension::DimensionCubeArray: return VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
case TextureDimension::Dimension3D: return VK_IMAGE_VIEW_TYPE_3D;
default: return VK_IMAGE_VIEW_TYPE_MAX_ENUM;
}
};
if (UINT16_MAX != regIndex)
{
PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
kind = "predefined";
m_predefined[m_numPredefined].m_loc = regIndex;
m_predefined[m_numPredefined].m_count = regCount;
m_predefined[m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
m_numPredefined++;
}
else if (UniformType::End == (~kUniformMask & type) )
{
// regCount is used for descriptor type
const bool isBuffer = idToDescriptorType(regCount) == DescriptorType::StorageBuffer;
if (0 == regIndex)
{
continue;
}
const uint8_t reverseShift = m_oldBindingModel
? (fragment ? kSpirvOldFragmentShift : 0) + (isBuffer ? kSpirvOldBufferShift : kSpirvOldImageShift)
: kSpirvBindShift;
const uint16_t stage = regIndex - reverseShift; // regIndex is used for buffer binding index
m_bindInfo[stage].type = isBuffer ? BindType::Buffer : BindType::Image;
m_bindInfo[stage].uniformHandle = { 0 };
m_bindInfo[stage].binding = regIndex;
if (!isBuffer)
{
const VkImageViewType viewType = hasTexData
? textureDimensionToViewType(idToTextureDimension(texDimension) )
: VK_IMAGE_VIEW_TYPE_MAX_ENUM
;
if (VK_IMAGE_VIEW_TYPE_MAX_ENUM != viewType)
{
m_bindInfo[stage].index = m_numTextures;
m_textures[m_numTextures].type = viewType;
m_numTextures++;
}
}
kind = "storage";
}
else if (UniformType::Sampler == (~kUniformMask & type) )
{
const uint8_t reverseShift = m_oldBindingModel
? (fragment ? kSpirvOldFragmentShift : 0) + kSpirvOldTextureShift
: kSpirvBindShift;
const uint16_t stage = regIndex - reverseShift; // regIndex is used for image/sampler binding index
const UniformRegInfo* info = s_renderVK->m_uniformReg.find(name);
BX_ASSERT(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
m_bindInfo[stage].uniformHandle = info->m_handle;
m_bindInfo[stage].type = BindType::Sampler;
m_bindInfo[stage].binding = regIndex;
m_bindInfo[stage].samplerBinding = regIndex + kSpirvSamplerShift;
const VkImageViewType viewType = hasTexData
? textureDimensionToViewType(idToTextureDimension(texDimension) )
: VK_IMAGE_VIEW_TYPE_MAX_ENUM
;
if (VK_IMAGE_VIEW_TYPE_MAX_ENUM != viewType)
{
m_bindInfo[stage].index = m_numTextures;
m_textures[m_numTextures].type = viewType;
m_numTextures++;
}
kind = "sampler";
}
else
{
const UniformRegInfo* info = s_renderVK->m_uniformReg.find(name);
BX_ASSERT(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
if (NULL != info)
{
if (NULL == m_constantBuffer)
{
m_constantBuffer = UniformBuffer::create(1024);
}
kind = "user";
m_constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), regIndex, info->m_handle, regCount);
}
}
}
BX_TRACE("\t%s: %s (%s), r.index %3d, r.count %2d, r.texComponent %1d, r.texDimension %1d"
, kind
, name
, getUniformTypeName(UniformType::Enum(type&~kUniformMask) )
, regIndex
, regCount
, texComponent
, texDimension
);
BX_UNUSED(kind);
}
if (NULL != m_constantBuffer)
{
m_constantBuffer->finish();
}
}
uint32_t shaderSize;
bx::read(&reader, shaderSize, &err);
const void* code = reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
m_code = alloc(shaderSize);
bx::memCopy(m_code->data, code, shaderSize);
VkShaderModuleCreateInfo smci;
smci.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
smci.pNext = NULL;
smci.flags = 0;
smci.codeSize = m_code->size;
smci.pCode = (const uint32_t*)m_code->data;
// disassemble(bx::getDebugOut(), m_code->data, m_code->size);
VK_CHECK(vkCreateShaderModule(
s_renderVK->m_device
, &smci
, s_renderVK->m_allocatorCb
, &m_module
) );
bx::memSet(m_attrMask, 0, sizeof(m_attrMask) );
bx::memSet(m_attrRemap, 0, sizeof(m_attrRemap) );
bx::read(&reader, m_numAttrs, &err);
for (uint8_t ii = 0; ii < m_numAttrs; ++ii)
{
uint16_t id;
bx::read(&reader, id, &err);
Attrib::Enum attr = idToAttrib(id);
if (Attrib::Count != attr)
{
m_attrMask[attr] = UINT16_MAX;
m_attrRemap[attr] = ii;
}
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(hashIn);
murmur.add(hashOut);
murmur.add(m_code->data, m_code->size);
murmur.add(m_numAttrs);
murmur.add(m_attrMask, m_numAttrs);
murmur.add(m_attrRemap, m_numAttrs);
m_hash = murmur.end();
bx::read(&reader, m_size, &err);
// fill binding description with uniform information
uint16_t bidx = 0;
if (m_size > 0)
{
m_uniformBinding = fragment ? (m_oldBindingModel ? kSpirvOldFragmentBinding : kSpirvFragmentBinding) : 0;
VkDescriptorSetLayoutBinding& binding = m_bindings[bidx];
binding.stageFlags = shaderStage;
binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC;
binding.binding = m_uniformBinding;
binding.pImmutableSamplers = NULL;
binding.descriptorCount = 1;
bidx++;
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_bindInfo); ++ii)
{
switch (m_bindInfo[ii].type)
{
case BindType::Buffer:
case BindType::Image:
{
VkDescriptorSetLayoutBinding& binding = m_bindings[bidx];
binding.stageFlags = shaderStage;
binding.descriptorType = BindType::Buffer == m_bindInfo[ii].type
? VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
: VK_DESCRIPTOR_TYPE_STORAGE_IMAGE
;
binding.binding = m_bindInfo[ii].binding;
binding.pImmutableSamplers = NULL;
binding.descriptorCount = 1;
bidx++;
}
break;
case BindType::Sampler:
{
VkDescriptorSetLayoutBinding& textureBinding = m_bindings[bidx];
textureBinding.stageFlags = shaderStage;
textureBinding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE;
textureBinding.binding = m_bindInfo[ii].binding;
textureBinding.pImmutableSamplers = NULL;
textureBinding.descriptorCount = 1;
bidx++;
VkDescriptorSetLayoutBinding& samplerBinding = m_bindings[bidx];
samplerBinding.stageFlags = shaderStage;
samplerBinding.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER;
samplerBinding.binding = m_bindInfo[ii].samplerBinding;
samplerBinding.pImmutableSamplers = NULL;
samplerBinding.descriptorCount = 1;
bidx++;
}
break;
default:
break;
}
}
m_numBindings = bidx;
}
void ShaderVK::destroy()
{
if (NULL != m_constantBuffer)
{
UniformBuffer::destroy(m_constantBuffer);
m_constantBuffer = NULL;
}
m_numPredefined = 0;
if (NULL != m_code)
{
release(m_code);
m_code = NULL;
m_hash = 0;
}
if (VK_NULL_HANDLE != m_module)
{
vkDestroy(m_module);
}
}
void ProgramVK::create(const ShaderVK* _vsh, const ShaderVK* _fsh)
{
BX_ASSERT(NULL != _vsh->m_code, "Vertex shader doesn't exist.");
m_vsh = _vsh;
bx::memCopy(
&m_predefined[0]
, _vsh->m_predefined
, _vsh->m_numPredefined * sizeof(PredefinedUniform)
);
m_numPredefined = _vsh->m_numPredefined;
if (NULL != _fsh)
{
BX_ASSERT(NULL != _fsh->m_code, "Fragment shader doesn't exist.");
m_fsh = _fsh;
bx::memCopy(
&m_predefined[m_numPredefined]
, _fsh->m_predefined
, _fsh->m_numPredefined * sizeof(PredefinedUniform)
);
m_numPredefined += _fsh->m_numPredefined;
}
m_numTextures = 0;
for (uint8_t stage = 0; stage < BX_COUNTOF(m_bindInfo); ++stage)
{
const ShaderVK* shader = NULL;
if (isValid(m_vsh->m_bindInfo[stage].uniformHandle) )
{
shader = _vsh;
BX_ASSERT(false
|| NULL == m_fsh
|| !isValid(m_fsh->m_bindInfo[stage].uniformHandle)
|| !(m_vsh->m_oldBindingModel || m_fsh->m_oldBindingModel)
, "Shared vertex/fragment bindings require shader binary version >= 11."
);
}
else if (NULL != m_fsh
&& isValid(m_fsh->m_bindInfo[stage].uniformHandle) )
{
shader = _fsh;
}
if (NULL != shader)
{
m_bindInfo[stage] = shader->m_bindInfo[stage];
uint32_t& index = m_bindInfo[stage].index;
if (UINT32_MAX != index)
{
m_textures[m_numTextures] = shader->m_textures[index];
index = m_numTextures;
m_numTextures++;
}
}
}
// create exact pipeline layout
m_descriptorSetLayout = VK_NULL_HANDLE;
uint32_t numBindings = m_vsh->m_numBindings + (m_fsh ? m_fsh->m_numBindings : 0);
if (0 < numBindings)
{
// generate descriptor set layout hash
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(m_vsh->m_bindings, sizeof(VkDescriptorSetLayoutBinding) * m_vsh->m_numBindings);
if (NULL != m_fsh)
{
murmur.add(m_fsh->m_bindings, sizeof(VkDescriptorSetLayoutBinding) * m_fsh->m_numBindings);
}
uint32_t descriptorSetLayoutHash = murmur.end();
m_descriptorSetLayout = s_renderVK->m_descriptorSetLayoutCache.find(descriptorSetLayoutHash);
if (VK_NULL_HANDLE == m_descriptorSetLayout)
{
VkDescriptorSetLayoutBinding bindings[2 * BX_COUNTOF(ShaderVK::m_bindings)];
bx::memCopy(
bindings
, m_vsh->m_bindings
, sizeof(VkDescriptorSetLayoutBinding) * m_vsh->m_numBindings
);
numBindings = m_vsh->m_numBindings;
if (NULL != m_fsh)
{
for (uint16_t ii = 0; ii < m_fsh->m_numBindings; ii++)
{
const VkDescriptorSetLayoutBinding& fsBinding = m_fsh->m_bindings[ii];
uint16_t vsBindingIdx = UINT16_MAX;
for (uint16_t jj = 0; jj < m_vsh->m_numBindings; jj++)
{
if (fsBinding.binding == bindings[jj].binding)
{
vsBindingIdx = jj;
break;
}
}
if (UINT16_MAX != vsBindingIdx)
{
BX_ASSERT(
bindings[vsBindingIdx].descriptorType == fsBinding.descriptorType
, "Mismatching descriptor types. Shaders compiled with different versions of shaderc?"
);
bindings[vsBindingIdx].stageFlags |= fsBinding.stageFlags;
}
else
{
bindings[numBindings] = fsBinding;
numBindings++;
}
}
}
VkDescriptorSetLayoutCreateInfo dslci;
dslci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
dslci.pNext = NULL;
dslci.flags = 0;
dslci.bindingCount = numBindings;
dslci.pBindings = bindings;
VK_CHECK(vkCreateDescriptorSetLayout(
s_renderVK->m_device
, &dslci
, s_renderVK->m_allocatorCb
, &m_descriptorSetLayout
) );
s_renderVK->m_descriptorSetLayoutCache.add(descriptorSetLayoutHash, m_descriptorSetLayout);
}
}
VkPipelineLayoutCreateInfo plci;
plci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
plci.pNext = NULL;
plci.flags = 0;
plci.pushConstantRangeCount = 0;
plci.pPushConstantRanges = NULL;
plci.setLayoutCount = (m_descriptorSetLayout == VK_NULL_HANDLE ? 0 : 1);
plci.pSetLayouts = &m_descriptorSetLayout;
VK_CHECK(vkCreatePipelineLayout(
s_renderVK->m_device
, &plci
, s_renderVK->m_allocatorCb
, &m_pipelineLayout
) );
}
void ProgramVK::destroy()
{
s_renderVK->release(m_pipelineLayout);
m_numPredefined = 0;
m_vsh = NULL;
m_fsh = NULL;
}
VkResult TimerQueryVK::init()
{
VkResult result = VK_SUCCESS;
const VkDevice device = s_renderVK->m_device;
const VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
const uint32_t count = m_control.m_size * 2;
VkQueryPoolCreateInfo qpci;
qpci.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
qpci.pNext = NULL;
qpci.flags = 0;
qpci.queryType = VK_QUERY_TYPE_TIMESTAMP;
qpci.queryCount = count;
qpci.pipelineStatistics = 0;
result = vkCreateQueryPool(device, &qpci, s_renderVK->m_allocatorCb, &m_queryPool);
if (VK_SUCCESS != result)
{
BX_TRACE("Create timer query error: vkCreateQueryPool failed %d: %s.", result, getName(result) );
return result;
}
vkCmdResetQueryPool(commandBuffer, m_queryPool, 0, count);
const uint32_t size = count * sizeof(uint64_t);
result = s_renderVK->createReadbackBuffer(size, &m_readback, &m_readbackMemory);
if (VK_SUCCESS != result)
{
return result;
}
result = vkMapMemory(device, m_readbackMemory, 0, VK_WHOLE_SIZE, 0, (void**)&m_queryResult);
if (VK_SUCCESS != result)
{
BX_TRACE("Create timer query error: vkMapMemory failed %d: %s.", result, getName(result) );
return result;
}
m_frequency = uint64_t(1000000000.0 / double(s_renderVK->m_deviceProperties.limits.timestampPeriod) );
for (uint32_t ii = 0; ii < BX_COUNTOF(m_result); ++ii)
{
m_result[ii].reset();
}
m_control.reset();
return result;
}
void TimerQueryVK::shutdown()
{
vkDestroy(m_queryPool);
vkDestroy(m_readback);
vkUnmapMemory(s_renderVK->m_device, m_readbackMemory);
vkDestroy(m_readbackMemory);
}
uint32_t TimerQueryVK::begin(uint32_t _resultIdx, uint32_t _frameNum)
{
while (0 == m_control.reserve(1) )
{
m_control.consume(1);
}
Result& result = m_result[_resultIdx];
++result.m_pending;
const uint32_t idx = m_control.m_current;
Query& query = m_query[idx];
query.m_resultIdx = _resultIdx;
query.m_ready = false;
query.m_frameNum = _frameNum;
const VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
const uint32_t offset = idx * 2 + 0;
vkCmdResetQueryPool(commandBuffer, m_queryPool, offset, 2);
vkCmdWriteTimestamp(commandBuffer, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, m_queryPool, offset + 0);
m_control.commit(1);
return idx;
}
void TimerQueryVK::end(uint32_t _idx)
{
Query& query = m_query[_idx];
query.m_ready = true;
query.m_completed = s_renderVK->m_cmd.m_submitted + s_renderVK->m_cmd.m_numFramesInFlight;
const VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
const uint32_t offset = _idx * 2 + 0;
vkCmdWriteTimestamp(commandBuffer, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, m_queryPool, offset + 1);
vkCmdCopyQueryPoolResults(
commandBuffer
, m_queryPool
, offset
, 2
, m_readback
, offset * sizeof(uint64_t)
, sizeof(uint64_t)
, VK_QUERY_RESULT_WAIT_BIT | VK_QUERY_RESULT_64_BIT
);
setMemoryBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT);
while (update() )
{
}
}
bool TimerQueryVK::update()
{
if (0 != m_control.available() )
{
uint32_t idx = m_control.m_read;
Query& query = m_query[idx];
if (!query.m_ready)
{
return false;
}
if (query.m_completed > s_renderVK->m_cmd.m_submitted)
{
return false;
}
m_control.consume(1);
Result& result = m_result[query.m_resultIdx];
--result.m_pending;
result.m_frameNum = query.m_frameNum;
uint32_t offset = idx * 2;
result.m_begin = m_queryResult[offset+0];
result.m_end = m_queryResult[offset+1];
return true;
}
return false;
}
