bgfx/examples/21-deferred/deferred.cpp

733 lines
21 KiB
C++

/*
* Copyright 2011-2015 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#include "common.h"
#include "bgfx_utils.h"
#include "imgui/imgui.h"
#include "camera.h"
#include "bounds.h"
#define RENDER_PASS_GEOMETRY_ID 0
#define RENDER_PASS_LIGHT_ID 1
#define RENDER_PASS_COMBINE_ID 2
#define RENDER_PASS_DEBUG_LIGHTS_ID 3
#define RENDER_PASS_DEBUG_GBUFFER_ID 4
static bool s_originBottomLeft = false;
inline void mtxProj(float* _result, float _fovy, float _aspect, float _near, float _far)
{
bx::mtxProj(_result, _fovy, _aspect, _near, _far, s_originBottomLeft);
}
struct PosNormalTangentTexcoordVertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_normal;
uint32_t m_tangent;
int16_t m_u;
int16_t m_v;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true)
.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Int16, true, true)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosNormalTangentTexcoordVertex::ms_decl;
struct PosTexCoord0Vertex
{
float m_x;
float m_y;
float m_z;
float m_u;
float m_v;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl PosTexCoord0Vertex::ms_decl;
struct DebugVertex
{
float m_x;
float m_y;
float m_z;
uint32_t m_abgr;
static void init()
{
ms_decl
.begin()
.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float)
.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true)
.end();
}
static bgfx::VertexDecl ms_decl;
};
bgfx::VertexDecl DebugVertex::ms_decl;
uint32_t packUint32(uint8_t _x, uint8_t _y, uint8_t _z, uint8_t _w)
{
union
{
uint32_t ui32;
uint8_t arr[4];
} un;
un.arr[0] = _x;
un.arr[1] = _y;
un.arr[2] = _z;
un.arr[3] = _w;
return un.ui32;
}
uint32_t packF4u(float _x, float _y = 0.0f, float _z = 0.0f, float _w = 0.0f)
{
const uint8_t xx = uint8_t(_x*127.0f + 128.0f);
const uint8_t yy = uint8_t(_y*127.0f + 128.0f);
const uint8_t zz = uint8_t(_z*127.0f + 128.0f);
const uint8_t ww = uint8_t(_w*127.0f + 128.0f);
return packUint32(xx, yy, zz, ww);
}
static PosNormalTangentTexcoordVertex s_cubeVertices[24] =
{
{-1.0f, 1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f), 0, 0, 0 },
{ 1.0f, 1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f), 0, 0x7fff, 0 },
{-1.0f, -1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f), 0, 0, 0x7fff },
{ 1.0f, -1.0f, 1.0f, packF4u( 0.0f, 0.0f, 1.0f), 0, 0x7fff, 0x7fff },
{-1.0f, 1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f), 0, 0, 0 },
{ 1.0f, 1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f), 0, 0x7fff, 0 },
{-1.0f, -1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f), 0, 0, 0x7fff },
{ 1.0f, -1.0f, -1.0f, packF4u( 0.0f, 0.0f, -1.0f), 0, 0x7fff, 0x7fff },
{-1.0f, 1.0f, 1.0f, packF4u( 0.0f, 1.0f, 0.0f), 0, 0, 0 },
{ 1.0f, 1.0f, 1.0f, packF4u( 0.0f, 1.0f, 0.0f), 0, 0x7fff, 0 },
{-1.0f, 1.0f, -1.0f, packF4u( 0.0f, 1.0f, 0.0f), 0, 0, 0x7fff },
{ 1.0f, 1.0f, -1.0f, packF4u( 0.0f, 1.0f, 0.0f), 0, 0x7fff, 0x7fff },
