bgfx/tools/geometryc/geometryc.cpp
Бранимир Караџић 83dfadf673 Happy New Year!
2024-01-14 01:56:36 -08:00

1461 lines
38 KiB
C++

/*
* Copyright 2011-2024 Branimir Karadzic. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#include <algorithm>
#include <bx/string.h>
#include <bgfx/bgfx.h>
#include "../../src/vertexlayout.h"
#include <tinystl/allocator.h>
#include <tinystl/string.h>
#include <tinystl/vector.h>
namespace stl = tinystl;
#include <meshoptimizer/src/meshoptimizer.h>
#define CGLTF_VALIDATE_ENABLE_ASSERTS BX_CONFIG_DEBUG
#define CGLTF_IMPLEMENTATION
#include <cgltf/cgltf.h>
#define BGFX_GEOMETRYC_VERSION_MAJOR 1
#define BGFX_GEOMETRYC_VERSION_MINOR 0
#if 0
# define BX_TRACE(_format, ...) \
do { \
bx::printf(BX_FILE_LINE_LITERAL "BGFX " _format "\n", ##__VA_ARGS__); \
} while(0)
# define BX_WARN(_condition, _format, ...) \
do { \
if (!(_condition) ) \
{ \
BX_TRACE(BX_FILE_LINE_LITERAL "WARN " _format, ##__VA_ARGS__); \
} \
} while(0)
# define BX_ASSERT(_condition, _format, ...) \
do { \
if (!(_condition) ) \
{ \
BX_TRACE(BX_FILE_LINE_LITERAL "CHECK " _format, ##__VA_ARGS__); \
bx::debugBreak(); \
} \
} while(0)
#endif // 0
#include <bx/bx.h>
#include <bx/bounds.h>
#include <bx/commandline.h>
#include <bx/debug.h>
#include <bx/file.h>
#include <bx/hash.h>
#include <bx/math.h>
#include <bx/timer.h>
#include <bx/uint32_t.h>
typedef stl::vector<bx::Vec3> Vec3Array;
struct Index3
{
int32_t m_position;
int32_t m_texcoord;
int32_t m_normal;
int32_t m_vbc; // Barycentric ID. Holds either 0, 1 or 2.
};
struct TriIndices
{
Index3 m_index[3];
};
typedef stl::vector<TriIndices> TriangleArray;
struct Group
{
uint32_t m_startTriangle;
uint32_t m_numTriangles;
stl::string m_name;
stl::string m_material;
};
typedef stl::vector<Group> GroupArray;
struct Primitive
{
uint32_t m_startVertex;
uint32_t m_startIndex;
uint32_t m_numVertices;
uint32_t m_numIndices;
stl::string m_name;
};
typedef stl::vector<Primitive> PrimitiveArray;
struct Axis
{
enum Enum
{
NegativeX,
PositiveX,
NegativeY,
PositiveY,
NegativeZ,
PositiveZ,
};
};
static bx::Vec3 s_axisVectors[6] =
{
bx::Vec3(-1.0f, 0.0f, 0.0f),
bx::Vec3( 1.0f, 0.0f, 0.0f),
bx::Vec3( 0.0f,-1.0f, 0.0f),
bx::Vec3( 0.0f, 1.0f, 0.0f),
bx::Vec3( 0.0f, 0.0f,-1.0f),
bx::Vec3( 0.0f, 0.0f, 1.0f),
};
struct CoordinateSystem
{
bx::Handedness::Enum m_handedness;
Axis::Enum m_up;
Axis::Enum m_forward;
};
struct CoordinateSystemMapping
{
const char* m_param;
CoordinateSystem m_coordinateSystem;
};
static const CoordinateSystemMapping s_coordinateSystemMappings[] =
{
{ "lh-up+y", { bx::Handedness::Left, Axis::PositiveY, Axis::PositiveZ } },
{ "lh-up+z", { bx::Handedness::Left, Axis::PositiveZ, Axis::PositiveY } },
{ "rh-up+y", { bx::Handedness::Right, Axis::PositiveY, Axis::PositiveZ } },
{ "rh-up+z", { bx::Handedness::Right, Axis::PositiveZ, Axis::PositiveY } },
};
struct Mesh
{
Vec3Array m_positions;
Vec3Array m_normals;
Vec3Array m_texcoords;
TriangleArray m_triangles;
GroupArray m_groups;
CoordinateSystem m_coordinateSystem;
};
static uint32_t s_obbSteps = 17;
constexpr uint32_t kChunkVertexBuffer = BX_MAKEFOURCC('V', 'B', ' ', 0x1);
constexpr uint32_t kChunkVertexBufferCompressed = BX_MAKEFOURCC('V', 'B', 'C', 0x0);
constexpr uint32_t kChunkIndexBuffer = BX_MAKEFOURCC('I', 'B', ' ', 0x0);