VkResult OcclusionQueryVK::init()
{
VkResult result = VK_SUCCESS;
const VkDevice device = s_renderVK->m_device;
const VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
const uint32_t count = BX_COUNTOF(m_handle);
VkQueryPoolCreateInfo qpci;
qpci.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
qpci.pNext = NULL;
qpci.flags = 0;
qpci.queryType = VK_QUERY_TYPE_OCCLUSION;
qpci.queryCount = count;
qpci.pipelineStatistics = 0;
result = vkCreateQueryPool(device, &qpci, s_renderVK->m_allocatorCb, &m_queryPool);
if (VK_SUCCESS != result)
{
BX_TRACE("Create occlusion query error: vkCreateQueryPool failed %d: %s.", result, getName(result) );
return result;
}
vkCmdResetQueryPool(commandBuffer, m_queryPool, 0, count);
const uint32_t size = count * sizeof(uint32_t);
result = s_renderVK->createReadbackBuffer(size, &m_readback, &m_readbackMemory);
if (VK_SUCCESS != result)
{
return result;
}
result = vkMapMemory(device, m_readbackMemory, 0, VK_WHOLE_SIZE, 0, (void**)&m_queryResult);
if (VK_SUCCESS != result)
{
BX_TRACE("Create occlusion query error: vkMapMemory failed %d: %s.", result, getName(result) );
return result;
}
m_control.reset();
return result;
}
void OcclusionQueryVK::shutdown()
{
vkDestroy(m_queryPool);
vkDestroy(m_readback);
vkUnmapMemory(s_renderVK->m_device, m_readbackMemory);
vkDestroy(m_readbackMemory);
}
void OcclusionQueryVK::begin(OcclusionQueryHandle _handle)
{
m_control.reserve(1);
const VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
m_handle[m_control.m_current] = _handle;
vkCmdBeginQuery(commandBuffer, m_queryPool, _handle.idx, 0);
}
void OcclusionQueryVK::end()
{
const VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
const OcclusionQueryHandle handle = m_handle[m_control.m_current];
vkCmdEndQuery(commandBuffer, m_queryPool, handle.idx);
m_control.commit(1);
}
void OcclusionQueryVK::flush(Frame* _render)
{
if (0 < m_control.available() )
{
VkCommandBuffer commandBuffer = s_renderVK->m_commandBuffer;
const uint32_t size = m_control.m_size;
// need to copy each result individually because VK_QUERY_RESULT_WAIT_BIT causes
// vkWaitForFences to hang indefinitely if we copy all results (including unavailable ones)
for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii)
{
const OcclusionQueryHandle& handle = m_handle[(m_control.m_read + ii) % size];
if (isValid(handle) )
{
vkCmdCopyQueryPoolResults(
commandBuffer
, m_queryPool
, handle.idx
, 1
, m_readback
, handle.idx * sizeof(uint32_t)
, sizeof(uint32_t)
, VK_QUERY_RESULT_WAIT_BIT
);
}
}
setMemoryBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT);
s_renderVK->kick(true);
commandBuffer = s_renderVK->m_commandBuffer;
// resetting in the new command buffer prevents a false positive validation layer error
const uint32_t count = BX_COUNTOF(m_handle);
vkCmdResetQueryPool(commandBuffer, m_queryPool, 0, count);
resolve(_render);
}
}
void OcclusionQueryVK::resolve(Frame* _render)
{
while (0 != m_control.available() )
{
OcclusionQueryHandle handle = m_handle[m_control.m_read];
if (isValid(handle) )
{
_render->m_occlusion[handle.idx] = m_queryResult[handle.idx];
}
m_control.consume(1);
}
}
void OcclusionQueryVK::invalidate(OcclusionQueryHandle _handle)
{
const uint32_t size = m_control.m_size;
for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii)
{
OcclusionQueryHandle& handle = m_handle[(m_control.m_read + ii) % size];
if (handle.idx == _handle.idx)
{
handle.idx = bgfx::kInvalidHandle;
}
}
}
void ReadbackVK::create(VkImage _image, uint32_t _width, uint32_t _height, TextureFormat::Enum _format)
{
m_image = _image;
m_width = _width;
m_height = _height;
m_format = _format;
}
void ReadbackVK::destroy()
{
m_image = VK_NULL_HANDLE;
}
uint32_t ReadbackVK::pitch(uint8_t _mip) const
{
uint32_t mipWidth = bx::uint32_max(1, m_width >> _mip);
uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_format) );
return mipWidth * bpp / 8;
}
void ReadbackVK::copyImageToBuffer(VkCommandBuffer _commandBuffer, VkBuffer _buffer, VkImageLayout _layout, VkImageAspectFlags _aspect, uint8_t _mip) const
{
uint32_t mipWidth = bx::uint32_max(1, m_width >> _mip);
uint32_t mipHeight = bx::uint32_max(1, m_height >> _mip);
setImageMemoryBarrier(
_commandBuffer
, m_image
, _aspect
, _layout
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, _mip
, 1
, 0
, 1
);
VkBufferImageCopy bic;
bic.bufferOffset = 0;
bic.bufferRowLength = mipWidth;
bic.bufferImageHeight = mipHeight;
bic.imageSubresource.aspectMask = _aspect;
bic.imageSubresource.mipLevel = _mip;
bic.imageSubresource.baseArrayLayer = 0;
bic.imageSubresource.layerCount = 1;
bic.imageOffset = { 0, 0, 0 };
bic.imageExtent = { mipWidth, mipHeight, 1 };
vkCmdCopyImageToBuffer(
_commandBuffer
, m_image
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, _buffer
, 1
, &bic
);
// Make changes to the buffer visible to the host
setMemoryBarrier(
_commandBuffer
, VK_PIPELINE_STAGE_TRANSFER_BIT
, VK_PIPELINE_STAGE_HOST_BIT
);
setImageMemoryBarrier(
_commandBuffer
, m_image
, _aspect
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, _layout
, _mip
, 1
, 0
, 1
);
}
void ReadbackVK::readback(VkDeviceMemory _memory, VkDeviceSize _offset, void* _data, uint8_t _mip) const
{
if (m_image == VK_NULL_HANDLE)
{
return;
}
uint32_t mipHeight = bx::uint32_max(1, m_height >> _mip);
uint32_t rowPitch = pitch(_mip);
uint8_t* src;
VK_CHECK(vkMapMemory(s_renderVK->m_device, _memory, 0, VK_WHOLE_SIZE, 0, (void**)&src) );
src += _offset;
uint8_t* dst = (uint8_t*)_data;
for (uint32_t yy = 0; yy < mipHeight; ++yy)
{
bx::memCopy(dst, src, rowPitch);
src += rowPitch;
dst += rowPitch;
}
vkUnmapMemory(s_renderVK->m_device, _memory);
}
VkResult TextureVK::create(VkCommandBuffer _commandBuffer, uint32_t _width, uint32_t _height, uint64_t _flags, VkFormat _format)
{
BX_ASSERT(0 != (_flags & BGFX_TEXTURE_RT_MASK), "");
_flags |= BGFX_TEXTURE_RT_WRITE_ONLY;
m_flags = _flags;
m_width = _width;
m_height = _height;
m_depth = 1;
m_numLayers = 1;
m_requestedFormat = uint8_t(bimg::TextureFormat::Count);
m_textureFormat = uint8_t(bimg::TextureFormat::Count);
m_format = _format;
m_components = { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY };
m_aspectMask = getAspectMask(m_format);
m_sampler = s_msaa[bx::uint32_satsub( (m_flags & BGFX_TEXTURE_RT_MSAA_MASK) >> BGFX_TEXTURE_RT_MSAA_SHIFT, 1)];
m_type = VK_IMAGE_VIEW_TYPE_2D;
m_numMips = 1;
m_numSides = 1;
VkResult result = createImages(_commandBuffer);
if (VK_SUCCESS == result)
{
const VkImageLayout layout = 0 != (m_aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) )
? VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
;
setImageMemoryBarrier(_commandBuffer, layout);
}
return result;
}
VkResult TextureVK::createImages(VkCommandBuffer _commandBuffer)
{
VkResult result = VK_SUCCESS;
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
const VkDevice device = s_renderVK->m_device;
if (m_sampler.Count > 1)
{
BX_ASSERT(VK_IMAGE_VIEW_TYPE_3D != m_type, "Can't create multisample 3D image.");
BX_ASSERT(m_numMips <= 1, "Can't create multisample image with mip chain.");
}
// create texture and allocate its device memory
VkImageCreateInfo ici;
ici.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
ici.pNext = NULL;
ici.flags = 0
| (VK_IMAGE_VIEW_TYPE_CUBE == m_type
? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT
: 0
)
| (VK_IMAGE_VIEW_TYPE_3D == m_type
? VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT_KHR
: 0
)
;
ici.pQueueFamilyIndices = NULL;
ici.queueFamilyIndexCount = 0;
ici.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
ici.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ici.usage = 0
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT
| (m_flags & BGFX_TEXTURE_RT_MASK
? (m_aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)
? VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
: VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
: 0
)
| (m_flags & BGFX_TEXTURE_COMPUTE_WRITE ? VK_IMAGE_USAGE_STORAGE_BIT : 0)
;
ici.format = m_format;
ici.samples = m_sampler.Sample;
ici.mipLevels = m_numMips;
ici.arrayLayers = m_numSides;
ici.extent.width = m_width;
ici.extent.height = m_height;
ici.extent.depth = m_depth;
ici.imageType = VK_IMAGE_VIEW_TYPE_3D == m_type
? VK_IMAGE_TYPE_3D
: VK_IMAGE_TYPE_2D
;
ici.tiling = VK_IMAGE_TILING_OPTIMAL;
result = vkCreateImage(device, &ici, allocatorCb, &m_textureImage);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture image error: vkCreateImage failed %d: %s.", result, getName(result) );
return result;
}
VkMemoryRequirements imageMemReq;
vkGetImageMemoryRequirements(device, m_textureImage, &imageMemReq);
result = s_renderVK->allocateMemory(&imageMemReq, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &m_textureDeviceMem);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture image error: allocateMemory failed %d: %s.", result, getName(result) );
return result;
}
result = vkBindImageMemory(device, m_textureImage, m_textureDeviceMem, 0);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture image error: vkBindImageMemory failed %d: %s.", result, getName(result) );
return result;
}
m_sampledLayout = m_flags & BGFX_TEXTURE_COMPUTE_WRITE
? VK_IMAGE_LAYOUT_GENERAL
: VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
;
const bool needResolve = true
&& 1 < m_sampler.Count
&& 0 != (ici.usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
&& 0 == (m_flags & BGFX_TEXTURE_MSAA_SAMPLE)
&& 0 == (m_flags & BGFX_TEXTURE_RT_WRITE_ONLY)
;
if (needResolve)
{
VkImageCreateInfo ici_resolve = ici;
ici_resolve.samples = s_msaa[0].Sample;
ici_resolve.usage &= ~VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
ici_resolve.flags &= ~VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
result = vkCreateImage(device, &ici_resolve, allocatorCb, &m_singleMsaaImage);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture image error: vkCreateImage failed %d: %s.", result, getName(result) );
return result;
}
VkMemoryRequirements imageMemReq_resolve;
vkGetImageMemoryRequirements(device, m_singleMsaaImage, &imageMemReq_resolve);
result = s_renderVK->allocateMemory(&imageMemReq_resolve, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &m_singleMsaaDeviceMem);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture image error: allocateMemory failed %d: %s.", result, getName(result) );
return result;
}
result = vkBindImageMemory(device, m_singleMsaaImage, m_singleMsaaDeviceMem, 0);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture image error: vkBindImageMemory failed %d: %s.", result, getName(result) );
return result;
}
setImageMemoryBarrier(_commandBuffer, m_sampledLayout, true);
}
return result;
}
void* TextureVK::create(VkCommandBuffer _commandBuffer, const Memory* _mem, uint64_t _flags, uint8_t _skip)
{
bimg::ImageContainer imageContainer;
if (bimg::imageParse(imageContainer, _mem->data, _mem->size) )
{
const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(imageContainer.m_format);
const uint8_t startLod = bx::min<uint8_t>(_skip, imageContainer.m_numMips - 1);
bimg::TextureInfo ti;
bimg::imageGetSize(
&ti
, uint16_t(imageContainer.m_width >> startLod)
, uint16_t(imageContainer.m_height >> startLod)
, uint16_t(imageContainer.m_depth >> startLod)
, imageContainer.m_cubeMap
, 1 < imageContainer.m_numMips
, imageContainer.m_numLayers
, imageContainer.m_format
);
ti.numMips = bx::min<uint8_t>(imageContainer.m_numMips - startLod, ti.numMips);
m_flags = _flags;
m_width = ti.width;
m_height = ti.height;
m_depth = ti.depth;
m_numLayers = ti.numLayers;
m_requestedFormat = uint8_t(imageContainer.m_format);
m_textureFormat = uint8_t(getViableTextureFormat(imageContainer) );
m_format = bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) )
? s_textureFormat[m_textureFormat].m_fmtDsv
: (m_flags & BGFX_TEXTURE_SRGB) ? s_textureFormat[m_textureFormat].m_fmtSrgb : s_textureFormat[m_textureFormat].m_fmt
;
m_components = s_textureFormat[m_textureFormat].m_mapping;
const bool convert = m_textureFormat != m_requestedFormat;
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
m_aspectMask = getAspectMask(m_format);
m_sampler = s_msaa[bx::uint32_satsub( (m_flags & BGFX_TEXTURE_RT_MSAA_MASK) >> BGFX_TEXTURE_RT_MSAA_SHIFT, 1)];
if (imageContainer.m_cubeMap)
{
m_type = imageContainer.m_numLayers > 1
? VK_IMAGE_VIEW_TYPE_CUBE_ARRAY
: VK_IMAGE_VIEW_TYPE_CUBE
;
}
else if (imageContainer.m_depth > 1)
{
m_type = VK_IMAGE_VIEW_TYPE_3D;
}
else if (imageContainer.m_numLayers > 1)
{
m_type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
}
else
{
m_type = VK_IMAGE_VIEW_TYPE_2D;
}
m_numMips = ti.numMips;
m_numSides = ti.numLayers * (imageContainer.m_cubeMap ? 6 : 1);
const uint16_t numSides = ti.numLayers * (imageContainer.m_cubeMap ? 6 : 1);
const uint32_t numSrd = numSides * ti.numMips;
uint32_t kk = 0;
const bool compressed = bimg::isCompressed(bimg::TextureFormat::Enum(m_textureFormat) );
const bool swizzle = TextureFormat::BGRA8 == m_textureFormat && 0 != (m_flags & BGFX_TEXTURE_COMPUTE_WRITE);
const bool writeOnly = 0 != (m_flags & BGFX_TEXTURE_RT_WRITE_ONLY);
const bool computeWrite = 0 != (m_flags & BGFX_TEXTURE_COMPUTE_WRITE);
const bool renderTarget = 0 != (m_flags & BGFX_TEXTURE_RT_MASK);
const bool blit = 0 != (m_flags & BGFX_TEXTURE_BLIT_DST);
BX_UNUSED(swizzle, writeOnly, computeWrite, renderTarget, blit);
BX_TRACE(
"Texture %3d: %s (requested: %s), %dx%dx%d%s RT[%c], BO[%c], CW[%c]%s."