{-1.0f, -1.0f, 1.0f, packF4u( 0.0f, -1.0f, 0.0f), 0, 0, 0 },
{ 1.0f, -1.0f, 1.0f, packF4u( 0.0f, -1.0f, 0.0f), 0, 0x7fff, 0 },
{-1.0f, -1.0f, -1.0f, packF4u( 0.0f, -1.0f, 0.0f), 0, 0, 0x7fff },
{ 1.0f, -1.0f, -1.0f, packF4u( 0.0f, -1.0f, 0.0f), 0, 0x7fff, 0x7fff },
{ 1.0f, -1.0f, 1.0f, packF4u( 1.0f, 0.0f, 0.0f), 0, 0, 0 },
{ 1.0f, 1.0f, 1.0f, packF4u( 1.0f, 0.0f, 0.0f), 0, 0x7fff, 0 },
{ 1.0f, -1.0f, -1.0f, packF4u( 1.0f, 0.0f, 0.0f), 0, 0, 0x7fff },
{ 1.0f, 1.0f, -1.0f, packF4u( 1.0f, 0.0f, 0.0f), 0, 0x7fff, 0x7fff },
{-1.0f, -1.0f, 1.0f, packF4u(-1.0f, 0.0f, 0.0f), 0, 0, 0 },
{-1.0f, 1.0f, 1.0f, packF4u(-1.0f, 0.0f, 0.0f), 0, 0x7fff, 0 },
{-1.0f, -1.0f, -1.0f, packF4u(-1.0f, 0.0f, 0.0f), 0, 0, 0x7fff },
{-1.0f, 1.0f, -1.0f, packF4u(-1.0f, 0.0f, 0.0f), 0, 0x7fff, 0x7fff },
};
static const uint16_t s_cubeIndices[36] =
{
0, 2, 1,
1, 2, 3,
4, 5, 6,
5, 7, 6,
8, 10, 9,
9, 10, 11,
12, 13, 14,
13, 15, 14,
16, 18, 17,
17, 18, 19,
20, 21, 22,
21, 23, 22,
};
void screenSpaceQuad(float _textureWidth, float _textureHeight, float _texelHalf, bool _originBottomLeft, float _width = 1.0f, float _height = 1.0f)
{
if (bgfx::checkAvailTransientVertexBuffer(3, PosTexCoord0Vertex::ms_decl) )
{
bgfx::TransientVertexBuffer vb;
bgfx::allocTransientVertexBuffer(&vb, 3, PosTexCoord0Vertex::ms_decl);
PosTexCoord0Vertex* vertex = (PosTexCoord0Vertex*)vb.data;
const float minx = -_width;
const float maxx = _width;
const float miny = 0.0f;
const float maxy = _height*2.0f;
const float texelHalfW = _texelHalf/_textureWidth;
const float texelHalfH = _texelHalf/_textureHeight;
const float minu = -1.0f + texelHalfW;
const float maxu = 1.0f + texelHalfH;
const float zz = 0.0f;
float minv = texelHalfH;
float maxv = 2.0f + texelHalfH;
if (_originBottomLeft)
{
float temp = minv;
minv = maxv;
maxv = temp;
minv -= 1.0f;
maxv -= 1.0f;
}
vertex[0].m_x = minx;
vertex[0].m_y = miny;
vertex[0].m_z = zz;
vertex[0].m_u = minu;
vertex[0].m_v = minv;
vertex[1].m_x = maxx;
vertex[1].m_y = miny;
vertex[1].m_z = zz;
vertex[1].m_u = maxu;
vertex[1].m_v = minv;
vertex[2].m_x = maxx;
vertex[2].m_y = maxy;
vertex[2].m_z = zz;
vertex[2].m_u = maxu;
vertex[2].m_v = maxv;
bgfx::setVertexBuffer(&vb);
}
}
int _main_(int /*_argc*/, char** /*_argv*/)
{
uint32_t width = 1280;
uint32_t height = 720;
uint32_t debug = BGFX_DEBUG_TEXT;
uint32_t reset = BGFX_RESET_VSYNC;
bgfx::init();
bgfx::reset(width, height, reset);
// Enable debug text.
bgfx::setDebug(debug);
// Set clear color palette for index 0
bgfx::setClearColor(0, UINT32_C(0x00000000) );
// Set clear color palette for index 1
bgfx::setClearColor(1, UINT32_C(0x303030ff) );
// Set geometry pass view clear state.
bgfx::setViewClear(RENDER_PASS_GEOMETRY_ID
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 1.0f
, 0
, 1
);
// Set light pass view clear state.
bgfx::setViewClear(RENDER_PASS_LIGHT_ID
, BGFX_CLEAR_COLOR|BGFX_CLEAR_DEPTH
, 1.0f
, 0
, 0
);
// Create vertex stream declaration.