constexpr uint32_t kChunkIndexBufferCompressed = BX_MAKEFOURCC('I', 'B', 'C', 0x1);
constexpr uint32_t kChunkPrimitive = BX_MAKEFOURCC('P', 'R', 'I', 0x0);
void optimizeVertexCache(uint16_t* _indices, uint32_t _numIndices, uint32_t _numVertices)
{
uint16_t* newIndexList = new uint16_t[_numIndices];
meshopt_optimizeVertexCache(newIndexList, _indices, _numIndices, _numVertices);
bx::memCopy(_indices, newIndexList, _numIndices * 2);
delete[] newIndexList;
}
uint32_t optimizeVertexFetch(
uint16_t* _indices
, uint32_t _numIndices
, uint8_t* _vertexData
, uint32_t _numVertices
, uint16_t _stride
)
{
unsigned char* newVertices = (unsigned char*)malloc(_numVertices * _stride );
size_t vertexCount = meshopt_optimizeVertexFetch(newVertices, _indices, _numIndices, _vertexData, _numVertices, _stride);
bx::memCopy(_vertexData, newVertices, _numVertices * _stride);
free(newVertices);
return uint32_t(vertexCount);
}
void writeCompressedIndices(
bx::WriterI* _writer
, const uint16_t* _indices
, uint32_t _numIndices
, uint32_t _numVertices
, bx::Error* _err
)
{
size_t maxSize = meshopt_encodeIndexBufferBound(_numIndices, _numVertices);
unsigned char* compressedIndices = (unsigned char*)malloc(maxSize);
size_t compressedSize = meshopt_encodeIndexBuffer(compressedIndices, maxSize, _indices, _numIndices);
bx::printf("Indices uncompressed: %10d, compressed: %10d, ratio: %0.2f%%\n"
, _numIndices*2
, (uint32_t)compressedSize
, 100.0f - float(compressedSize ) / float(_numIndices*2)*100.0f
);
bx::write(_writer, (uint32_t)compressedSize, _err);
bx::write(_writer, compressedIndices, (uint32_t)compressedSize, _err);
free(compressedIndices);
}
void writeCompressedVertices(
bx::WriterI* _writer
, const uint8_t* _vertices
, uint32_t _numVertices
, uint16_t _stride
, bx::Error* _err
)
{
size_t maxSize = meshopt_encodeVertexBufferBound(_numVertices, _stride);
unsigned char* compressedVertices = (unsigned char*)malloc(maxSize);
size_t compressedSize = meshopt_encodeVertexBuffer(compressedVertices, maxSize, _vertices, _numVertices, _stride);
bx::printf("Vertices uncompressed: %10d, compressed: %10d, ratio: %0.2f%%\n"
, _numVertices * _stride
, (uint32_t)compressedSize
, 100.0f - float(compressedSize) / float(_numVertices * _stride)*100.0f
);
bx::write(_writer, (uint32_t)compressedSize, _err);
bx::write(_writer, compressedVertices, (uint32_t)compressedSize, _err);
free(compressedVertices);
}
void calcTangents(void* _vertices, uint16_t _numVertices, bgfx::VertexLayout _layout, const uint16_t* _indices, uint32_t _numIndices)
{
struct PosTexcoord
{
float m_x;
float m_y;
float m_z;
float m_pad0;
float m_u;
float m_v;
float m_pad1;
float m_pad2;
};
float* tangents = new float[6*_numVertices];
bx::memSet(tangents, 0, 6*_numVertices*sizeof(float) );
PosTexcoord v0;
PosTexcoord v1;
PosTexcoord v2;
for (uint32_t ii = 0, num = _numIndices/3; ii < num; ++ii)
{
const uint16_t* indices = &_indices[ii*3];
uint32_t i0 = indices[0];
uint32_t i1 = indices[1];
uint32_t i2 = indices[2];
bgfx::vertexUnpack(&v0.m_x, bgfx::Attrib::Position, _layout, _vertices, i0);
bgfx::vertexUnpack(&v0.m_u, bgfx::Attrib::TexCoord0, _layout, _vertices, i0);
bgfx::vertexUnpack(&v1.m_x, bgfx::Attrib::Position, _layout, _vertices, i1);