, (int)(this - s_renderVK->m_textures)
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, ti.width
, ti.height
, ti.depth
, imageContainer.m_cubeMap ? "x6" : ""
, renderTarget ? 'x' : ' '
, writeOnly ? 'x' : ' '
, computeWrite ? 'x' : ' '
, swizzle ? " (swizzle BGRA8 -> RGBA8)" : ""
);
VK_CHECK(createImages(_commandBuffer) );
// decode images
struct ImageInfo
{
uint8_t* data;
uint32_t width;
uint32_t height;
uint32_t depth;
uint32_t pitch;
uint32_t slice;
uint32_t size;
uint8_t mipLevel;
uint8_t layer;
};
ImageInfo* imageInfos = (ImageInfo*)BX_ALLOC(g_allocator, sizeof(ImageInfo) * numSrd);
bx::memSet(imageInfos, 0, sizeof(ImageInfo) * numSrd);
uint32_t alignment = 1; // tightly aligned buffer
for (uint16_t side = 0; side < numSides; ++side)
{
for (uint8_t lod = 0; lod < ti.numMips; ++lod)
{
bimg::ImageMip mip;
if (bimg::imageGetRawData(imageContainer, side, lod + startLod, _mem->data, _mem->size, mip) )
{
if (convert)
{
const uint32_t pitch = bx::strideAlign(bx::max<uint32_t>(mip.m_width, 4) * bpp / 8, alignment);
const uint32_t slice = bx::strideAlign(bx::max<uint32_t>(mip.m_height, 4) * pitch, alignment);
const uint32_t size = slice * mip.m_depth;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, size);
bimg::imageDecodeToBgra8(
g_allocator
, temp
, mip.m_data
, mip.m_width
, mip.m_height
, pitch
, mip.m_format
);
imageInfos[kk].data = temp;
imageInfos[kk].width = mip.m_width;
imageInfos[kk].height = mip.m_height;
imageInfos[kk].depth = mip.m_depth;
imageInfos[kk].pitch = pitch;
imageInfos[kk].slice = slice;
imageInfos[kk].size = size;
imageInfos[kk].mipLevel = lod;
imageInfos[kk].layer = side;
}
else if (compressed)
{
const uint32_t pitch = bx::strideAlign( (mip.m_width / blockInfo.blockWidth) * mip.m_blockSize, alignment);
const uint32_t slice = bx::strideAlign( (mip.m_height / blockInfo.blockHeight) * pitch, alignment);
const uint32_t size = slice * mip.m_depth;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, size);
bimg::imageCopy(
temp
, mip.m_height / blockInfo.blockHeight
, (mip.m_width / blockInfo.blockWidth) * mip.m_blockSize
, mip.m_depth
, mip.m_data
, pitch
);
imageInfos[kk].data = temp;
imageInfos[kk].width = mip.m_width;
imageInfos[kk].height = mip.m_height;
imageInfos[kk].depth = mip.m_depth;
imageInfos[kk].pitch = pitch;
imageInfos[kk].slice = slice;
imageInfos[kk].size = size;
imageInfos[kk].mipLevel = lod;
imageInfos[kk].layer = side;
}
else
{
const uint32_t pitch = bx::strideAlign(mip.m_width * mip.m_bpp / 8, alignment);
const uint32_t slice = bx::strideAlign(mip.m_height * pitch, alignment);
const uint32_t size = slice * mip.m_depth;
uint8_t* temp = (uint8_t*)BX_ALLOC(g_allocator, size);
bimg::imageCopy(
temp
, mip.m_height
, mip.m_width * mip.m_bpp / 8
, mip.m_depth
, mip.m_data
, pitch
);
imageInfos[kk].data = temp;
imageInfos[kk].width = mip.m_width;
imageInfos[kk].height = mip.m_height;
imageInfos[kk].depth = mip.m_depth;
imageInfos[kk].pitch = pitch;
imageInfos[kk].slice = slice;
imageInfos[kk].size = size;
imageInfos[kk].mipLevel = lod;
imageInfos[kk].layer = side;
}
}
++kk;
}
}
uint32_t totalMemSize = 0;
VkBufferImageCopy* bufferCopyInfo = (VkBufferImageCopy*)BX_ALLOC(g_allocator, sizeof(VkBufferImageCopy) * numSrd);
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
const uint32_t idealWidth = bx::max<uint32_t>(1, m_width >> imageInfos[ii].mipLevel);
const uint32_t idealHeight = bx::max<uint32_t>(1, m_height >> imageInfos[ii].mipLevel);
bufferCopyInfo[ii].bufferOffset = totalMemSize;
bufferCopyInfo[ii].bufferRowLength = 0; // assume that image data are tightly aligned
bufferCopyInfo[ii].bufferImageHeight = 0; // assume that image data are tightly aligned
bufferCopyInfo[ii].imageSubresource.aspectMask = m_aspectMask;
bufferCopyInfo[ii].imageSubresource.mipLevel = imageInfos[ii].mipLevel;
bufferCopyInfo[ii].imageSubresource.baseArrayLayer = imageInfos[ii].layer;
bufferCopyInfo[ii].imageSubresource.layerCount = 1;
bufferCopyInfo[ii].imageOffset = { 0, 0, 0 };
bufferCopyInfo[ii].imageExtent = { idealWidth, idealHeight, imageInfos[ii].depth };
totalMemSize += imageInfos[ii].size;
}
if (totalMemSize > 0)
{
const VkDevice device = s_renderVK->m_device;
VkBuffer stagingBuffer;
VkDeviceMemory stagingDeviceMem;
VK_CHECK(s_renderVK->createStagingBuffer(totalMemSize, &stagingBuffer, &stagingDeviceMem) );
uint8_t* mappedMemory;
VK_CHECK(vkMapMemory(
device
, stagingDeviceMem
, 0
, totalMemSize
, 0
, (void**)&mappedMemory
) );
// copy image to staging buffer
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
bx::memCopy(mappedMemory, imageInfos[ii].data, imageInfos[ii].size);
mappedMemory += imageInfos[ii].size;
}
vkUnmapMemory(device, stagingDeviceMem);
copyBufferToTexture(_commandBuffer, stagingBuffer, numSrd, bufferCopyInfo);
s_renderVK->release(stagingBuffer);
s_renderVK->release(stagingDeviceMem);
}
else
{
setImageMemoryBarrier(_commandBuffer, m_sampledLayout);
}
BX_FREE(g_allocator, bufferCopyInfo);
for (uint32_t ii = 0; ii < numSrd; ++ii)
{
BX_FREE(g_allocator, imageInfos[ii].data);
}
BX_FREE(g_allocator, imageInfos);
m_readback.create(m_textureImage, m_width, m_height, TextureFormat::Enum(m_textureFormat) );
}
return m_directAccessPtr;
}
void TextureVK::destroy()
{
m_readback.destroy();
if (VK_NULL_HANDLE != m_textureImage)
{
s_renderVK->release(m_textureImage);
s_renderVK->release(m_textureDeviceMem);
}
if (VK_NULL_HANDLE != m_singleMsaaImage)
{
s_renderVK->release(m_singleMsaaImage);
s_renderVK->release(m_singleMsaaDeviceMem);
}
m_currentImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
m_currentSingleMsaaImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
void TextureVK::update(VkCommandBuffer _commandBuffer, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
uint32_t rectpitch = _rect.m_width * bpp / 8;
uint32_t slicepitch = rectpitch * _rect.m_height;
if (bimg::isCompressed(bimg::TextureFormat::Enum(m_textureFormat) ) )
{
const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(m_textureFormat) );
rectpitch = (_rect.m_width / blockInfo.blockWidth ) * blockInfo.blockSize;
slicepitch = (_rect.m_height / blockInfo.blockHeight) * rectpitch;
}
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const uint32_t size = UINT16_MAX == _pitch ? slicepitch * _depth: _rect.m_height * _pitch * _depth;
const bool convert = m_textureFormat != m_requestedFormat;
VkBufferImageCopy region;
region.bufferOffset = 0;
region.bufferRowLength = (_pitch == UINT16_MAX ? 0 : _pitch * 8 / bpp);
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = m_aspectMask;
region.imageSubresource.mipLevel = _mip;
region.imageSubresource.baseArrayLayer = 0;
region.imageSubresource.layerCount = 1;
region.imageOffset = { _rect.m_x, _rect.m_y, 0 };
region.imageExtent = { _rect.m_width, _rect.m_height, _depth };
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, slicepitch);
bimg::imageDecodeToBgra8(g_allocator, temp, data, _rect.m_width, _rect.m_height, srcpitch, bimg::TextureFormat::Enum(m_requestedFormat));
data = temp;
region.imageExtent =
{
bx::max(1u, m_width >> _mip),
bx::max(1u, m_height >> _mip),
_depth,
};
}
VkBuffer stagingBuffer = VK_NULL_HANDLE;
VkDeviceMemory stagingDeviceMem = VK_NULL_HANDLE;
VK_CHECK(s_renderVK->createStagingBuffer(size, &stagingBuffer, &stagingDeviceMem, data) );
if (VK_IMAGE_VIEW_TYPE_3D == m_type)
{
region.imageOffset.z = _z;
}
else if (VK_IMAGE_VIEW_TYPE_CUBE == m_type
|| VK_IMAGE_VIEW_TYPE_CUBE_ARRAY == m_type)
{
region.imageSubresource.baseArrayLayer = _z * 6 + _side;
}
else
{
region.imageSubresource.baseArrayLayer = _z;
}
copyBufferToTexture(_commandBuffer, stagingBuffer, 1, &region);
s_renderVK->release(stagingBuffer);
s_renderVK->release(stagingDeviceMem);
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void TextureVK::resolve(VkCommandBuffer _commandBuffer, uint8_t _resolve, uint32_t _layer, uint32_t _numLayers, uint32_t _mip)
{
const bool needResolve = VK_NULL_HANDLE != m_singleMsaaImage;
const bool needMipGen = true
&& !needResolve
&& 0 != (m_flags & BGFX_TEXTURE_RT_MASK)
&& 0 == (m_flags & BGFX_TEXTURE_RT_WRITE_ONLY)
&& (_mip + 1) < m_numMips
&& 0 != (_resolve & BGFX_RESOLVE_AUTO_GEN_MIPS);
const VkImageLayout oldLayout = m_currentImageLayout;
const VkImageLayout oldSingleMsaaLayout = m_currentSingleMsaaImageLayout;
if (needResolve)
{
setImageMemoryBarrier(_commandBuffer, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
setImageMemoryBarrier(_commandBuffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, true);
VkImageResolve resolve;
resolve.srcOffset.x = 0;
resolve.srcOffset.y = 0;
resolve.srcOffset.z = 0;
resolve.dstOffset.x = 0;
resolve.dstOffset.y = 0;
resolve.dstOffset.z = 0;
resolve.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolve.srcSubresource.mipLevel = _mip;
resolve.srcSubresource.baseArrayLayer = _layer;
resolve.srcSubresource.layerCount = _numLayers;
resolve.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolve.dstSubresource.mipLevel = _mip;
resolve.dstSubresource.baseArrayLayer = _layer;
resolve.dstSubresource.layerCount = _numLayers;
resolve.extent.width = m_width;
resolve.extent.height = m_height;
resolve.extent.depth = 1;
vkCmdResolveImage(
_commandBuffer
, m_textureImage
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, m_singleMsaaImage
, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
, 1
, &resolve
);
}
if (needMipGen)
{
setImageMemoryBarrier(_commandBuffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
int32_t mipWidth = bx::max<int32_t>(int32_t(m_width) >> _mip, 1);
int32_t mipHeight = bx::max<int32_t>(int32_t(m_height) >> _mip, 1);
const VkFilter filter = bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) )
? VK_FILTER_NEAREST
: VK_FILTER_LINEAR
;
VkImageBlit blit;
blit.srcOffsets[0] = { 0, 0, 0 };
blit.srcOffsets[1] = { mipWidth, mipHeight, 1 };
blit.srcSubresource.aspectMask = m_aspectMask;
blit.srcSubresource.mipLevel = 0;
blit.srcSubresource.baseArrayLayer = _layer;
blit.srcSubresource.layerCount = _numLayers;
blit.dstOffsets[0] = { 0, 0, 0 };
blit.dstOffsets[1] = { mipWidth, mipHeight, 1 };
blit.dstSubresource.aspectMask = m_aspectMask;
blit.dstSubresource.mipLevel = 0;
blit.dstSubresource.baseArrayLayer = _layer;
blit.dstSubresource.layerCount = _numLayers;
for (uint32_t i = _mip + 1; i < m_numMips; i++)
{
blit.srcOffsets[1] = { mipWidth, mipHeight, 1 };
blit.srcSubresource.mipLevel = i - 1;
mipWidth = bx::uint32_max(mipWidth >> 1, 1);
mipHeight = bx::uint32_max(mipHeight >> 1, 1);
blit.dstOffsets[1] = { mipWidth, mipHeight, 1 };
blit.dstSubresource.mipLevel = i;
vk::setImageMemoryBarrier(
_commandBuffer
, m_textureImage
, m_aspectMask
, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, blit.srcSubresource.mipLevel
, 1
, _layer
, _numLayers
);
vkCmdBlitImage(
_commandBuffer
, m_textureImage
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, m_textureImage
, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
, 1
, &blit
, filter
);
}
vk::setImageMemoryBarrier(
_commandBuffer
, m_textureImage
, m_aspectMask
, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
, _mip
, m_numMips - _mip - 1
, _layer
, _numLayers
);
}
setImageMemoryBarrier(_commandBuffer, oldLayout);
setImageMemoryBarrier(_commandBuffer, oldSingleMsaaLayout, true);
}
void TextureVK::copyBufferToTexture(VkCommandBuffer _commandBuffer, VkBuffer _stagingBuffer, uint32_t _bufferImageCopyCount, VkBufferImageCopy* _bufferImageCopy)
{
const VkImageLayout oldLayout = m_currentImageLayout == VK_IMAGE_LAYOUT_UNDEFINED
? m_sampledLayout
: m_currentImageLayout
;
setImageMemoryBarrier(_commandBuffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
vkCmdCopyBufferToImage(
_commandBuffer
, _stagingBuffer
, m_textureImage
, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
, _bufferImageCopyCount
, _bufferImageCopy
);
setImageMemoryBarrier(_commandBuffer, oldLayout);
}
VkImageLayout TextureVK::setImageMemoryBarrier(VkCommandBuffer _commandBuffer, VkImageLayout _newImageLayout, bool _singleMsaaImage)
{
if (_singleMsaaImage && VK_NULL_HANDLE == m_singleMsaaImage)
{
return VK_IMAGE_LAYOUT_UNDEFINED;
}
VkImageLayout& currentLayout = _singleMsaaImage
? m_currentSingleMsaaImageLayout
: m_currentImageLayout
;
const VkImageLayout oldLayout = currentLayout;
if (currentLayout == _newImageLayout)
{
return oldLayout;
}
const VkImage image = _singleMsaaImage
? m_singleMsaaImage
: m_textureImage
;
vk::setImageMemoryBarrier(
_commandBuffer
, image
, m_aspectMask
, currentLayout
, _newImageLayout
);
currentLayout = _newImageLayout;
return oldLayout;
}
VkResult TextureVK::createView(uint32_t _layer, uint32_t _numLayers, uint32_t _mip, uint32_t _numMips, VkImageViewType _type, VkImageAspectFlags _aspectMask, bool _renderTarget, ::VkImageView* _view) const
{
VkResult result = VK_SUCCESS;
if (VK_IMAGE_VIEW_TYPE_3D == m_type)
{
BX_ASSERT(false
|| !_renderTarget
|| !(m_aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) )
, "3D image can't be a depth attachment"
);
}
if (VK_IMAGE_VIEW_TYPE_CUBE == _type
|| VK_IMAGE_VIEW_TYPE_CUBE_ARRAY == _type)
{
BX_ASSERT(_numLayers % 6 == 0, "");
BX_ASSERT(
VK_IMAGE_VIEW_TYPE_3D != m_type
, "3D image can't be aliased as a cube texture"
);
}
VkImageViewCreateInfo viewInfo;
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.pNext = NULL;
viewInfo.flags = 0;
viewInfo.image = ((VK_NULL_HANDLE != m_singleMsaaImage) && !_renderTarget)
? m_singleMsaaImage
: m_textureImage
;
viewInfo.viewType = _type;
viewInfo.format = m_format;
viewInfo.components = m_components;
viewInfo.subresourceRange.aspectMask = m_aspectMask & _aspectMask;