PosNormalTangentTexcoordVertex::init();
PosTexCoord0Vertex::init();
DebugVertex::init();
calcTangents(s_cubeVertices
, BX_COUNTOF(s_cubeVertices)
, PosNormalTangentTexcoordVertex::ms_decl
, s_cubeIndices
, BX_COUNTOF(s_cubeIndices)
);
// Create static vertex buffer.
bgfx::VertexBufferHandle vbh = bgfx::createVertexBuffer(
bgfx::makeRef(s_cubeVertices, sizeof(s_cubeVertices) )
, PosNormalTangentTexcoordVertex::ms_decl
);
// Create static index buffer.
bgfx::IndexBufferHandle ibh = bgfx::createIndexBuffer(bgfx::makeRef(s_cubeIndices, sizeof(s_cubeIndices) ) );
// Create texture sampler uniforms.
bgfx::UniformHandle s_texColor = bgfx::createUniform("s_texColor", bgfx::UniformType::Int1);
bgfx::UniformHandle s_texNormal = bgfx::createUniform("s_texNormal", bgfx::UniformType::Int1);
bgfx::UniformHandle s_albedo = bgfx::createUniform("s_albedo", bgfx::UniformType::Int1);
bgfx::UniformHandle s_normal = bgfx::createUniform("s_normal", bgfx::UniformType::Int1);
bgfx::UniformHandle s_depth = bgfx::createUniform("s_depth", bgfx::UniformType::Int1);
bgfx::UniformHandle s_light = bgfx::createUniform("s_light", bgfx::UniformType::Int1);
bgfx::UniformHandle u_mtx = bgfx::createUniform("u_mtx", bgfx::UniformType::Mat4);
bgfx::UniformHandle u_lightPosRadius = bgfx::createUniform("u_lightPosRadius", bgfx::UniformType::Vec4);
bgfx::UniformHandle u_lightRgbInnerR = bgfx::createUniform("u_lightRgbInnerR", bgfx::UniformType::Vec4);
// Create program from shaders.
bgfx::ProgramHandle geomProgram = loadProgram("vs_deferred_geom", "fs_deferred_geom");
bgfx::ProgramHandle lightProgram = loadProgram("vs_deferred_light", "fs_deferred_light");
bgfx::ProgramHandle combineProgram = loadProgram("vs_deferred_combine", "fs_deferred_combine");
bgfx::ProgramHandle debugProgram = loadProgram("vs_deferred_debug", "fs_deferred_debug");
bgfx::ProgramHandle lineProgram = loadProgram("vs_deferred_debug_line", "fs_deferred_debug_line");
// Load diffuse texture.
bgfx::TextureHandle textureColor = loadTexture("fieldstone-rgba.dds");
// Load normal texture.
bgfx::TextureHandle textureNormal = loadTexture("fieldstone-n.dds");
bgfx::TextureHandle gbufferTex[3] = { BGFX_INVALID_HANDLE, BGFX_INVALID_HANDLE, BGFX_INVALID_HANDLE };
bgfx::FrameBufferHandle gbuffer = BGFX_INVALID_HANDLE;
bgfx::FrameBufferHandle lightBuffer = BGFX_INVALID_HANDLE;
// Imgui.
imguiCreate();
const int64_t timeOffset = bx::getHPCounter();
const bgfx::RendererType::Enum renderer = bgfx::getRendererType();
const float texelHalf = bgfx::RendererType::Direct3D9 == renderer ? 0.5f : 0.0f;
s_originBottomLeft = bgfx::RendererType::OpenGL == renderer || bgfx::RendererType::OpenGLES == renderer;
// Get renderer capabilities info.