bgfx::vertexUnpack(&v1.m_u, bgfx::Attrib::TexCoord0, _layout, _vertices, i1);
bgfx::vertexUnpack(&v2.m_x, bgfx::Attrib::Position, _layout, _vertices, i2);
bgfx::vertexUnpack(&v2.m_u, bgfx::Attrib::TexCoord0, _layout, _vertices, i2);
const float bax = v1.m_x - v0.m_x;
const float bay = v1.m_y - v0.m_y;
const float baz = v1.m_z - v0.m_z;
const float bau = v1.m_u - v0.m_u;
const float bav = v1.m_v - v0.m_v;
const float cax = v2.m_x - v0.m_x;
const float cay = v2.m_y - v0.m_y;
const float caz = v2.m_z - v0.m_z;
const float cau = v2.m_u - v0.m_u;
const float cav = v2.m_v - v0.m_v;
const float det = (bau * cav - bav * cau);
const float invDet = 1.0f / det;
const float tx = (bax * cav - cax * bav) * invDet;
const float ty = (bay * cav - cay * bav) * invDet;
const float tz = (baz * cav - caz * bav) * invDet;
const float bx = (cax * bau - bax * cau) * invDet;
const float by = (cay * bau - bay * cau) * invDet;
const float bz = (caz * bau - baz * cau) * invDet;
for (uint32_t jj = 0; jj < 3; ++jj)
{
float* tanu = &tangents[indices[jj]*6];
float* tanv = &tanu[3];
tanu[0] += tx;
tanu[1] += ty;
tanu[2] += tz;
tanv[0] += bx;
tanv[1] += by;
tanv[2] += bz;
}
}
for (uint32_t ii = 0; ii < _numVertices; ++ii)
{
const bx::Vec3 tanu = bx::load<bx::Vec3>(&tangents[ii*6]);
const bx::Vec3 tanv = bx::load<bx::Vec3>(&tangents[ii*6 + 3]);
float nxyzw[4];
bgfx::vertexUnpack(nxyzw, bgfx::Attrib::Normal, _layout, _vertices, ii);
const bx::Vec3 normal = bx::load<bx::Vec3>(nxyzw);
const float ndt = bx::dot(normal, tanu);
const bx::Vec3 nxt = bx::cross(normal, tanu);
const bx::Vec3 tmp = bx::sub(tanu, bx::mul(normal, ndt) );
float tangent[4];
bx::store(tangent, bx::normalize(tmp) );
tangent[3] = bx::dot(nxt, tanv) < 0.0f ? -1.0f : 1.0f;
bgfx::vertexPack(tangent, true, bgfx::Attrib::Tangent, _layout, _vertices, ii);
}
delete [] tangents;
}
void write(
bx::WriterI* _writer
, const void* _vertices
, uint32_t _numVertices
, uint32_t _stride
, bx::Error* _err
)
{
bx::Sphere maxSphere;
bx::calcMaxBoundingSphere(maxSphere, _vertices, _numVertices, _stride);
bx::Sphere minSphere;
bx::calcMinBoundingSphere(minSphere, _vertices, _numVertices, _stride);
if (minSphere.radius > maxSphere.radius)
{
bx::write(_writer, maxSphere, _err);
}
else
{
bx::write(_writer, minSphere, _err);
}
bx::Aabb aabb;
bx::toAabb(aabb, _vertices, _numVertices, _stride);
bx::write(_writer, aabb, _err);
bx::Obb obb;
bx::calcObb(obb, _vertices, _numVertices, _stride, s_obbSteps);
bx::write(_writer, obb, _err);
}
void write(
bx::WriterI* _writer
, const uint8_t* _vertices
, uint32_t _numVertices
, const bgfx::VertexLayout& _layout
, const uint16_t* _indices
, uint32_t _numIndices
, bool _compress
, const stl::string& _material
, const PrimitiveArray& _primitives
, bx::Error* _err
)
{
using namespace bx;
using namespace bgfx;
uint32_t stride = _layout.getStride();
if (_compress)
{
write(_writer, kChunkVertexBufferCompressed, _err);
write(_writer, _vertices, _numVertices, stride, _err);
write(_writer, _layout);
write(_writer, uint16_t(_numVertices), _err);
writeCompressedVertices(_writer, _vertices, _numVertices, uint16_t(stride), _err);
}
else
{
write(_writer, kChunkVertexBuffer, _err);
write(_writer, _vertices, _numVertices, stride, _err);
write(_writer, _layout, _err);
write(_writer, uint16_t(_numVertices), _err);