viewInfo.subresourceRange.baseMipLevel = _mip;
viewInfo.subresourceRange.levelCount = _numMips;
viewInfo.subresourceRange.baseArrayLayer = _layer;
viewInfo.subresourceRange.layerCount = 1;
if (VK_IMAGE_VIEW_TYPE_2D != _type
&& VK_IMAGE_VIEW_TYPE_3D != _type)
{
viewInfo.subresourceRange.layerCount = VK_IMAGE_VIEW_TYPE_CUBE == _type
? 6
: _numLayers
;
}
VkImageView view = VK_NULL_HANDLE;
result = vkCreateImageView(
s_renderVK->m_device
, &viewInfo
, s_renderVK->m_allocatorCb
, &view
);
if (VK_SUCCESS != result)
{
BX_TRACE("Create texture view error: vkCreateImageView failed %d: %s.", result, getName(result) );
return result;
}
*_view = view;
return result;
}
VkImageAspectFlags TextureVK::getAspectMask(VkFormat _format)
{
switch (_format)
{
case VK_FORMAT_S8_UINT:
return VK_IMAGE_ASPECT_STENCIL_BIT;
break;
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_X8_D24_UNORM_PACK32:
case VK_FORMAT_D32_SFLOAT:
return VK_IMAGE_ASPECT_DEPTH_BIT;
case VK_FORMAT_D16_UNORM_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
return VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
default:
return VK_IMAGE_ASPECT_COLOR_BIT;
}
}
VkResult SwapChainVK::create(VkCommandBuffer _commandBuffer, void* _nwh, const Resolution& _resolution, TextureFormat::Enum _depthFormat)
{
struct ErrorState
{
enum Enum
{
Default,
SurfaceCreated,
SwapChainCreated,
AttachmentsCreated
};
};
ErrorState::Enum errorState = ErrorState::Default;
VkResult result = VK_SUCCESS;
if (NULL == _nwh)
{
return result;
}
m_nwh = _nwh;
m_resolution = _resolution;
m_depthFormat = TextureFormat::Count == _depthFormat ? TextureFormat::D24S8 : _depthFormat;
m_queue = s_renderVK->m_globalQueue;
result = createSurface();
if (VK_SUCCESS != result)
{
BX_TRACE("Create swap chain error: creating surface failed %d: %s.", result, getName(result) );
goto error;
}
errorState = ErrorState::SurfaceCreated;
{
m_sci.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
m_sci.pNext = NULL;
m_sci.flags = 0;
m_sci.imageArrayLayers = 1;
m_sci.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
m_sci.queueFamilyIndexCount = 0;
m_sci.pQueueFamilyIndices = NULL;
m_sci.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
m_sci.oldSwapchain = VK_NULL_HANDLE;
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImageView); ++ii)
{
m_backBufferColorImage[ii] = VK_NULL_HANDLE;
m_backBufferColorImageView[ii] = VK_NULL_HANDLE;
m_backBufferFrameBuffer[ii] = VK_NULL_HANDLE;
m_backBufferFence[ii] = VK_NULL_HANDLE;
m_presentDoneSemaphore[ii] = VK_NULL_HANDLE;
m_renderDoneSemaphore[ii] = VK_NULL_HANDLE;
}
m_lastImageRenderedSemaphore = VK_NULL_HANDLE;
m_lastImageAcquiredSemaphore = VK_NULL_HANDLE;
result = createSwapChain();
if (VK_SUCCESS != result)
{
BX_TRACE("Create swap chain error: creating swapchain and image views failed %d: %s", result, getName(result) );
goto error;
}
}
errorState = ErrorState::SwapChainCreated;
{
result = createAttachments(_commandBuffer);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swap chain error: creating MSAA/depth attachments failed %d: %s.", result, getName(result) );
goto error;
}
}
errorState = ErrorState::AttachmentsCreated;
{
result = createFrameBuffer();
if (VK_SUCCESS != result)
{
BX_TRACE("Create swap chain error: creating frame buffers failed %d: %s.", result, getName(result) );
goto error;
}
}
return VK_SUCCESS;
error:
BX_TRACE("errorState %d", errorState);
switch (errorState)
{
case ErrorState::AttachmentsCreated:
releaseAttachments();
BX_FALLTHROUGH;
case ErrorState::SwapChainCreated:
releaseSwapChain();
BX_FALLTHROUGH;
case ErrorState::SurfaceCreated:
releaseSurface();
BX_FALLTHROUGH;
case ErrorState::Default:
break;
};
return VK_SUCCESS != result
? result
: VK_ERROR_INITIALIZATION_FAILED
;
}
void SwapChainVK::destroy()
{
if (VK_NULL_HANDLE != m_swapchain)
{
releaseFrameBuffer();
releaseAttachments();
releaseSwapChain();
releaseSurface();
// can't delay-delete the surface, since there can only be one swapchain per surface
// new framebuffer with the same window would get an error at swapchain creation
s_renderVK->kick(true);
}
m_nwh = NULL;
}
void SwapChainVK::update(VkCommandBuffer _commandBuffer, void* _nwh, const Resolution& _resolution)
{
const VkPhysicalDevice physicalDevice = s_renderVK->m_physicalDevice;
m_lastImageRenderedSemaphore = VK_NULL_HANDLE;
m_lastImageAcquiredSemaphore = VK_NULL_HANDLE;
const uint64_t recreateSurfaceMask = BGFX_RESET_HIDPI;
const uint64_t recreateSwapchainMask = BGFX_RESET_VSYNC | BGFX_RESET_SRGB_BACKBUFFER;
const uint64_t recreateAttachmentsMask = BGFX_RESET_MSAA_MASK;
const bool recreateSurface = false
|| m_needToRecreateSurface
|| m_nwh != _nwh
|| (m_resolution.reset & recreateSurfaceMask) != (_resolution.reset & recreateSurfaceMask)
;
const bool recreateSwapchain = false
|| m_resolution.format != _resolution.format
|| m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| (m_resolution.reset & recreateSwapchainMask) != (_resolution.reset & recreateSwapchainMask)
|| recreateSurface
;
const bool recreateAttachments = false
|| (m_resolution.reset & recreateAttachmentsMask) != (_resolution.reset & recreateAttachmentsMask)
|| recreateSwapchain
;
m_nwh = _nwh;
m_resolution = _resolution;
if (recreateAttachments)
{
releaseFrameBuffer();
releaseAttachments();
if (recreateSwapchain)
{
releaseSwapChain();
if (recreateSurface)
{
m_sci.oldSwapchain = VK_NULL_HANDLE;
releaseSurface();
s_renderVK->kick(true);
_commandBuffer = s_renderVK->m_commandBuffer;
VkResult result = createSurface();
if (VK_SUCCESS != result)
{
BX_TRACE("Surface lost.");
return;
}
}
VkSurfaceCapabilitiesKHR surfaceCapabilities;
VK_CHECK(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, m_surface, &surfaceCapabilities) );
const uint32_t width = bx::clamp<uint32_t>(
m_resolution.width
, surfaceCapabilities.minImageExtent.width
, surfaceCapabilities.maxImageExtent.width
);
const uint32_t height = bx::clamp<uint32_t>(
m_resolution.height
, surfaceCapabilities.minImageExtent.height
, surfaceCapabilities.maxImageExtent.height
);
// swapchain can't have size 0
// on some platforms this happens when minimized
if (width == 0
|| height == 0)
{
m_sci.oldSwapchain = VK_NULL_HANDLE;
s_renderVK->kick(true);
return;
}
VK_CHECK(createSwapChain() );
}
VK_CHECK(createAttachments(_commandBuffer) );
VK_CHECK(createFrameBuffer() );
}
}
VkResult SwapChainVK::createSurface()
{
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
const VkInstance instance = s_renderVK->m_instance;
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
#if BX_PLATFORM_WINDOWS
{
if (NULL != vkCreateWin32SurfaceKHR)
{
VkWin32SurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.hinstance = (HINSTANCE)GetModuleHandle(NULL);
sci.hwnd = (HWND)m_nwh;
result = vkCreateWin32SurfaceKHR(instance, &sci, allocatorCb, &m_surface);
}
}
#elif BX_PLATFORM_ANDROID
{
if (NULL != vkCreateAndroidSurfaceKHR)
{
VkAndroidSurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.window = (ANativeWindow*)m_nwh;
result = vkCreateAndroidSurfaceKHR(instance, &sci, allocatorCb, &m_surface);
}
}
#elif BX_PLATFORM_LINUX
{
if (NULL != vkCreateXlibSurfaceKHR)
{
VkXlibSurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.dpy = (Display*)g_platformData.ndt;
sci.window = (Window)m_nwh;
result = vkCreateXlibSurfaceKHR(instance, &sci, allocatorCb, &m_surface);
}
if (VK_SUCCESS != result)
{
void* xcbdll = bx::dlopen("libX11-xcb.so.1");
if (NULL != xcbdll
&& NULL != vkCreateXcbSurfaceKHR)
{
typedef xcb_connection_t* (*PFN_XGETXCBCONNECTION)(Display*);
PFN_XGETXCBCONNECTION XGetXCBConnection = (PFN_XGETXCBCONNECTION)bx::dlsym(xcbdll, "XGetXCBConnection");
union { void* ptr; xcb_window_t window; } cast = { m_nwh };
VkXcbSurfaceCreateInfoKHR sci;
sci.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
sci.pNext = NULL;
sci.flags = 0;
sci.connection = XGetXCBConnection( (Display*)g_platformData.ndt);
sci.window = cast.window;
result = vkCreateXcbSurfaceKHR(instance, &sci, allocatorCb, &m_surface);
bx::dlclose(xcbdll);
}
}
}
#elif BX_PLATFORM_OSX
{
if (NULL != vkCreateMacOSSurfaceMVK)
{
NSWindow* window = (NSWindow*)(m_nwh);
NSView* contentView = (NSView*)window.contentView;
CAMetalLayer* layer = [CAMetalLayer layer];
if (m_resolution.reset & BGFX_RESET_HIDPI)
{
layer.contentsScale = [window backingScaleFactor];
}
[contentView setWantsLayer : YES];
[contentView setLayer : layer];
VkMacOSSurfaceCreateInfoMVK sci;
sci.sType = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK;
sci.pNext = NULL;
sci.flags = 0;
sci.pView = (__bridge void*)layer;
result = vkCreateMacOSSurfaceMVK(instance, &sci, allocatorCb, &m_surface);
}
}
#else
# error "Figure out KHR surface..."
#endif // BX_PLATFORM_
m_needToRecreateSurface = false;
if (VK_SUCCESS != result)
{
BX_TRACE("Create surface error: vkCreate[Platform]SurfaceKHR failed %d: %s.", result, getName(result) );
return result;
}
const VkPhysicalDevice physicalDevice = s_renderVK->m_physicalDevice;
const uint32_t queueFamily = s_renderVK->m_globalQueueFamily;
VkBool32 surfaceSupported;
result = vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, queueFamily, m_surface, &surfaceSupported);
if (VK_SUCCESS != result
|| !surfaceSupported)
{
BX_TRACE("Create surface error: Presentation to the given surface not supported.");
return VK_ERROR_INITIALIZATION_FAILED;
}
return result;
}
void SwapChainVK::releaseSurface()
{
release(m_surface);
}
VkResult SwapChainVK::createSwapChain()
{
VkResult result = VK_SUCCESS;
const VkPhysicalDevice physicalDevice = s_renderVK->m_physicalDevice;
const VkDevice device = s_renderVK->m_device;
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkSurfaceCapabilitiesKHR surfaceCapabilities;
result = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, m_surface, &surfaceCapabilities);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: vkGetPhysicalDeviceSurfaceCapabilitiesKHR failed %d: %s.", result, getName(result) );
return result;
}
const uint32_t minSwapBufferCount = bx::max<uint32_t>(surfaceCapabilities.minImageCount, 2);
const uint32_t maxSwapBufferCount = surfaceCapabilities.maxImageCount == 0
? kMaxBackBuffers
: bx::min<uint32_t>(surfaceCapabilities.maxImageCount, kMaxBackBuffers)
;
if (minSwapBufferCount > maxSwapBufferCount)
{
BX_TRACE("Create swapchain error: Incompatible swapchain image count (min: %d, max: %d, MaxBackBuffers: %d)."
, minSwapBufferCount
, maxSwapBufferCount
, kMaxBackBuffers
);
return VK_ERROR_INITIALIZATION_FAILED;
}
const uint32_t swapBufferCount = bx::clamp<uint32_t>(m_resolution.numBackBuffers, minSwapBufferCount, maxSwapBufferCount);
const VkColorSpaceKHR surfaceColorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
const bool srgb = !!(m_resolution.reset & BGFX_RESET_SRGB_BACKBUFFER);
m_colorFormat = findSurfaceFormat(m_resolution.format, surfaceColorSpace, srgb);
if (TextureFormat::Count == m_colorFormat)
{
BX_TRACE("Create swapchain error: Unable to find surface format (srgb: %d).", srgb);
return VK_ERROR_INITIALIZATION_FAILED;
}
const VkFormat surfaceFormat = srgb
? s_textureFormat[m_colorFormat].m_fmtSrgb
: s_textureFormat[m_colorFormat].m_fmt
;
const uint32_t width = bx::clamp<uint32_t>(
m_resolution.width
, surfaceCapabilities.minImageExtent.width
, surfaceCapabilities.maxImageExtent.width
);
const uint32_t height = bx::clamp<uint32_t>(
m_resolution.height
, surfaceCapabilities.minImageExtent.height
, surfaceCapabilities.maxImageExtent.height
);
VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
if (surfaceCapabilities.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR)
{
compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
}
else if (surfaceCapabilities.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR)
{
compositeAlpha = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR;
}
else if (surfaceCapabilities.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR)
{
compositeAlpha = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR;
}
const VkImageUsageFlags imageUsageMask = 0
| VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT
;
const VkImageUsageFlags imageUsage = surfaceCapabilities.supportedUsageFlags & imageUsageMask;
m_supportsReadback = 0 != (imageUsage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
m_supportsManualResolve = 0 != (imageUsage & VK_IMAGE_USAGE_TRANSFER_DST_BIT);
const bool vsync = !!(m_resolution.reset & BGFX_RESET_VSYNC);
uint32_t presentModeIdx = findPresentMode(vsync);
if (UINT32_MAX == presentModeIdx)
{
BX_TRACE("Create swapchain error: Unable to find present mode (vsync: %d).", vsync);
return VK_ERROR_INITIALIZATION_FAILED;
}
m_sci.surface = m_surface;
m_sci.minImageCount = swapBufferCount;
m_sci.imageFormat = surfaceFormat;
m_sci.imageColorSpace = surfaceColorSpace;
m_sci.imageExtent.width = width;
m_sci.imageExtent.height = height;
m_sci.imageUsage = imageUsage;
m_sci.compositeAlpha = compositeAlpha;
m_sci.presentMode = s_presentMode[presentModeIdx].mode;
m_sci.clipped = VK_FALSE;
result = vkCreateSwapchainKHR(device, &m_sci, allocatorCb, &m_swapchain);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: vkCreateSwapchainKHR failed %d: %s.", result, getName(result) );
return result;
}
m_sci.oldSwapchain = m_swapchain;
result = vkGetSwapchainImagesKHR(device, m_swapchain, &m_numSwapchainImages, NULL);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: vkGetSwapchainImagesKHR failed %d: %s.", result, getName(result) );
return result;
}
if (m_numSwapchainImages < m_sci.minImageCount)
{
BX_TRACE("Create swapchain error: vkGetSwapchainImagesKHR: numSwapchainImages %d < minImageCount %d."