const bgfx::Caps* caps = bgfx::getCaps();
uint32_t oldWidth = 0;
uint32_t oldHeight = 0;
uint32_t oldReset = reset;
int32_t scrollArea = 0;
int32_t numLights = 512;
float lightAnimationSpeed = 0.3f;
bool animateMesh = true;
bool showScissorRects = false;
bool showGBuffer = true;
float view[16];
float initialPos[3] = { 0.0f, 0.0f, -15.0f };
cameraCreate();
cameraSetPosition(initialPos);
cameraSetVerticalAngle(0.0f);
cameraGetViewMtx(view);
entry::MouseState mouseState;
while (!entry::processEvents(width, height, debug, reset, &mouseState) )
{
int64_t now = bx::getHPCounter();
static int64_t last = now;
const int64_t frameTime = now - last;
last = now;
const double freq = double(bx::getHPFrequency() );
const double toMs = 1000.0/freq;
const float deltaTime = float(frameTime/freq);
float time = (float)( (now-timeOffset)/freq);
// Use debug font to print information about this example.
bgfx::dbgTextClear();
bgfx::dbgTextPrintf(0, 1, 0x4f, "bgfx/examples/21-deferred");
bgfx::dbgTextPrintf(0, 2, 0x6f, "Description: MRT rendering and deferred shading.");
bgfx::dbgTextPrintf(0, 3, 0x0f, "Frame: % 7.3f[ms]", double(frameTime)*toMs);
if (2 > caps->maxFBAttachments)
{
// When multiple render targets (MRT) is not supported by GPU,
// implement alternative code path that doesn't use MRT.
bool blink = uint32_t(time*3.0f)&1;
bgfx::dbgTextPrintf(0, 5, blink ? 0x1f : 0x01, " MRT not supported by GPU. ");
// Set view 0 default viewport.
bgfx::setViewRect(0, 0, 0, width, height);
// This dummy draw call is here to make sure that view 0 is cleared
// if no other draw calls are submitted to view 0.
bgfx::touch(0);
}
else
{
if (oldWidth != width
|| oldHeight != height
|| oldReset != reset
|| !bgfx::isValid(gbuffer) )
{
// Recreate variable size render targets when resolution changes.
oldWidth = width;
oldHeight = height;
oldReset = reset;
if (bgfx::isValid(gbuffer) )
{
bgfx::destroyFrameBuffer(gbuffer);
}
const uint32_t samplerFlags = 0
| BGFX_TEXTURE_RT
| BGFX_TEXTURE_MIN_POINT
| BGFX_TEXTURE_MAG_POINT
| BGFX_TEXTURE_MIP_POINT
| BGFX_TEXTURE_U_CLAMP
| BGFX_TEXTURE_V_CLAMP
;
gbufferTex[0] = bgfx::createTexture2D(width, height, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
gbufferTex[1] = bgfx::createTexture2D(width, height, 1, bgfx::TextureFormat::BGRA8, samplerFlags);
gbufferTex[2] = bgfx::createTexture2D(width, height, 1, bgfx::TextureFormat::D24, samplerFlags);
gbuffer = bgfx::createFrameBuffer(BX_COUNTOF(gbufferTex), gbufferTex, true);
if (bgfx::isValid(lightBuffer) )
{
bgfx::destroyFrameBuffer(lightBuffer);
}
lightBuffer = bgfx::createFrameBuffer(width, height, bgfx::TextureFormat::BGRA8, samplerFlags);
}
imguiBeginFrame(mouseState.m_mx
, mouseState.m_my
, (mouseState.m_buttons[entry::MouseButton::Left ] ? IMGUI_MBUT_LEFT : 0)
| (mouseState.m_buttons[entry::MouseButton::Right ] ? IMGUI_MBUT_RIGHT : 0)
, mouseState.m_mz
, width
, height
);
imguiBeginScrollArea("Settings", width - width / 5 - 10, 10, width / 5, height / 3, &scrollArea);
imguiSeparatorLine();
imguiSlider("Num lights", numLights, 1, 2048);
if (imguiCheck("Show G-Buffer.", showGBuffer) )
{
showGBuffer = !showGBuffer;
}
if (imguiCheck("Show light scissor.", showScissorRects) )
{
showScissorRects = !showScissorRects;
}
if (imguiCheck("Animate mesh.", animateMesh) )
{
animateMesh = !animateMesh;
}
imguiSlider("Lights animation speed", lightAnimationSpeed, 0.0f, 0.4f, 0.01f);
imguiEndScrollArea();
imguiEndFrame();
// Update camera.