write(_writer, _vertices, _numVertices*stride, _err);
}
if (_compress)
{
write(_writer, kChunkIndexBufferCompressed, _err);
write(_writer, _numIndices, _err);
writeCompressedIndices(_writer, _indices, _numIndices, _numVertices, _err);
}
else
{
write(_writer, kChunkIndexBuffer, _err);
write(_writer, _numIndices, _err);
write(_writer, _indices, _numIndices*2, _err);
}
write(_writer, kChunkPrimitive, _err);
uint16_t nameLen = uint16_t(_material.size() );
write(_writer, nameLen, _err);
write(_writer, _material.c_str(), nameLen, _err);
write(_writer, uint16_t(_primitives.size() ), _err);
for (PrimitiveArray::const_iterator primIt = _primitives.begin(); primIt != _primitives.end(); ++primIt)
{
const Primitive& prim = *primIt;
nameLen = uint16_t(prim.m_name.size() );
write(_writer, nameLen, _err);
write(_writer, prim.m_name.c_str(), nameLen, _err);
write(_writer, prim.m_startIndex, _err);
write(_writer, prim.m_numIndices, _err);
write(_writer, prim.m_startVertex, _err);
write(_writer, prim.m_numVertices, _err);
write(_writer, &_vertices[prim.m_startVertex*stride], prim.m_numVertices, stride, _err);
}
}
inline uint32_t rgbaToAbgr(uint8_t _r, uint8_t _g, uint8_t _b, uint8_t _a)
{
return (uint32_t(_r)<<0)
| (uint32_t(_g)<<8)
| (uint32_t(_b)<<16)
| (uint32_t(_a)<<24)
;
}
struct GroupSortByMaterial
{
bool operator()(const Group& _lhs, const Group& _rhs)
{
return 0 < bx::strCmp(_lhs.m_material.c_str(), _rhs.m_material.c_str() );
}
};
void mtxCoordinateTransform(float* _result, const CoordinateSystem& _cs)
{
bx::Vec3 up = s_axisVectors[_cs.m_up];
bx::Vec3 forward = s_axisVectors[_cs.m_forward];
bx::Vec3 right = cross(forward,up);
if (_cs.m_handedness == bx::Handedness::Left)
{
right = bx::mul(right, -1.0f);
}
bx::mtxIdentity(_result);
bx::store(&_result[0], right);
bx::store(&_result[4], forward);
bx::store(&_result[8], up);
}
float mtxDeterminant(const float* _a)
{
const float xx = _a[ 0];
const float xy = _a[ 1];
const float xz = _a[ 2];
const float xw = _a[ 3];
const float yx = _a[ 4];
const float yy = _a[ 5];
const float yz = _a[ 6];
const float yw = _a[ 7];
const float zx = _a[ 8];
const float zy = _a[ 9];
const float zz = _a[10];
const float zw = _a[11];
const float wx = _a[12];
const float wy = _a[13];
const float wz = _a[14];
const float ww = _a[15];
float det = 0.0f;
det += xx * (yy*(zz*ww - zw*wz) - yz*(zy*ww - zw*wy) + yw*(zy*wz - zz*wy) );
det -= xy * (yx*(zz*ww - zw*wz) - yz*(zx*ww - zw*wx) + yw*(zx*wz - zz*wx) );
det += xz * (yx*(zy*ww - zw*wy) - yy*(zx*ww - zw*wx) + yw*(zx*wy - zy*wx) );
det -= xw * (yx*(zy*wz - zz*wy) - yy*(zx*wz - zz*wx) + yz*(zx*wy - zy*wx) );
return det;
}
void parseObj(char* _data, uint32_t _size, Mesh* _mesh, bool _hasBc)
{
// Reference(s):
// - Wavefront .obj file
// https://en.wikipedia.org/wiki/Wavefront_.obj_file
// Coordinate system is right-handed, but up/forward is not defined, but +Y Up, +Z Forward seems to be a common default
_mesh->m_coordinateSystem.m_handedness = bx::Handedness::Right;
_mesh->m_coordinateSystem.m_up = Axis::PositiveY;
_mesh->m_coordinateSystem.m_forward = Axis::PositiveZ;
uint32_t num = 0;
Group group;
group.m_startTriangle = 0;
group.m_numTriangles = 0;
char commandLine[2048];
uint32_t len = sizeof(commandLine);
int argc;
char* argv[64];