, m_numSwapchainImages
, m_sci.minImageCount
);
return VK_ERROR_INITIALIZATION_FAILED;
}
if (m_numSwapchainImages > BX_COUNTOF(m_backBufferColorImage) )
{
BX_TRACE("Create swapchain error: vkGetSwapchainImagesKHR: numSwapchainImages %d > countof(m_backBufferColorImage) %d."
, m_numSwapchainImages
, BX_COUNTOF(m_backBufferColorImage)
);
return VK_ERROR_INITIALIZATION_FAILED;
}
result = vkGetSwapchainImagesKHR(device, m_swapchain, &m_numSwapchainImages, &m_backBufferColorImage[0]);
if (VK_SUCCESS != result && VK_INCOMPLETE != result)
{
BX_TRACE("Create swapchain error: vkGetSwapchainImagesKHR failed %d: %s."
, result
, getName(result)
);
return result;
}
VkImageViewCreateInfo ivci;
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.pNext = NULL;
ivci.flags = 0;
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = m_sci.imageFormat;
ivci.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.layerCount = 1;
for (uint32_t ii = 0; ii < m_numSwapchainImages; ++ii)
{
ivci.image = m_backBufferColorImage[ii];
result = vkCreateImageView(device, &ivci, allocatorCb, &m_backBufferColorImageView[ii]);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: vkCreateImageView failed %d: %s.", result, getName(result) );
return result;
}
m_backBufferColorImageLayout[ii] = VK_IMAGE_LAYOUT_UNDEFINED;
}
VkSemaphoreCreateInfo sci;
sci.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
sci.pNext = NULL;
sci.flags = 0;
for (uint32_t ii = 0; ii < m_numSwapchainImages; ++ii)
{
if (VK_SUCCESS != vkCreateSemaphore(device, &sci, allocatorCb, &m_presentDoneSemaphore[ii])
|| VK_SUCCESS != vkCreateSemaphore(device, &sci, allocatorCb, &m_renderDoneSemaphore[ii]) )
{
BX_TRACE("Create swapchain error: vkCreateSemaphore failed %d: %s.", result, getName(result) );
return result;
}
}
m_backBufferColorIdx = 0;
m_currentSemaphore = 0;
m_needPresent = false;
m_needToRefreshSwapchain = false;
return result;
}
void SwapChainVK::releaseSwapChain()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImageView); ++ii)
{
release(m_backBufferColorImageView[ii]);
m_backBufferFence[ii] = VK_NULL_HANDLE;
release(m_presentDoneSemaphore[ii]);
release(m_renderDoneSemaphore[ii]);
}
release(m_swapchain);
}
VkResult SwapChainVK::createAttachments(VkCommandBuffer _commandBuffer)
{
VkResult result = VK_SUCCESS;
const uint32_t samplerIndex = (m_resolution.reset & BGFX_RESET_MSAA_MASK) >> BGFX_RESET_MSAA_SHIFT;
const uint64_t textureFlags = (uint64_t(samplerIndex + 1) << BGFX_TEXTURE_RT_MSAA_SHIFT) | BGFX_TEXTURE_RT | BGFX_TEXTURE_RT_WRITE_ONLY;
m_sampler = s_msaa[samplerIndex];
const uint16_t requiredCaps = m_sampler.Count > 1
? BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA
: BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER
;
// the spec guarantees that at least one of D24S8 and D32FS8 is supported
VkFormat depthFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
if (g_caps.formats[m_depthFormat] & requiredCaps)
{
depthFormat = s_textureFormat[m_depthFormat].m_fmtDsv;
}
else if (g_caps.formats[TextureFormat::D24S8] & requiredCaps)
{
depthFormat = s_textureFormat[TextureFormat::D24S8].m_fmtDsv;
}
result = m_backBufferDepthStencil.create(
_commandBuffer
, m_sci.imageExtent.width
, m_sci.imageExtent.height
, textureFlags
, depthFormat
);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: creating depth stencil image failed %d: %s.", result, getName(result) );
return result;
}
result = m_backBufferDepthStencil.createView(0, 1, 0, 1, VK_IMAGE_VIEW_TYPE_2D, m_backBufferDepthStencil.m_aspectMask, true, &m_backBufferDepthStencilImageView);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: creating depth stencil image view failed %d: %s.", result, getName(result) );
return result;
}
if (m_sampler.Count > 1)
{
result = m_backBufferColorMsaa.create(
_commandBuffer
, m_sci.imageExtent.width
, m_sci.imageExtent.height
, textureFlags
, m_sci.imageFormat
);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: creating MSAA color image failed %d: %s.", result, getName(result) );
return result;
}
result = m_backBufferColorMsaa.createView(0, 1, 0, 1, VK_IMAGE_VIEW_TYPE_2D, m_backBufferColorMsaa.m_aspectMask, true, &m_backBufferColorMsaaImageView);
if (VK_SUCCESS != result)
{
BX_TRACE("Create swapchain error: creating MSAA color image view failed %d: %s.", result, getName(result) );
return result;
}
}
return result;
}
void SwapChainVK::releaseAttachments()
{
release(m_backBufferDepthStencilImageView);
release(m_backBufferColorMsaaImageView);
m_backBufferDepthStencil.destroy();
m_backBufferColorMsaa.destroy();
}
VkResult SwapChainVK::createFrameBuffer()
{
VkResult result = VK_SUCCESS;
const VkDevice device = s_renderVK->m_device;
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VkRenderPass renderPass;
result = s_renderVK->getRenderPass(*this, &renderPass);
if (VK_SUCCESS != result)
{
return result;
}
for (uint32_t ii = 0; ii < m_numSwapchainImages; ++ii)
{
uint32_t numAttachments = 2;
::VkImageView attachments[3] =
{
m_sampler.Count > 1
? m_backBufferColorMsaaImageView
: m_backBufferColorImageView[ii],
m_backBufferDepthStencilImageView,
};
if (m_sampler.Count > 1 && !m_supportsManualResolve)
{
attachments[numAttachments++] = m_backBufferColorImageView[ii];
}
VkFramebufferCreateInfo fci;
fci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fci.pNext = NULL;
fci.flags = 0;
fci.renderPass = renderPass;
fci.attachmentCount = numAttachments;
fci.pAttachments = attachments;
fci.width = m_sci.imageExtent.width;
fci.height = m_sci.imageExtent.height;
fci.layers = 1;
result = vkCreateFramebuffer(device, &fci, allocatorCb, &m_backBufferFrameBuffer[ii]);
if (VK_SUCCESS != result)
{
return result;
}
}
return result;
}
void SwapChainVK::releaseFrameBuffer()
{
for (uint32_t ii = 0; ii < BX_COUNTOF(m_backBufferColorImageView); ++ii)
{
release(m_backBufferFrameBuffer[ii]);
}
}
uint32_t SwapChainVK::findPresentMode(bool _vsync)
{
VkResult result = VK_SUCCESS;
const VkPhysicalDevice physicalDevice = s_renderVK->m_physicalDevice;
uint32_t numPresentModes;
result = vkGetPhysicalDeviceSurfacePresentModesKHR(
physicalDevice
, m_surface
, &numPresentModes
, NULL
);
if (VK_SUCCESS != result)
{
BX_TRACE("findPresentMode error: vkGetPhysicalDeviceSurfacePresentModesKHR failed %d: %s.", result, getName(result) );
return UINT32_MAX;
}
VkPresentModeKHR presentModes[16];
numPresentModes = bx::min<uint32_t>(numPresentModes, BX_COUNTOF(presentModes) );
result = vkGetPhysicalDeviceSurfacePresentModesKHR(
physicalDevice
, m_surface
, &numPresentModes
, presentModes
);
if (VK_SUCCESS != result)
{
BX_TRACE("findPresentMode error: vkGetPhysicalDeviceSurfacePresentModesKHR failed %d: %s.", result, getName(result) );
return UINT32_MAX;
}
uint32_t idx = UINT32_MAX;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_presentMode) && UINT32_MAX == idx; ++ii)
{
for (uint32_t jj = 0; jj < numPresentModes; ++jj)
{
const PresentMode& pm = s_presentMode[ii];
if (pm.mode == presentModes[jj]
&& pm.vsync == _vsync)
{
idx = ii;
break;
}
}
}
if (UINT32_MAX == idx)
{
idx = 0;
BX_TRACE("Present mode not found! Defaulting to %s.", s_presentMode[idx].name);
}
return idx;
}
TextureFormat::Enum SwapChainVK::findSurfaceFormat(TextureFormat::Enum _format, VkColorSpaceKHR _colorSpace, bool _srgb)
{
VkResult result = VK_SUCCESS;
TextureFormat::Enum selectedFormat = TextureFormat::Count;
const VkPhysicalDevice physicalDevice = s_renderVK->m_physicalDevice;
uint32_t numSurfaceFormats;
result = vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, m_surface, &numSurfaceFormats, NULL);
if (VK_SUCCESS != result)
{
BX_TRACE("findSurfaceFormat error: vkGetPhysicalDeviceSurfaceFormatsKHR failed %d: %s.", result, getName(result) );
return selectedFormat;
}
VkSurfaceFormatKHR* surfaceFormats = (VkSurfaceFormatKHR*)BX_ALLOC(g_allocator, numSurfaceFormats * sizeof(VkSurfaceFormatKHR) );
result = vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, m_surface, &numSurfaceFormats, surfaceFormats);
if (VK_SUCCESS != result)
{
BX_TRACE("findSurfaceFormat error: vkGetPhysicalDeviceSurfaceFormatsKHR failed %d: %s.", result, getName(result) );
BX_FREE(g_allocator, surfaceFormats);
return selectedFormat;
}
const TextureFormat::Enum requestedFormats[] =
{
_format,
TextureFormat::BGRA8,
TextureFormat::RGBA8,
};
for (uint32_t ii = 0; ii < BX_COUNTOF(requestedFormats) && TextureFormat::Count == selectedFormat; ii++)
{
const TextureFormat::Enum requested = requestedFormats[ii];
const VkFormat requestedVkFormat = _srgb
? s_textureFormat[requested].m_fmtSrgb
: s_textureFormat[requested].m_fmt
;
for (uint32_t jj = 0; jj < numSurfaceFormats; jj++)
{
if (_colorSpace == surfaceFormats[jj].colorSpace
&& requestedVkFormat == surfaceFormats[jj].format)
{
selectedFormat = requested;
if (0 != ii
&& s_renderVK->m_swapchainFormats[_format] != selectedFormat)
{
s_renderVK->m_swapchainFormats[_format] = selectedFormat;
BX_TRACE(
"findSurfaceFormat: Surface format %s not found! Defaulting to %s."
, bimg::getName(bimg::TextureFormat::Enum(_format) )
, bimg::getName(bimg::TextureFormat::Enum(selectedFormat) )
);
}
break;
}
}
}
BX_FREE(g_allocator, surfaceFormats);
if (TextureFormat::Count == selectedFormat)
{
BX_TRACE("findSurfaceFormat error: No supported surface format found.");
}
return selectedFormat;
}
bool SwapChainVK::acquire(VkCommandBuffer _commandBuffer)
{
if (VK_NULL_HANDLE == m_swapchain
|| m_needToRefreshSwapchain)
{
return false;
}
if (!m_needPresent)
{
const VkDevice device = s_renderVK->m_device;
m_lastImageAcquiredSemaphore = m_presentDoneSemaphore[m_currentSemaphore];
m_lastImageRenderedSemaphore = m_renderDoneSemaphore[m_currentSemaphore];
m_currentSemaphore = (m_currentSemaphore + 1) % m_numSwapchainImages;
VkResult result = vkAcquireNextImageKHR(
device
, m_swapchain
, UINT64_MAX
, m_lastImageAcquiredSemaphore
, VK_NULL_HANDLE
, &m_backBufferColorIdx
);
switch (result)
{
case VK_SUCCESS:
break;
case VK_ERROR_SURFACE_LOST_KHR:
m_needToRecreateSurface = true;
BX_FALLTHROUGH;
case VK_ERROR_OUT_OF_DATE_KHR:
case VK_SUBOPTIMAL_KHR:
m_needToRefreshSwapchain = true;
return false;
default:
BX_ASSERT(VK_SUCCESS == result, "vkAcquireNextImageKHR(...); VK error 0x%x: %s", result, getName(result) );
return false;
}
if (VK_NULL_HANDLE != m_backBufferFence[m_backBufferColorIdx])
{
VK_CHECK(vkWaitForFences(
device
, 1
, &m_backBufferFence[m_backBufferColorIdx]
, VK_TRUE
, UINT64_MAX
) );
}
transitionImage(_commandBuffer);
m_needPresent = true;
}
return true;
}
void SwapChainVK::present()
{
if (VK_NULL_HANDLE != m_swapchain
&& m_needPresent)
{
VkPresentInfoKHR pi;
pi.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
pi.pNext = NULL;
pi.waitSemaphoreCount = 1;
pi.pWaitSemaphores = &m_lastImageRenderedSemaphore;
pi.swapchainCount = 1;
pi.pSwapchains = &m_swapchain;
pi.pImageIndices = &m_backBufferColorIdx;
pi.pResults = NULL;
VkResult result = vkQueuePresentKHR(m_queue, &pi);
switch (result)
{
case VK_ERROR_SURFACE_LOST_KHR:
m_needToRecreateSurface = true;
BX_FALLTHROUGH;
case VK_ERROR_OUT_OF_DATE_KHR:
case VK_SUBOPTIMAL_KHR:
m_needToRefreshSwapchain = true;
break;
default:
BX_ASSERT(VK_SUCCESS == result, "vkQueuePresentKHR(...); VK error 0x%x: %s", result, getName(result) );
break;
}
m_needPresent = false;
m_lastImageRenderedSemaphore = VK_NULL_HANDLE;
}
}
void SwapChainVK::transitionImage(VkCommandBuffer _commandBuffer)
{
VkImageLayout& layout = m_backBufferColorImageLayout[m_backBufferColorIdx];
const bool toPresent = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL == layout;
const VkImageLayout newLayout = toPresent
? VK_IMAGE_LAYOUT_PRESENT_SRC_KHR
: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
;
layout = toPresent ? layout : VK_IMAGE_LAYOUT_UNDEFINED;
setImageMemoryBarrier(
_commandBuffer
, m_backBufferColorImage[m_backBufferColorIdx]
, VK_IMAGE_ASPECT_COLOR_BIT
, layout
, newLayout
);
layout = newLayout;
}
void FrameBufferVK::create(uint8_t _num, const Attachment* _attachment)
{
m_numTh = _num;
bx::memCopy(m_attachment, _attachment, sizeof(Attachment) * _num);
postReset();
}
VkResult FrameBufferVK::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat)
{
VkResult result = VK_SUCCESS;
Resolution resolution = s_renderVK->m_resolution;
resolution.format = TextureFormat::Count == _format ? resolution.format : _format;
resolution.width = _width;
resolution.height = _height;
if (_denseIdx != UINT16_MAX)
{
resolution.reset &= ~BGFX_RESET_MSAA_MASK;
}
result = m_swapChain.create(s_renderVK->m_commandBuffer, _nwh, resolution, _depthFormat);
if (VK_SUCCESS != result)
{
return result;
}
result = s_renderVK->getRenderPass(m_swapChain, &m_renderPass);