cameraUpdate(deltaTime, mouseState);
cameraGetViewMtx(view);
// Setup views
float vp[16];
float invMvp[16];
{
bgfx::setViewRect(RENDER_PASS_GEOMETRY_ID, 0, 0, width, height);
bgfx::setViewRect(RENDER_PASS_LIGHT_ID, 0, 0, width, height);
bgfx::setViewRect(RENDER_PASS_COMBINE_ID, 0, 0, width, height);
bgfx::setViewRect(RENDER_PASS_DEBUG_LIGHTS_ID, 0, 0, width, height);
bgfx::setViewRect(RENDER_PASS_DEBUG_GBUFFER_ID, 0, 0, width, height);
bgfx::setViewFrameBuffer(RENDER_PASS_LIGHT_ID, lightBuffer);
float proj[16];
mtxProj(proj, 60.0f, float(width)/float(height), 0.1f, 100.0f);
bgfx::setViewFrameBuffer(RENDER_PASS_GEOMETRY_ID, gbuffer);
bgfx::setViewTransform(RENDER_PASS_GEOMETRY_ID, view, proj);
bx::mtxMul(vp, view, proj);
bx::mtxInverse(invMvp, vp);
bx::mtxOrtho(proj, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 100.0f);
bgfx::setViewTransform(RENDER_PASS_LIGHT_ID, NULL, proj);
bgfx::setViewTransform(RENDER_PASS_COMBINE_ID, NULL, proj);
const float aspectRatio = float(height)/float(width);
const float size = 10.0f;
bx::mtxOrtho(proj, -size, size, size*aspectRatio, -size*aspectRatio, 0.0f, 1000.0f);
bgfx::setViewTransform(RENDER_PASS_DEBUG_GBUFFER_ID, NULL, proj);
bx::mtxOrtho(proj, 0.0f, (float)width, 0.0f, (float)height, 0.0f, 1000.0f);
bgfx::setViewTransform(RENDER_PASS_DEBUG_LIGHTS_ID, NULL, proj);
}
const uint32_t dim = 11;
const float offset = (float(dim-1) * 3.0f) * 0.5f;
// Draw into geometry pass.
for (uint32_t yy = 0; yy < dim; ++yy)
{
for (uint32_t xx = 0; xx < dim; ++xx)
{
float mtx[16];
if (animateMesh)
{
bx::mtxRotateXY(mtx, time*1.023f + xx*0.21f, time*0.03f + yy*0.37f);
}
else
{
bx::mtxIdentity(mtx);
}
mtx[12] = -offset + float(xx)*3.0f;
mtx[13] = -offset + float(yy)*3.0f;
mtx[14] = 0.0f;
// Set transform for draw call.
bgfx::setTransform(mtx);
// Set vertex and index buffer.
bgfx::setVertexBuffer(vbh);
bgfx::setIndexBuffer(ibh);
// Bind textures.
bgfx::setTexture(0, s_texColor, textureColor);
bgfx::setTexture(1, s_texNormal, textureNormal);
// Set render states.
bgfx::setState(0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_DEPTH_WRITE
| BGFX_STATE_DEPTH_TEST_LESS
| BGFX_STATE_MSAA
);
// Submit primitive for rendering to view 0.
bgfx::submit(RENDER_PASS_GEOMETRY_ID, geomProgram);
}
}
// Draw lights into light buffer.