for (bx::StringView next(_data, _size); !next.isEmpty(); )
{
next = bx::tokenizeCommandLine(next, commandLine, len, argc, argv, BX_COUNTOF(argv), '\n');
if (0 < argc)
{
if (0 == bx::strCmp(argv[0], "#") )
{
if (2 < argc
&& 0 == bx::strCmp(argv[2], "polygons") )
{
}
}
else if (0 == bx::strCmp(argv[0], "f") )
{
TriIndices triangle;
bx::memSet(&triangle, 0, sizeof(TriIndices) );
const int numNormals = (int)_mesh->m_normals.size();
const int numTexcoords = (int)_mesh->m_texcoords.size();
const int numPositions = (int)_mesh->m_positions.size();
for (uint32_t edge = 0, numEdges = argc-1; edge < numEdges; ++edge)
{
Index3 index;
index.m_texcoord = -1;
index.m_normal = -1;
if (_hasBc)
{
index.m_vbc = edge < 3 ? edge : (1+(edge+1) )&1;
}
else
{
index.m_vbc = 0;
}
{
bx::StringView triplet(argv[edge + 1]);
bx::StringView vertex(triplet);
bx::StringView texcoord = bx::strFind(triplet, '/');
if (!texcoord.isEmpty() )
{
vertex.set(vertex.getPtr(), texcoord.getPtr() );
const bx::StringView normal = bx::strFind(bx::StringView(texcoord.getPtr() + 1, triplet.getTerm() ), '/');
if (!normal.isEmpty() )
{
int32_t nn;
bx::fromString(&nn, bx::StringView(normal.getPtr() + 1, triplet.getTerm() ) );
index.m_normal = (nn < 0) ? nn + numNormals : nn - 1;
}
texcoord.set(texcoord.getPtr() + 1, normal.getPtr() );
// Reference(s):
// - Wavefront .obj file / Vertex normal indices without texture coordinate indices
// https://en.wikipedia.org/wiki/Wavefront_.obj_file#Vertex_Normal_Indices_Without_Texture_Coordinate_Indices
if (!texcoord.isEmpty() )
{
int32_t tex;
bx::fromString(&tex, texcoord);
index.m_texcoord = (tex < 0) ? tex + numTexcoords : tex - 1;
}
}
int32_t pos;
bx::fromString(&pos, vertex);
index.m_position = (pos < 0) ? pos + numPositions : pos - 1;
}
switch (edge)
{
case 0: case 1: case 2:
triangle.m_index[edge] = index;
if (2 == edge)
{
_mesh->m_triangles.push_back(triangle);
}
break;
default:
triangle.m_index[1] = triangle.m_index[2];
triangle.m_index[2] = index;
_mesh->m_triangles.push_back(triangle);
break;
}
}
}
else if (0 == bx::strCmp(argv[0], "g") )
{
group.m_name = argv[1];
}
else if (*argv[0] == 'v')
{
group.m_numTriangles = (uint32_t)(_mesh->m_triangles.size() ) - group.m_startTriangle;
if (0 < group.m_numTriangles)
{
_mesh->m_groups.push_back(group);
group.m_startTriangle = (uint32_t)(_mesh->m_triangles.size() );
group.m_numTriangles = 0;
}
if (0 == bx::strCmp(argv[0], "vn") )
{
bx::Vec3 normal(bx::InitNone);
bx::fromString(&normal.x, argv[1]);
bx::fromString(&normal.y, argv[2]);
bx::fromString(&normal.z, argv[3]);
_mesh->m_normals.push_back(normal);
}
else if (0 == bx::strCmp(argv[0], "vp") )
{
static bool once = true;
if (once)
{
once = false;
bx::printf("warning: 'parameter space vertices' are unsupported.\n");
}
}
else if (0 == bx::strCmp(argv[0], "vt") )
{
bx::Vec3 texcoord(bx::InitNone);
texcoord.y = 0.0f;
texcoord.z = 0.0f;
bx::fromString(&texcoord.x, argv[1]);
switch (argc)
{
case 4:
bx::fromString(&texcoord.z, argv[3]);
[[fallthrough]];
case 3:
bx::fromString(&texcoord.y, argv[2]);
break;
default:
break;
}
_mesh->m_texcoords.push_back(texcoord);
}
else
{
float px, py, pz, pw;
bx::fromString(&px, argv[1]);
bx::fromString(&py, argv[2]);
bx::fromString(&pz, argv[3]);
if (argc == 5 || argc == 8)
{