if (VK_SUCCESS != result)
{
return result;
}
m_denseIdx = _denseIdx;
m_nwh = _nwh;
m_width = _width;
m_height = _height;
m_sampler = m_swapChain.m_sampler;
return result;
}
void FrameBufferVK::preReset()
{
if (VK_NULL_HANDLE != m_framebuffer)
{
s_renderVK->release(m_framebuffer);
for (uint8_t ii = 0; ii < m_numTh; ++ii)
{
s_renderVK->release(m_textureImageViews[ii]);
}
}
}
void FrameBufferVK::postReset()
{
if (m_numTh > 0)
{
const VkDevice device = s_renderVK->m_device;
const VkAllocationCallbacks* allocatorCb = s_renderVK->m_allocatorCb;
VK_CHECK(s_renderVK->getRenderPass(m_numTh, m_attachment, &m_renderPass) );
m_depth = BGFX_INVALID_HANDLE;
m_num = 0;
for (uint8_t ii = 0; ii < m_numTh; ++ii)
{
const Attachment& at = m_attachment[ii];
const TextureVK& texture = s_renderVK->m_textures[at.handle.idx];
VK_CHECK(texture.createView(
at.layer
, at.numLayers
, at.mip
, 1
, at.numLayers > 1 ? VK_IMAGE_VIEW_TYPE_2D_ARRAY : VK_IMAGE_VIEW_TYPE_2D
, texture.m_aspectMask
, true
, &m_textureImageViews[ii]
) );
if (texture.m_aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
{
m_texture[m_num] = at.handle;
m_num++;
}
else if (texture.m_aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) )
{
m_depth = at.handle;
}
}
const TextureVK& firstTexture = s_renderVK->m_textures[m_attachment[0].handle.idx];
m_width = bx::uint32_max(firstTexture.m_width >> m_attachment[0].mip, 1);
m_height = bx::uint32_max(firstTexture.m_height >> m_attachment[0].mip, 1);
m_sampler = firstTexture.m_sampler;
VkFramebufferCreateInfo fci;
fci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fci.pNext = NULL;
fci.flags = 0;
fci.renderPass = m_renderPass;
fci.attachmentCount = m_numTh;
fci.pAttachments = &m_textureImageViews[0];
fci.width = m_width;
fci.height = m_height;
fci.layers = m_attachment[0].numLayers;
VK_CHECK(vkCreateFramebuffer(device, &fci, allocatorCb, &m_framebuffer) );
m_currentFramebuffer = m_framebuffer;
}
}
void FrameBufferVK::update(VkCommandBuffer _commandBuffer, const Resolution& _resolution)
{
m_swapChain.update(_commandBuffer, m_nwh, _resolution);
VK_CHECK(s_renderVK->getRenderPass(m_swapChain, &m_renderPass) );
m_width = _resolution.width;
m_height = _resolution.height;
m_sampler = m_swapChain.m_sampler;
}
void FrameBufferVK::resolve()
{
if (!m_needResolve)
{
return;
}
if (NULL == m_nwh)
{
for (uint32_t ii = 0; ii < m_numTh; ++ii)
{
const Attachment& at = m_attachment[ii];
if (isValid(at.handle) )
{
TextureVK& texture = s_renderVK->m_textures[at.handle.idx];
texture.resolve(s_renderVK->m_commandBuffer, at.resolve, at.layer, at.numLayers, at.mip);
}
}
}
else if (isRenderable()
&& m_sampler.Count > 1
&& m_swapChain.m_supportsManualResolve)
{
m_swapChain.m_backBufferColorMsaa.m_singleMsaaImage = m_swapChain.m_backBufferColorImage[m_swapChain.m_backBufferColorIdx];
m_swapChain.m_backBufferColorMsaa.m_currentSingleMsaaImageLayout = m_swapChain.m_backBufferColorImageLayout[m_swapChain.m_backBufferColorIdx];
m_swapChain.m_backBufferColorMsaa.resolve(s_renderVK->m_commandBuffer, 0, 0, 1, 0);
m_swapChain.m_backBufferColorMsaa.m_singleMsaaImage = VK_NULL_HANDLE;
m_swapChain.m_backBufferColorMsaa.m_currentSingleMsaaImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
}
m_needResolve = false;
}
uint16_t FrameBufferVK::destroy()
{
preReset();
if (NULL != m_nwh)
{
m_swapChain.destroy();
m_nwh = NULL;
m_needPresent = false;
}
m_numTh = 0;
m_num = 0;
m_depth = BGFX_INVALID_HANDLE;
m_needResolve = false;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
bool FrameBufferVK::acquire(VkCommandBuffer _commandBuffer)
{
bool acquired = true;
if (NULL != m_nwh)
{
acquired = m_swapChain.acquire(_commandBuffer);
m_needPresent = m_swapChain.m_needPresent;
m_currentFramebuffer = m_swapChain.m_backBufferFrameBuffer[m_swapChain.m_backBufferColorIdx];
}
m_needResolve = true;
return acquired;
}
void FrameBufferVK::present()
{
m_swapChain.present();
m_needPresent = false;
}
bool FrameBufferVK::isRenderable() const
{
return false
|| (NULL == m_nwh)
|| m_swapChain.m_needPresent
;
}
VkResult CommandQueueVK::init(uint32_t _queueFamily, VkQueue _queue, uint32_t _numFramesInFlight)
{
m_queueFamily = _queueFamily;
m_queue = _queue;
m_numFramesInFlight = bx::clamp<uint32_t>(_numFramesInFlight, 1, BGFX_CONFIG_MAX_FRAME_LATENCY);
m_activeCommandBuffer = VK_NULL_HANDLE;
return reset();
}
VkResult CommandQueueVK::reset()
{
shutdown();
m_currentFrameInFlight = 0;
m_consumeIndex = 0;
m_numSignalSemaphores = 0;
m_numWaitSemaphores = 0;
m_activeCommandBuffer = VK_NULL_HANDLE;
m_currentFence = VK_NULL_HANDLE;
m_completedFence = VK_NULL_HANDLE;
m_submitted = 0;
VkCommandPoolCreateInfo cpci;
cpci.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cpci.pNext = NULL;
cpci.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT;
cpci.queueFamilyIndex = m_queueFamily;
VkCommandBufferAllocateInfo cbai;
cbai.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cbai.pNext = NULL;
cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cbai.commandBufferCount = 1;
VkFenceCreateInfo fci;
fci.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fci.pNext = NULL;
fci.flags = VK_FENCE_CREATE_SIGNALED_BIT;
VkResult result = VK_SUCCESS;
for (uint32_t ii = 0; ii < m_numFramesInFlight; ++ii)
{
result = vkCreateCommandPool(
s_renderVK->m_device
, &cpci
, s_renderVK->m_allocatorCb
, &m_commandList[ii].m_commandPool
);
if (VK_SUCCESS != result)
{
BX_TRACE("Create command queue error: vkCreateCommandPool failed %d: %s.", result, getName(result) );
return result;
}
cbai.commandPool = m_commandList[ii].m_commandPool;
result = vkAllocateCommandBuffers(
s_renderVK->m_device
, &cbai
, &m_commandList[ii].m_commandBuffer
);
if (VK_SUCCESS != result)
{
BX_TRACE("Create command queue error: vkAllocateCommandBuffers failed %d: %s.", result, getName(result) );
return result;
}
result = vkCreateFence(
s_renderVK->m_device
, &fci
, s_renderVK->m_allocatorCb
, &m_commandList[ii].m_fence
);
if (VK_SUCCESS != result)
{
BX_TRACE("Create command queue error: vkCreateFence failed %d: %s.", result, getName(result) );
return result;
}
}
return result;
}
void CommandQueueVK::shutdown()
{
kick(true);
finish(true);
for (uint32_t ii = 0; ii < m_numFramesInFlight; ++ii)
{
vkDestroy(m_commandList[ii].m_fence);
m_commandList[ii].m_commandBuffer = VK_NULL_HANDLE;
vkDestroy(m_commandList[ii].m_commandPool);
}
}
VkResult CommandQueueVK::alloc(VkCommandBuffer* _commandBuffer)
{
VkResult result = VK_SUCCESS;
if (m_activeCommandBuffer == VK_NULL_HANDLE)
{
const VkDevice device = s_renderVK->m_device;
CommandList& commandList = m_commandList[m_currentFrameInFlight];
result = vkWaitForFences(device, 1, &commandList.m_fence, VK_TRUE, UINT64_MAX);
if (VK_SUCCESS != result)
{
BX_TRACE("Allocate command buffer error: vkWaitForFences failed %d: %s.", result, getName(result) );
return result;
}
result = vkResetCommandPool(device, commandList.m_commandPool, 0);
if (VK_SUCCESS != result)
{
BX_TRACE("Allocate command buffer error: vkResetCommandPool failed %d: %s.", result, getName(result) );
return result;
}
VkCommandBufferBeginInfo cbi;
cbi.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cbi.pNext = NULL;
cbi.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
cbi.pInheritanceInfo = NULL;
result = vkBeginCommandBuffer(commandList.m_commandBuffer, &cbi);
if (VK_SUCCESS != result)
{
BX_TRACE("Allocate command buffer error: vkBeginCommandBuffer failed %d: %s.", result, getName(result) );
return result;
}
m_activeCommandBuffer = commandList.m_commandBuffer;
m_currentFence = commandList.m_fence;
}
if (NULL != _commandBuffer)
{
*_commandBuffer = m_activeCommandBuffer;
}
return result;
}
void CommandQueueVK::addWaitSemaphore(VkSemaphore _semaphore, VkPipelineStageFlags _waitFlags)
{
BX_ASSERT(m_numWaitSemaphores < BX_COUNTOF(m_waitSemaphores), "Too many wait semaphores.");
m_waitSemaphores[m_numWaitSemaphores] = _semaphore;
m_waitSemaphoreStages[m_numWaitSemaphores] = _waitFlags;
m_numWaitSemaphores++;
}
void CommandQueueVK::addSignalSemaphore(VkSemaphore _semaphore)
{
BX_ASSERT(m_numSignalSemaphores < BX_COUNTOF(m_signalSemaphores), "Too many signal semaphores.");
m_signalSemaphores[m_numSignalSemaphores] = _semaphore;
m_numSignalSemaphores++;
}
void CommandQueueVK::kick(bool _wait)
{
if (VK_NULL_HANDLE != m_activeCommandBuffer)
{
const VkDevice device = s_renderVK->m_device;
setMemoryBarrier(
m_activeCommandBuffer
, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT
);
VK_CHECK(vkEndCommandBuffer(m_activeCommandBuffer) );
m_completedFence = m_currentFence;
m_currentFence = VK_NULL_HANDLE;
VK_CHECK(vkResetFences(device, 1, &m_completedFence) );
VkSubmitInfo si;
si.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
si.pNext = NULL;
si.waitSemaphoreCount = m_numWaitSemaphores;
si.pWaitSemaphores = &m_waitSemaphores[0];
si.pWaitDstStageMask = m_waitSemaphoreStages;
si.commandBufferCount = 1;
si.pCommandBuffers = &m_activeCommandBuffer;
si.signalSemaphoreCount = m_numSignalSemaphores;
si.pSignalSemaphores = &m_signalSemaphores[0];
m_numWaitSemaphores = 0;
m_numSignalSemaphores = 0;
VK_CHECK(vkQueueSubmit(m_queue, 1, &si, m_completedFence) );
if (_wait)
{
VK_CHECK(vkWaitForFences(device, 1, &m_completedFence, VK_TRUE, UINT64_MAX) );
}
m_activeCommandBuffer = VK_NULL_HANDLE;
m_currentFrameInFlight = (m_currentFrameInFlight + 1) % m_numFramesInFlight;
m_submitted++;
}
}
void CommandQueueVK::finish(bool _finishAll)
{
if (_finishAll)
{
for (uint32_t ii = 0; ii < m_numFramesInFlight; ++ii)
{
consume();
}
m_consumeIndex = m_currentFrameInFlight;
}
else
{
consume();
}
}
void CommandQueueVK::release(uint64_t _handle, VkObjectType _type)
{
Resource resource;
resource.m_type = _type;
resource.m_handle = _handle;
m_release[m_currentFrameInFlight].push_back(resource);
}
void CommandQueueVK::consume()
{
m_consumeIndex = (m_consumeIndex + 1) % m_numFramesInFlight;
for (const Resource& resource : m_release[m_consumeIndex])
{
switch (resource.m_type)
{
case VK_OBJECT_TYPE_BUFFER: destroy<VkBuffer >(resource.m_handle); break;
case VK_OBJECT_TYPE_IMAGE_VIEW: destroy<VkImageView >(resource.m_handle); break;
case VK_OBJECT_TYPE_IMAGE: destroy<VkImage >(resource.m_handle); break;
case VK_OBJECT_TYPE_FRAMEBUFFER: destroy<VkFramebuffer >(resource.m_handle); break;
case VK_OBJECT_TYPE_PIPELINE_LAYOUT: destroy<VkPipelineLayout >(resource.m_handle); break;
case VK_OBJECT_TYPE_PIPELINE: destroy<VkPipeline >(resource.m_handle); break;
case VK_OBJECT_TYPE_DESCRIPTOR_SET: destroy<VkDescriptorSet >(resource.m_handle); break;
case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT: destroy<VkDescriptorSetLayout>(resource.m_handle); break;
case VK_OBJECT_TYPE_RENDER_PASS: destroy<VkRenderPass >(resource.m_handle); break;
case VK_OBJECT_TYPE_SAMPLER: destroy<VkSampler >(resource.m_handle); break;
case VK_OBJECT_TYPE_SEMAPHORE: destroy<VkSemaphore >(resource.m_handle); break;
case VK_OBJECT_TYPE_SURFACE_KHR: destroy<VkSurfaceKHR >(resource.m_handle); break;
case VK_OBJECT_TYPE_SWAPCHAIN_KHR: destroy<VkSwapchainKHR >(resource.m_handle); break;
case VK_OBJECT_TYPE_DEVICE_MEMORY: destroy<VkDeviceMemory >(resource.m_handle); break;
default:
BX_ASSERT(false, "Invalid resource type: %d", resource.m_type);
break;
}
}
m_release[m_consumeIndex].clear();
}
void RendererContextVK::submitBlit(BlitState& _bs, uint16_t _view)
{
VkImageLayout srcLayouts[BGFX_CONFIG_MAX_BLIT_ITEMS];
VkImageLayout dstLayouts[BGFX_CONFIG_MAX_BLIT_ITEMS];
BlitState bs0 = _bs;
while (bs0.hasItem(_view) )
{
uint16_t item = bs0.m_item;
const BlitItem& blit = bs0.advance();
TextureVK& src = m_textures[blit.m_src.idx];
TextureVK& dst = m_textures[blit.m_dst.idx];
srcLayouts[item] = VK_NULL_HANDLE != src.m_singleMsaaImage ? src.m_currentSingleMsaaImageLayout : src.m_currentImageLayout;
dstLayouts[item] = dst.m_currentImageLayout;
}
bs0 = _bs;
while (bs0.hasItem(_view) )
{
const BlitItem& blit = bs0.advance();
TextureVK& src = m_textures[blit.m_src.idx];
TextureVK& dst = m_textures[blit.m_dst.idx];
src.setImageMemoryBarrier(
m_commandBuffer
, blit.m_src.idx == blit.m_dst.idx ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
, VK_NULL_HANDLE != src.m_singleMsaaImage
);
if (blit.m_src.idx != blit.m_dst.idx)
{
dst.setImageMemoryBarrier(m_commandBuffer, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
const uint16_t srcSamples = VK_NULL_HANDLE != src.m_singleMsaaImage ? 1 : src.m_sampler.Count;
const uint16_t dstSamples = dst.m_sampler.Count;
BX_UNUSED(srcSamples, dstSamples);
BX_ASSERT(
srcSamples == dstSamples
, "Mismatching texture sample count (%d != %d)."