for (int32_t light = 0; light < numLights; ++light)
{
Sphere lightPosRadius;
float lightTime = time * lightAnimationSpeed * (sinf(light/float(numLights) * bx::piHalf ) * 0.5f + 0.5f);
lightPosRadius.m_center[0] = sinf( ( (lightTime + light*0.47f) + bx::piHalf*1.37f ) )*offset;
lightPosRadius.m_center[1] = cosf( ( (lightTime + light*0.69f) + bx::piHalf*1.49f ) )*offset;
lightPosRadius.m_center[2] = sinf( ( (lightTime + light*0.37f) + bx::piHalf*1.57f ) )*2.0f;
lightPosRadius.m_radius = 2.0f;
Aabb aabb;
sphereToAabb(aabb, lightPosRadius);
float box[8][3] =
{
{ aabb.m_min[0], aabb.m_min[1], aabb.m_min[2] },
{ aabb.m_min[0], aabb.m_min[1], aabb.m_max[2] },
{ aabb.m_min[0], aabb.m_max[1], aabb.m_min[2] },
{ aabb.m_min[0], aabb.m_max[1], aabb.m_max[2] },
{ aabb.m_max[0], aabb.m_min[1], aabb.m_min[2] },
{ aabb.m_max[0], aabb.m_min[1], aabb.m_max[2] },
{ aabb.m_max[0], aabb.m_max[1], aabb.m_min[2] },
{ aabb.m_max[0], aabb.m_max[1], aabb.m_max[2] },
};
float xyz[3];
bx::vec3MulMtxH(xyz, box[0], vp);
float minx = xyz[0];
float miny = xyz[1];
float maxx = xyz[0];
float maxy = xyz[1];
float maxz = xyz[2];
for (uint32_t ii = 1; ii < 8; ++ii)
{
bx::vec3MulMtxH(xyz, box[ii], vp);
minx = bx::fmin(minx, xyz[0]);
miny = bx::fmin(miny, xyz[1]);
maxx = bx::fmax(maxx, xyz[0]);
maxy = bx::fmax(maxy, xyz[1]);
maxz = bx::fmax(maxz, xyz[2]);
}
// Cull light if it's fully behind camera.
if (maxz >= 0.0f)
{
float x0 = bx::fclamp( (minx * 0.5f + 0.5f) * width, 0.0f, (float)width);
float y0 = bx::fclamp( (miny * 0.5f + 0.5f) * height, 0.0f, (float)height);
float x1 = bx::fclamp( (maxx * 0.5f + 0.5f) * width, 0.0f, (float)width);
float y1 = bx::fclamp( (maxy * 0.5f + 0.5f) * height, 0.0f, (float)height);
if (showScissorRects)
{
bgfx::TransientVertexBuffer tvb;
bgfx::TransientIndexBuffer tib;
if (bgfx::allocTransientBuffers(&tvb, DebugVertex::ms_decl, 4, &tib, 8) )
{
uint32_t abgr = 0x8000ff00;
DebugVertex* vertex = (DebugVertex*)tvb.data;
vertex->m_x = x0;
vertex->m_y = y0;
vertex->m_z = 0.0f;
vertex->m_abgr = abgr;
++vertex;
vertex->m_x = x1;
vertex->m_y = y0;
vertex->m_z = 0.0f;
vertex->m_abgr = abgr;
++vertex;
vertex->m_x = x1;
vertex->m_y = y1;
vertex->m_z = 0.0f;
vertex->m_abgr = abgr;
++vertex;
vertex->m_x = x0;
vertex->m_y = y1;
vertex->m_z = 0.0f;
vertex->m_abgr = abgr;
uint16_t* indices = (uint16_t*)tib.data;
*indices++ = 0;
*indices++ = 1;
*indices++ = 1;
*indices++ = 2;
*indices++ = 2;
*indices++ = 3;
*indices++ = 3;
*indices++ = 0;
bgfx::setVertexBuffer(&tvb);
bgfx::setIndexBuffer(&tib);
bgfx::setState(0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_PT_LINES
| BGFX_STATE_BLEND_ALPHA
);
bgfx::submit(RENDER_PASS_DEBUG_LIGHTS_ID, lineProgram);
}
}
uint8_t val = light&7;
float lightRgbInnerR[4] =
{
val & 0x1 ? 1.0f : 0.25f,
val & 0x2 ? 1.0f : 0.25f,
val & 0x4 ? 1.0f : 0.25f,
0.8f,
};
// Draw light.