bx::fromString(&pw, argv[4]);
}
else
{
pw = 1.0f;
}
bx::Vec3 pos(px, py, pz);
const float invW = bx::rcp(pw);
pos = bx::mul(pos, invW);
_mesh->m_positions.push_back(pos);
}
}
else if (0 == bx::strCmp(argv[0], "usemtl") )
{
stl::string material(argv[1]);
if (0 != bx::strCmp(material.c_str(), group.m_material.c_str() ) )
{
group.m_numTriangles = (uint32_t)(_mesh->m_triangles.size() ) - group.m_startTriangle;
if (0 < group.m_numTriangles)
{
_mesh->m_groups.push_back(group);
group.m_startTriangle = (uint32_t)(_mesh->m_triangles.size() );
group.m_numTriangles = 0;
}
}
group.m_material = material;
}
}
++num;
}
group.m_numTriangles = (uint32_t)(_mesh->m_triangles.size() ) - group.m_startTriangle;
if (0 < group.m_numTriangles)
{
_mesh->m_groups.push_back(group);
group.m_startTriangle = (uint32_t)(_mesh->m_triangles.size() );
group.m_numTriangles = 0;
}
bx::printf("obj parser # %d\n", num);
}
void gltfReadFloat(const float* _accessorData, cgltf_size _accessorNumComponents, cgltf_size _index, cgltf_float* _out, cgltf_size _outElementSize)
{
const float* input = &_accessorData[_accessorNumComponents * _index];
for (cgltf_size ii = 0; ii < _outElementSize; ++ii)
{
_out[ii] = (ii < _accessorNumComponents) ? input[ii] : 0.0f;
}
}
void processGltfNode(cgltf_node* _node, Mesh* _mesh, Group* _group, bool _hasBc)
{
cgltf_mesh* mesh = _node->mesh;
if (NULL != mesh)
{
float nodeToWorld[16];
cgltf_node_transform_world(_node, nodeToWorld);
float nodeToWorldNormal[16];
bx::mtxCofactor(nodeToWorldNormal, nodeToWorld);
for (cgltf_size primitiveIndex = 0; primitiveIndex < mesh->primitives_count; ++primitiveIndex)
{
cgltf_primitive* primitive = &mesh->primitives[primitiveIndex];
cgltf_size numVertex = primitive->attributes[0].data->count;
int32_t basePositionIndex = (int32_t)_mesh->m_positions.size();
int32_t baseNormalIndex = (int32_t)_mesh->m_normals.size();
int32_t baseTexcoordIndex = (int32_t)_mesh->m_texcoords.size();
bool hasNormal = false;
bool hasTexcoord = false;
for (cgltf_size attributeIndex = 0; attributeIndex < primitive->attributes_count; ++attributeIndex)
{
cgltf_attribute* attribute = &primitive->attributes[attributeIndex];
cgltf_accessor* accessor = attribute->data;
cgltf_size accessorCount = accessor->count;
BX_ASSERT(numVertex == accessorCount, "Invalid attribute count");
cgltf_size floatCount = cgltf_accessor_unpack_floats(accessor, NULL, 0);
float* accessorData = (float*)malloc(floatCount * sizeof(float) );
cgltf_accessor_unpack_floats(accessor, accessorData, floatCount);
cgltf_size numComponents = cgltf_num_components(accessor->type);
if (attribute->type == cgltf_attribute_type_position && attribute->index == 0)
{
_mesh->m_positions.reserve(_mesh->m_positions.size() + accessorCount);
bx::Vec3 pos(bx::InitNone);
for (cgltf_size v = 0; v < accessorCount; ++v)
{
gltfReadFloat(accessorData, numComponents, v, &pos.x, 3);
pos = mul(pos, nodeToWorld);
_mesh->m_positions.push_back(pos);
}
}
else if (attribute->type == cgltf_attribute_type_normal && attribute->index == 0)
{
_mesh->m_normals.reserve(_mesh->m_normals.size() + accessorCount);
hasNormal = true;
bx::Vec3 normal(bx::InitNone);
for (cgltf_size v = 0; v < accessorCount; ++v)
{
gltfReadFloat(accessorData, numComponents, v, &normal.x, 3);