, srcSamples
, dstSamples
);
VkImageCopy copyInfo;
copyInfo.srcSubresource.aspectMask = src.m_aspectMask;
copyInfo.srcSubresource.mipLevel = blit.m_srcMip;
copyInfo.srcSubresource.baseArrayLayer = 0;
copyInfo.srcSubresource.layerCount = 1;
copyInfo.srcOffset.x = blit.m_srcX;
copyInfo.srcOffset.y = blit.m_srcY;
copyInfo.srcOffset.z = 0;
copyInfo.dstSubresource.aspectMask = dst.m_aspectMask;
copyInfo.dstSubresource.mipLevel = blit.m_dstMip;
copyInfo.dstSubresource.baseArrayLayer = 0;
copyInfo.dstSubresource.layerCount = 1;
copyInfo.dstOffset.x = blit.m_dstX;
copyInfo.dstOffset.y = blit.m_dstY;
copyInfo.dstOffset.z = 0;
copyInfo.extent.width = blit.m_width;
copyInfo.extent.height = blit.m_height;
copyInfo.extent.depth = 1;
const uint32_t depth = bx::max<uint32_t>(1, blit.m_depth);
if (VK_IMAGE_VIEW_TYPE_3D == src.m_type)
{
BX_ASSERT(VK_IMAGE_VIEW_TYPE_3D == dst.m_type, "Can't blit between 2D and 3D image.");
copyInfo.srcOffset.z = blit.m_srcZ;
copyInfo.dstOffset.z = blit.m_dstZ;
copyInfo.extent.depth = depth;
}
else
{
copyInfo.srcSubresource.baseArrayLayer = blit.m_srcZ;
copyInfo.dstSubresource.baseArrayLayer = blit.m_dstZ;
copyInfo.srcSubresource.layerCount = depth;
copyInfo.dstSubresource.layerCount = depth;
}
vkCmdCopyImage(
m_commandBuffer
, VK_NULL_HANDLE != src.m_singleMsaaImage ? src.m_singleMsaaImage : src.m_textureImage
, VK_NULL_HANDLE != src.m_singleMsaaImage ? src.m_currentSingleMsaaImageLayout : src.m_currentImageLayout
, dst.m_textureImage
, dst.m_currentImageLayout
, 1
, &copyInfo
);
setMemoryBarrier(
m_commandBuffer
, VK_PIPELINE_STAGE_TRANSFER_BIT
, VK_PIPELINE_STAGE_TRANSFER_BIT
);
}
while (_bs.hasItem(_view) )
{
uint16_t item = _bs.m_item;
const BlitItem& blit = _bs.advance();
TextureVK& src = m_textures[blit.m_src.idx];
TextureVK& dst = m_textures[blit.m_dst.idx];
src.setImageMemoryBarrier(m_commandBuffer, srcLayouts[item], VK_NULL_HANDLE != src.m_singleMsaaImage);
dst.setImageMemoryBarrier(m_commandBuffer, dstLayouts[item]);
}
}
void RendererContextVK::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
BX_UNUSED(_clearQuad);
if (updateResolution(_render->m_resolution) )
{
return;
}
if (_render->m_capture)
{
renderDocTriggerCapture();
}
BGFX_VK_PROFILER_BEGIN_LITERAL("rendererSubmit", kColorView);
int64_t timeBegin = bx::getHPCounter();
int64_t captureElapsed = 0;
uint32_t frameQueryIdx = UINT32_MAX;
if (m_timerQuerySupport)
{
frameQueryIdx = m_gpuTimer.begin(BGFX_CONFIG_MAX_VIEWS, _render->m_frameNum);
}
if (0 < _render->m_iboffset)
{
BGFX_PROFILER_SCOPE("bgfx/Update transient index buffer", kColorResource);
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(m_commandBuffer, 0, _render->m_iboffset, ib->data);
}
if (0 < _render->m_vboffset)
{
BGFX_PROFILER_SCOPE("bgfx/Update transient vertex buffer", kColorResource);
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(m_commandBuffer, 0, _render->m_vboffset, vb->data);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_stateFlags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
static ViewState viewState;
viewState.reset(_render);
bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
setDebugWireframe(wireframe);
ProgramHandle currentProgram = BGFX_INVALID_HANDLE;
bool hasPredefined = false;
VkPipeline currentPipeline = VK_NULL_HANDLE;
VkDescriptorSet currentDescriptorSet = VK_NULL_HANDLE;
uint32_t currentBindHash = 0;
uint32_t descriptorSetCount = 0;
VkIndexType currentIndexFormat = VK_INDEX_TYPE_MAX_ENUM;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS };
BlitState bs(_render);
uint64_t blendFactor = UINT64_MAX;
bool wasCompute = false;
bool viewHasScissor = false;
bool restoreScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
bool isFrameBufferValid = false;
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
const uint64_t f0 = BGFX_STATE_BLEND_FACTOR;
const uint64_t f1 = BGFX_STATE_BLEND_INV_FACTOR;
const uint64_t f2 = BGFX_STATE_BLEND_FACTOR<<4;
const uint64_t f3 = BGFX_STATE_BLEND_INV_FACTOR<<4;
ScratchBufferVK& scratchBuffer = m_scratchBuffer[m_cmd.m_currentFrameInFlight];
scratchBuffer.reset();
setMemoryBarrier(
m_commandBuffer
, VK_PIPELINE_STAGE_TRANSFER_BIT
, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
);
VkRenderPassBeginInfo rpbi;
rpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpbi.pNext = NULL;
rpbi.clearValueCount = 0;
rpbi.pClearValues = NULL;
bool beginRenderPass = false;
Profiler<TimerQueryVK> profiler(
_render
, m_gpuTimer
, s_viewName
, m_timerQuerySupport
);
m_occlusionQuery.flush(_render);
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
viewState.m_rect = _render->m_view[0].m_rect;
int32_t numItems = _render->m_numRenderItems;
for (int32_t item = 0; item < numItems;)
{
const uint64_t encodedKey = _render->m_sortKeys[item];
const bool isCompute = key.decode(encodedKey, _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const uint32_t itemIdx = _render->m_sortValues[item];
const RenderItem& renderItem = _render->m_renderItem[itemIdx];
const RenderBind& renderBind = _render->m_renderItemBind[itemIdx];
++item;
if (viewChanged)
{
if (beginRenderPass)
{
vkCmdEndRenderPass(m_commandBuffer);
beginRenderPass = false;
}
view = key.m_view;
currentProgram = BGFX_INVALID_HANDLE;
hasPredefined = false;
if (item > 1)
{
profiler.end();
}
BGFX_VK_PROFILER_END();
setViewType(view, " ");
BGFX_VK_PROFILER_BEGIN(view, kColorView);
profiler.begin(view);
if (_render->m_view[view].m_fbh.idx != fbh.idx)
{
fbh = _render->m_view[view].m_fbh;
setFrameBuffer(fbh);
}
const FrameBufferVK& fb = isValid(m_fbh)
? m_frameBuffers[m_fbh.idx]
: m_backBuffer
;
isFrameBufferValid = fb.isRenderable();
if (isFrameBufferValid)
{
viewState.m_rect = _render->m_view[view].m_rect;
const Rect& rect = _render->m_view[view].m_rect;
const Rect& scissorRect = _render->m_view[view].m_scissor;
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : rect;
restoreScissor = false;
rpbi.framebuffer = fb.m_currentFramebuffer;
rpbi.renderPass = fb.m_renderPass;
rpbi.renderArea.offset.x = rect.m_x;
rpbi.renderArea.offset.y = rect.m_y;
rpbi.renderArea.extent.width = rect.m_width;
rpbi.renderArea.extent.height = rect.m_height;
VkViewport vp;
vp.x = float(rect.m_x);
vp.y = float(rect.m_y + rect.m_height);
vp.width = float(rect.m_width);
vp.height = -float(rect.m_height);
vp.minDepth = 0.0f;
vp.maxDepth = 1.0f;
vkCmdSetViewport(m_commandBuffer, 0, 1, &vp);
VkRect2D rc;
rc.offset.x = viewScissorRect.m_x;
rc.offset.y = viewScissorRect.m_y;
rc.extent.width = viewScissorRect.m_width;
rc.extent.height = viewScissorRect.m_height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
const Clear& clr = _render->m_view[view].m_clear;
if (BGFX_CLEAR_NONE != clr.m_flags)
{
vkCmdBeginRenderPass(m_commandBuffer, &rpbi, VK_SUBPASS_CONTENTS_INLINE);
Rect clearRect = rect;
clearRect.setIntersect(rect, viewScissorRect);
clearQuad(clearRect, clr, _render->m_colorPalette);
vkCmdEndRenderPass(m_commandBuffer);
}
submitBlit(bs, view);
}
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
currentBindHash = 0;
BGFX_VK_PROFILER_END();
setViewType(view, "C");
BGFX_VK_PROFILER_BEGIN(view, kColorCompute);
}
// renderpass external subpass dependencies handle graphics -> compute and compute -> graphics
// but not compute -> compute (possibly also across views if they contain no draw calls)
setMemoryBarrier(
m_commandBuffer
, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT
, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT
);
const RenderCompute& compute = renderItem.compute;
const VkPipeline pipeline = getPipeline(key.m_program);
if (currentPipeline != pipeline)
{
currentPipeline = pipeline;
vkCmdBindPipeline(m_commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
}
bool constantsChanged = false;
if (compute.m_uniformBegin < compute.m_uniformEnd
|| currentProgram.idx != key.m_program.idx)
{
rendererUpdateUniforms(this, _render->m_uniformBuffer[compute.m_uniformIdx], compute.m_uniformBegin, compute.m_uniformEnd);
currentProgram = key.m_program;
ProgramVK& program = m_program[currentProgram.idx];
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
hasPredefined = 0 < program.m_numPredefined;
constantsChanged = true;
}
const ProgramVK& program = m_program[currentProgram.idx];
if (constantsChanged
|| hasPredefined)
{
viewState.setPredefined<4>(this, view, program, _render, compute);
}
if (VK_NULL_HANDLE != program.m_descriptorSetLayout)
{
const uint32_t vsize = program.m_vsh->m_size;
uint32_t numOffset = 0;
uint32_t offset = 0;
if (constantsChanged
|| hasPredefined)
{
if (vsize > 0)
{
offset = scratchBuffer.write(m_vsScratch, vsize);
++numOffset;
}
}
bx::HashMurmur2A hash;
hash.begin();
hash.add(program.m_descriptorSetLayout);
hash.add(renderBind.m_bind, sizeof(renderBind.m_bind) );
hash.add(vsize);
hash.add(0);
const uint32_t bindHash = hash.end();
if (currentBindHash != bindHash)
{
currentBindHash = bindHash;
currentDescriptorSet = getDescriptorSet(
program
, renderBind
, scratchBuffer
, _render->m_colorPalette
);
descriptorSetCount++;
}
vkCmdBindDescriptorSets(
m_commandBuffer
, VK_PIPELINE_BIND_POINT_COMPUTE
, program.m_pipelineLayout
, 0
, 1
, &currentDescriptorSet
, numOffset
, &offset
);
}
if (isValid(compute.m_indirectBuffer) )
{
const VertexBufferVK& vb = m_vertexBuffers[compute.m_indirectBuffer.idx];
uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: compute.m_numIndirect
;
uint32_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
vkCmdDispatchIndirect(m_commandBuffer, vb.m_buffer, args);
args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
}
}
else
{
vkCmdDispatch(m_commandBuffer, compute.m_numX, compute.m_numY, compute.m_numZ);
}
continue;
}
const RenderDraw& draw = renderItem.draw;
rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd);
const bool hasOcclusionQuery = 0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY);
{
const bool occluded = true
&& isValid(draw.m_occlusionQuery)
&& !hasOcclusionQuery
&& !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags & BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) )
;
if (occluded
|| !isFrameBufferValid
|| 0 == draw.m_streamMask
|| _render->m_frameCache.isZeroArea(viewScissorRect, draw.m_scissor) )
{
continue;
}
}
const uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags;
currentState.m_stateFlags = draw.m_stateFlags;
if (!beginRenderPass)
{
if (wasCompute)
{
wasCompute = false;
currentBindHash = 0;
}
BGFX_VK_PROFILER_END();
setViewType(view, " ");
BGFX_VK_PROFILER_BEGIN(view, kColorDraw);
vkCmdBeginRenderPass(m_commandBuffer, &rpbi, VK_SUBPASS_CONTENTS_INLINE);
beginRenderPass = true;
currentProgram = BGFX_INVALID_HANDLE;
currentState.m_scissor = !draw.m_scissor;
}
if (0 != draw.m_streamMask)
{
const bool bindAttribs = hasVertexStreamChanged(currentState, draw);
currentState.m_streamMask = draw.m_streamMask;
currentState.m_instanceDataBuffer = draw.m_instanceDataBuffer;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
const VertexLayout* layouts[BGFX_CONFIG_MAX_VERTEX_STREAMS];
VkBuffer streamBuffers[BGFX_CONFIG_MAX_VERTEX_STREAMS + 1];
VkDeviceSize streamOffsets[BGFX_CONFIG_MAX_VERTEX_STREAMS + 1];
uint8_t numStreams = 0;
uint32_t numVertices = draw.m_numVertices;
if (UINT8_MAX != draw.m_streamMask)
{
for (uint32_t idx = 0, streamMask = draw.m_streamMask
; 0 != streamMask
; streamMask >>= 1, idx += 1, ++numStreams
)
{
const uint32_t ntz = bx::uint32_cnttz(streamMask);
streamMask >>= ntz;
idx += ntz;
currentState.m_stream[idx] = draw.m_stream[idx];
const VertexBufferHandle handle = draw.m_stream[idx].m_handle;
const VertexBufferVK& vb = m_vertexBuffers[handle.idx];
const uint16_t decl = isValid(draw.m_stream[idx].m_layoutHandle)
? draw.m_stream[idx].m_layoutHandle.idx
: vb.m_layoutHandle.idx
;
const VertexLayout& layout = m_vertexLayouts[decl];
const uint32_t stride = layout.m_stride;
streamBuffers[numStreams] = m_vertexBuffers[handle.idx].m_buffer;
streamOffsets[numStreams] = draw.m_stream[idx].m_startVertex * stride;
layouts[numStreams] = &layout;
numVertices = bx::uint32_min(UINT32_MAX == draw.m_numVertices
? vb.m_size/stride
: draw.m_numVertices
, numVertices
);
}
}
if (bindAttribs)
{
uint32_t numVertexBuffers = numStreams;
if (isValid(draw.m_instanceDataBuffer) )
{
streamOffsets[numVertexBuffers] = draw.m_instanceDataOffset;
streamBuffers[numVertexBuffers] = m_vertexBuffers[draw.m_instanceDataBuffer.idx].m_buffer;
numVertexBuffers++;
}
if (0 < numVertexBuffers)
{
vkCmdBindVertexBuffers(
m_commandBuffer
, 0
, numVertexBuffers
, &streamBuffers[0]
, streamOffsets
);
}
}
const VkPipeline pipeline =
getPipeline(draw.m_stateFlags
, draw.m_rgba
, draw.m_stencil
, numStreams
, layouts
, key.m_program
, uint8_t(draw.m_instanceDataStride/16)
);
if (currentPipeline != pipeline)
{
currentPipeline = pipeline;
vkCmdBindPipeline(m_commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
const bool hasStencil = 0 != draw.m_stencil;
if (hasStencil
&& currentState.m_stencil != draw.m_stencil)
{
currentState.m_stencil = draw.m_stencil;
const uint32_t fstencil = unpackStencil(0, draw.m_stencil);
const uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