bgfx::setUniform(u_lightPosRadius, &lightPosRadius);
bgfx::setUniform(u_lightRgbInnerR, lightRgbInnerR);
bgfx::setUniform(u_mtx, invMvp);
const uint16_t scissorHeight = uint16_t(y1-y0);
bgfx::setScissor(uint16_t(x0), height-scissorHeight-uint16_t(y0), uint16_t(x1-x0), scissorHeight);
bgfx::setTexture(0, s_normal, gbuffer, 1);
bgfx::setTexture(1, s_depth, gbuffer, 2);
bgfx::setState(0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
| BGFX_STATE_BLEND_ADD
);
screenSpaceQuad( (float)width, (float)height, texelHalf, s_originBottomLeft);
bgfx::submit(RENDER_PASS_LIGHT_ID, lightProgram);
}
}
// Combine color and light buffers.
bgfx::setTexture(0, s_albedo, gbuffer, 0);
bgfx::setTexture(1, s_light, lightBuffer, 0);
bgfx::setState(0
| BGFX_STATE_RGB_WRITE
| BGFX_STATE_ALPHA_WRITE
);
screenSpaceQuad( (float)width, (float)height, texelHalf, s_originBottomLeft);
bgfx::submit(RENDER_PASS_COMBINE_ID, combineProgram);
if (showGBuffer)
{
const float aspectRatio = float(width)/float(height);
// Draw debug GBuffer.
for (uint32_t ii = 0; ii < BX_COUNTOF(gbufferTex); ++ii)
{
float mtx[16];
bx::mtxSRT(mtx
, aspectRatio, 1.0f, 1.0f
, 0.0f, 0.0f, 0.0f
, -7.9f - BX_COUNTOF(gbufferTex)*0.1f*0.5f + ii*2.1f*aspectRatio, 4.0f, 0.0f
);
bgfx::setTransform(mtx);
bgfx::setVertexBuffer(vbh);
bgfx::setIndexBuffer(ibh, 0, 6);
bgfx::setTexture(0, s_texColor, gbufferTex[ii]);
bgfx::setState(BGFX_STATE_RGB_WRITE);
bgfx::submit(RENDER_PASS_DEBUG_GBUFFER_ID, debugProgram);
}
}
}
// Advance to next frame. Rendering thread will be kicked to
// process submitted rendering primitives.
bgfx::frame();
}
// Cleanup.
cameraDestroy();
imguiDestroy();
if (bgfx::isValid(gbuffer) )
{
bgfx::destroyFrameBuffer(gbuffer);
bgfx::destroyFrameBuffer(lightBuffer);
}
bgfx::destroyIndexBuffer(ibh);
bgfx::destroyVertexBuffer(vbh);
bgfx::destroyProgram(geomProgram);
bgfx::destroyProgram(lightProgram);
bgfx::destroyProgram(combineProgram);
bgfx::destroyProgram(debugProgram);
bgfx::destroyProgram(lineProgram);
bgfx::destroyTexture(textureColor);
bgfx::destroyTexture(textureNormal);
bgfx::destroyUniform(s_texColor);
bgfx::destroyUniform(s_texNormal);
bgfx::destroyUniform(s_albedo);
bgfx::destroyUniform(s_normal);
bgfx::destroyUniform(s_depth);
bgfx::destroyUniform(s_light);
bgfx::destroyUniform(u_lightPosRadius);
bgfx::destroyUniform(u_lightRgbInnerR);
bgfx::destroyUniform(u_mtx);
// Shutdown bgfx.
bgfx::shutdown();
return 0;
}