vkCmdSetStencilReference(m_commandBuffer, VK_STENCIL_FRONT_AND_BACK, ref);
}
const bool hasFactor = 0
|| f0 == (draw.m_stateFlags & f0)
|| f1 == (draw.m_stateFlags & f1)
|| f2 == (draw.m_stateFlags & f2)
|| f3 == (draw.m_stateFlags & f3)
;
if (hasFactor
&& blendFactor != draw.m_rgba)
{
blendFactor = draw.m_rgba;
float bf[4];
bf[0] = ( (draw.m_rgba>>24) )/255.0f;
bf[1] = ( (draw.m_rgba>>16)&0xff)/255.0f;
bf[2] = ( (draw.m_rgba>> 8)&0xff)/255.0f;
bf[3] = ( (draw.m_rgba )&0xff)/255.0f;
vkCmdSetBlendConstants(m_commandBuffer, bf);
}
const uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
if (UINT16_MAX == scissor)
{
if (restoreScissor
|| viewHasScissor)
{
restoreScissor = false;
VkRect2D rc;
rc.offset.x = viewScissorRect.m_x;
rc.offset.y = viewScissorRect.m_y;
rc.extent.width = viewScissorRect.m_width;
rc.extent.height = viewScissorRect.m_height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
}
}
else
{
restoreScissor = true;
Rect scissorRect;
scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]);
VkRect2D rc;
rc.offset.x = scissorRect.m_x;
rc.offset.y = scissorRect.m_y;
rc.extent.width = scissorRect.m_width;
rc.extent.height = scissorRect.m_height;
vkCmdSetScissor(m_commandBuffer, 0, 1, &rc);
}
}
bool constantsChanged = false;
if (draw.m_uniformBegin < draw.m_uniformEnd
|| currentProgram.idx != key.m_program.idx
|| BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
currentProgram = key.m_program;
ProgramVK& program = m_program[currentProgram.idx];
UniformBuffer* vcb = program.m_vsh->m_constantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
if (NULL != program.m_fsh)
{
UniformBuffer* fcb = program.m_fsh->m_constantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
}
hasPredefined = 0 < program.m_numPredefined;
constantsChanged = true;
}
const ProgramVK& program = m_program[currentProgram.idx];
if (hasPredefined)
{
uint32_t ref = (draw.m_stateFlags & BGFX_STATE_ALPHA_REF_MASK) >> BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref / 255.0f;
viewState.setPredefined<4>(this, view, program, _render, draw);
}
if (VK_NULL_HANDLE != program.m_descriptorSetLayout)
{
const uint32_t vsize = program.m_vsh->m_size;
const uint32_t fsize = NULL != program.m_fsh ? program.m_fsh->m_size : 0;
uint32_t numOffset = 0;
uint32_t offsets[2] = { 0, 0 };
if (constantsChanged
|| hasPredefined)
{
if (vsize > 0)
{
offsets[numOffset++] = scratchBuffer.write(m_vsScratch, vsize);
}
if (fsize > 0)
{
offsets[numOffset++] = scratchBuffer.write(m_fsScratch, fsize);
}
}
bx::HashMurmur2A hash;
hash.begin();
hash.add(program.m_descriptorSetLayout);
hash.add(renderBind.m_bind, sizeof(renderBind.m_bind) );
hash.add(vsize);
hash.add(fsize);
const uint32_t bindHash = hash.end();
if (currentBindHash != bindHash)
{
currentBindHash = bindHash;
currentDescriptorSet = getDescriptorSet(
program
, renderBind
, scratchBuffer
, _render->m_colorPalette
);
descriptorSetCount++;
}
vkCmdBindDescriptorSets(
m_commandBuffer
, VK_PIPELINE_BIND_POINT_GRAPHICS
, program.m_pipelineLayout
, 0
, 1
, &currentDescriptorSet
, numOffset
, offsets
);
}
VkBuffer bufferIndirect = VK_NULL_HANDLE;
VkBuffer bufferNumIndirect = VK_NULL_HANDLE;
uint32_t numDrawIndirect = 0;
uint32_t bufferOffsetIndirect = 0;
uint32_t bufferNumOffsetIndirect = 0;
if (isValid(draw.m_indirectBuffer) )
{
const VertexBufferVK& vb = m_vertexBuffers[draw.m_indirectBuffer.idx];
bufferIndirect = vb.m_buffer;
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size / BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
bufferOffsetIndirect = draw.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
if (isValid(draw.m_numIndirectBuffer) )
{
bufferNumIndirect = m_indexBuffers[draw.m_numIndirectBuffer.idx].m_buffer;
bufferNumOffsetIndirect = draw.m_numIndirectIndex * sizeof(uint32_t);
}
}
if (hasOcclusionQuery)
{
m_occlusionQuery.begin(draw.m_occlusionQuery);
}
const uint8_t primIndex = uint8_t((draw.m_stateFlags & BGFX_STATE_PT_MASK) >> BGFX_STATE_PT_SHIFT);
const PrimInfo& prim = s_primInfo[primIndex];
uint32_t numPrimsSubmitted = 0;
uint32_t numIndices = 0;
if (!isValid(draw.m_indexBuffer) )
{
numPrimsSubmitted = numVertices / prim.m_div - prim.m_sub;
if (isValid(draw.m_indirectBuffer) )
{
if (isValid(draw.m_numIndirectBuffer) )
{
vkCmdDrawIndirectCountKHR(
m_commandBuffer
, bufferIndirect
, bufferOffsetIndirect
, bufferNumIndirect
, bufferNumOffsetIndirect
, numDrawIndirect
, BGFX_CONFIG_DRAW_INDIRECT_STRIDE
);
}
else
{
vkCmdDrawIndirect(
m_commandBuffer
, bufferIndirect
, bufferOffsetIndirect
, numDrawIndirect
, BGFX_CONFIG_DRAW_INDIRECT_STRIDE
);
}
}
else
{
vkCmdDraw(
m_commandBuffer
, numVertices
, draw.m_numInstances
, 0
, 0
);
}
}
else
{
const bool isIndex16 = draw.isIndex16();
const uint32_t indexSize = isIndex16 ? 2 : 4;
const VkIndexType indexFormat = isIndex16 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32;
const BufferVK& ib = m_indexBuffers[draw.m_indexBuffer.idx];
numIndices = UINT32_MAX == draw.m_numIndices
? ib.m_size / indexSize
: draw.m_numIndices
;
numPrimsSubmitted = numIndices / prim.m_div - prim.m_sub;
if (currentState.m_indexBuffer.idx != draw.m_indexBuffer.idx
|| currentIndexFormat != indexFormat)
{
currentState.m_indexBuffer = draw.m_indexBuffer;
currentIndexFormat = indexFormat;
vkCmdBindIndexBuffer(
m_commandBuffer
, m_indexBuffers[draw.m_indexBuffer.idx].m_buffer
, 0
, indexFormat
);
}
if (isValid(draw.m_indirectBuffer) )
{
if (isValid(draw.m_numIndirectBuffer) )
{
vkCmdDrawIndexedIndirectCountKHR(
m_commandBuffer
, bufferIndirect
, bufferOffsetIndirect
, bufferNumIndirect
, bufferNumOffsetIndirect
, numDrawIndirect
, BGFX_CONFIG_DRAW_INDIRECT_STRIDE
);
}
else
{
vkCmdDrawIndexedIndirect(
m_commandBuffer
, bufferIndirect
, bufferOffsetIndirect
, numDrawIndirect
, BGFX_CONFIG_DRAW_INDIRECT_STRIDE
);
}
}
else
{
vkCmdDrawIndexed(
m_commandBuffer
, numIndices
, draw.m_numInstances
, draw.m_startIndex
, 0
, 0
);
}
}
uint32_t numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += draw.m_numInstances;
statsNumIndices += numIndices;
if (hasOcclusionQuery)
{
m_occlusionQuery.end();
}
}
}
if (beginRenderPass)
{
vkCmdEndRenderPass(m_commandBuffer);
beginRenderPass = false;
}
if (wasCompute)
{
setViewType(view, "C");
BGFX_VK_PROFILER_END();
BGFX_VK_PROFILER_BEGIN(view, kColorCompute);
}
submitBlit(bs, BGFX_CONFIG_MAX_VIEWS);
if (0 < _render->m_numRenderItems)
{
captureElapsed = -bx::getHPCounter();
capture();
captureElapsed += bx::getHPCounter();
profiler.end();
}
}
BGFX_VK_PROFILER_END();
int64_t timeEnd = bx::getHPCounter();
int64_t frameTime = timeEnd - timeBegin;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = bx::min<int64_t>(min, frameTime);
max = bx::max<int64_t>(max, frameTime);
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
double elapsedGpuMs = 0.0;
static int64_t presentMin = m_presentElapsed;
static int64_t presentMax = m_presentElapsed;
presentMin = bx::min<int64_t>(presentMin, m_presentElapsed);
presentMax = bx::max<int64_t>(presentMax, m_presentElapsed);
if (UINT32_MAX != frameQueryIdx)
{
m_gpuTimer.end(frameQueryIdx);
const TimerQueryVK::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS];
double toGpuMs = 1000.0 / double(m_gpuTimer.m_frequency);
elapsedGpuMs = (result.m_end - result.m_begin) * toGpuMs;
maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
maxGpuLatency = bx::uint32_imax(maxGpuLatency, result.m_pending-1);
}
maxGpuLatency = bx::uint32_imax(maxGpuLatency, m_gpuTimer.m_control.available()-1);
const int64_t timerFreq = bx::getHPFrequency();
VkPhysicalDeviceMemoryBudgetPropertiesEXT dmbp;
dmbp.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT;
dmbp.pNext = NULL;
int64_t gpuMemoryAvailable = -INT64_MAX;
int64_t gpuMemoryUsed = -INT64_MAX;
if (s_extension[Extension::EXT_memory_budget].m_supported)
{
VkPhysicalDeviceMemoryProperties2 pdmp2;
pdmp2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2;
pdmp2.pNext = &dmbp;
vkGetPhysicalDeviceMemoryProperties2KHR(m_physicalDevice, &pdmp2);
gpuMemoryAvailable = 0;
gpuMemoryUsed = 0;
for (uint32_t ii = 0; ii < m_memoryProperties.memoryHeapCount; ++ii)
{
if (!!(m_memoryProperties.memoryHeaps[ii].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) )
{
gpuMemoryAvailable += dmbp.heapBudget[ii];
gpuMemoryUsed += dmbp.heapUsage[ii];
}
}
}
Stats& perfStats = _render->m_perfStats;
perfStats.cpuTimeBegin = timeBegin;
perfStats.cpuTimeEnd = timeEnd;
perfStats.cpuTimerFreq = timerFreq;
const TimerQueryVK::Result& result = m_gpuTimer.m_result[BGFX_CONFIG_MAX_VIEWS];
perfStats.gpuTimeBegin = result.m_begin;
perfStats.gpuTimeEnd = result.m_end;
perfStats.gpuTimerFreq = m_gpuTimer.m_frequency;
perfStats.numDraw = statsKeyType[0];
perfStats.numCompute = statsKeyType[1];
perfStats.numBlit = _render->m_numBlitItems;
perfStats.maxGpuLatency = maxGpuLatency;
perfStats.gpuFrameNum = result.m_frameNum;
bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) );
perfStats.gpuMemoryMax = gpuMemoryAvailable;
perfStats.gpuMemoryUsed = gpuMemoryUsed;
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
BGFX_VK_PROFILER_BEGIN_LITERAL("debugstats", kColorFrame);
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = timeEnd;
if (timeEnd >= next)
{
next = timeEnd + timerFreq;
double freq = double(timerFreq);
double toMs = 1000.0 / freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f
, " %s / " BX_COMPILER_NAME
" / " BX_CPU_NAME
" / " BX_ARCH_NAME
" / " BX_PLATFORM_NAME
" / Version 1.%d.%d (commit: " BGFX_REV_SHA1 ")"
, getRendererName()
, BGFX_API_VERSION
, BGFX_REV_NUMBER
);
const VkPhysicalDeviceProperties& pdp = m_deviceProperties;
tvm.printf(0, pos++, 0x8f, " Device: %s (%s)"
, pdp.deviceName
, getName(pdp.deviceType)
);
if (0 <= gpuMemoryAvailable && 0 <= gpuMemoryUsed)
{
for (uint32_t ii = 0; ii < m_memoryProperties.memoryHeapCount; ++ii)
{
char budget[16];
bx::prettify(budget, BX_COUNTOF(budget), dmbp.heapBudget[ii]);
char usage[16];
bx::prettify(usage, BX_COUNTOF(usage), dmbp.heapUsage[ii]);
const bool local = (!!(m_memoryProperties.memoryHeaps[ii].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) );
tvm.printf(0, pos++, 0x8f, " Memory %d %s - Budget: %12s, Usage: %12s"
, ii
, local ? "(local) " : "(non-local)"
, budget
, usage
);
}
}
pos = 10;
tvm.printf(10, pos++, 0x8b, " Frame: % 7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
tvm.printf(10, pos++, 0x8b, " Present: % 7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] "
, double(m_presentElapsed)*toMs
, double(presentMin)*toMs
, double(presentMax)*toMs
);
const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.reset&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(frameTime)*toMs;
tvm.printf(10, pos++, 0x8b, " Submitted: %5d (draw %5d, compute %4d) / CPU %7.4f [ms] "
, _render->m_numRenderItems
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
);
for (uint32_t ii = 0; ii < Topology::Count; ++ii)
{
tvm.printf(10, pos++, 0x8b, " %9s: %7d (#inst: %5d), submitted: %7d "
, getName(Topology::Enum(ii) )
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
if (NULL != m_renderDocDll)
{
tvm.printf(tvm.m_width-27, 0, 0x4f, " [F11 - RenderDoc capture] ");
}
tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices);
// tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset);
pos++;
tvm.printf(10, pos++, 0x8b, " Occlusion queries: %3d ", m_occlusionQuery.m_control.available() );
pos++;
tvm.printf(10, pos++, 0x8b, " State cache: ");
tvm.printf(10, pos++, 0x8b, " PSO | DSL | DS ");
tvm.printf(10, pos++, 0x8b, " %6d | %6d | %6d "
, m_pipelineStateCache.getCount()
, m_descriptorSetLayoutCache.getCount()
, descriptorSetCount
);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8b, " Capture: %7.4f [ms] ", captureMs);
uint8_t attr[2] = { 0x8c, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex&1], " Submit wait: %7.4f [ms] ", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %7.4f [ms] ", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
presentMin = m_presentElapsed;
presentMax = m_presentElapsed;
}
blit(this, _textVideoMemBlitter, tvm);
BGFX_VK_PROFILER_END();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
BGFX_VK_PROFILER_BEGIN_LITERAL("debugtext", kColorFrame);
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
BGFX_VK_PROFILER_END();
}
m_presentElapsed = 0;
scratchBuffer.flush();
for (uint16_t ii = 0; ii < m_numWindows; ++ii)
{
FrameBufferVK& fb = isValid(m_windows[ii])
? m_frameBuffers[m_windows[ii].idx]
: m_backBuffer
;
if (fb.m_needPresent)
{
fb.resolve();
fb.m_swapChain.transitionImage(m_commandBuffer);
m_cmd.addWaitSemaphore(fb.m_swapChain.m_lastImageAcquiredSemaphore, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
m_cmd.addSignalSemaphore(fb.m_swapChain.m_lastImageRenderedSemaphore);
fb.m_swapChain.m_lastImageAcquiredSemaphore = VK_NULL_HANDLE;
fb.m_swapChain.m_backBufferFence[fb.m_swapChain.m_backBufferColorIdx] = m_cmd.m_currentFence;
}
}
kick();
}
} /* namespace vk */ } // namespace bgfx
#else
namespace bgfx { namespace vk
{
RendererContextI* rendererCreate(const Init& _init)
{
BX_UNUSED(_init);
return NULL;
}
void rendererDestroy()
{
}
} /* namespace vk */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_VULKAN