normal = mul(normal, nodeToWorldNormal);
_mesh->m_normals.push_back(normal);
}
}
else if (attribute->type == cgltf_attribute_type_texcoord && attribute->index == 0)
{
_mesh->m_texcoords.reserve(_mesh->m_texcoords.size() + accessorCount);
hasTexcoord = true;
bx::Vec3 texcoord(bx::InitNone);
for (cgltf_size v = 0; v < accessorCount; ++v)
{
gltfReadFloat(accessorData, numComponents, v, &texcoord.x, 3);
_mesh->m_texcoords.push_back(texcoord);
}
}
free(accessorData);
}
if (primitive->indices != NULL)
{
cgltf_accessor* accessor = primitive->indices;
for (cgltf_size v = 0; v < accessor->count; v += 3)
{
TriIndices triangle;
for (int i = 0; i < 3; ++i)
{
Index3 index;
int32_t vertexIndex = int32_t(cgltf_accessor_read_index(accessor, v+i) );
index.m_position = basePositionIndex + vertexIndex;
index.m_normal = hasNormal ? baseNormalIndex + vertexIndex : -1;
index.m_texcoord = hasTexcoord ? baseTexcoordIndex + vertexIndex : -1;
index.m_vbc = _hasBc ? i : 0;
triangle.m_index[i] = index;
}
_mesh->m_triangles.push_back(triangle);
}
}
else
{
for (cgltf_size v = 0; v < numVertex; v += 3)
{
TriIndices triangle;
for (int i = 0; i < 3; ++i)
{
Index3 index;
int32_t vertexIndex = int32_t(v * 3 + i);
index.m_position = basePositionIndex + vertexIndex;
index.m_normal = hasNormal ? baseNormalIndex + vertexIndex : -1;
index.m_texcoord = hasTexcoord ? baseTexcoordIndex + vertexIndex : -1;
index.m_vbc = _hasBc ? i : 0;
triangle.m_index[i] = index;
}
_mesh->m_triangles.push_back(triangle);
}
}
_group->m_numTriangles = (uint32_t)(_mesh->m_triangles.size() ) - _group->m_startTriangle;
if (0 < _group->m_numTriangles)
{
_mesh->m_groups.push_back(*_group);
_group->m_startTriangle = (uint32_t)(_mesh->m_triangles.size() );
_group->m_numTriangles = 0;
}
}
}
for (cgltf_size childIndex = 0; childIndex < _node->children_count; ++childIndex)
{
processGltfNode(_node->children[childIndex], _mesh, _group, _hasBc);
}
}
void parseGltf(char* _data, uint32_t _size, Mesh* _mesh, bool _hasBc, const bx::StringView& _path)
{
// Reference(s):
// - Gltf 2.0 specification
// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
_mesh->m_coordinateSystem.m_handedness = bx::Handedness::Right;
_mesh->m_coordinateSystem.m_forward = Axis::PositiveZ;
_mesh->m_coordinateSystem.m_up = Axis::PositiveY;
Group group;
group.m_startTriangle = 0;
group.m_numTriangles = 0;
cgltf_options options = { };
cgltf_data* data = NULL;
cgltf_result result = cgltf_parse(&options, _data, _size, &data);
if (result == cgltf_result_success)
{
char* path = (char*)malloc(_path.getLength()+1);
bx::memCopy(path, _path.getPtr(), _path.getLength() );
path[_path.getLength()] = 0;
result = cgltf_load_buffers(&options, data, path);
free(path);
if (result == cgltf_result_success)
{
for (cgltf_size sceneIndex = 0; sceneIndex < data->scenes_count; ++sceneIndex)
{
cgltf_scene* scene = &data->scenes[sceneIndex];
for (cgltf_size nodeIndex = 0; nodeIndex < scene->nodes_count; ++nodeIndex)
{
cgltf_node* node = scene->nodes[nodeIndex];
processGltfNode(node, _mesh, &group, _hasBc);
}
}
}
cgltf_free(data);
}
}
void help(const char* _error = NULL)
{
if (NULL != _error)
{
bx::printf("Error:\n%s\n\n", _error);
}
bx::printf(
"geometryc, bgfx geometry compiler tool, version %d.%d.%d.\n"
"Copyright 2011-2024 Branimir Karadzic. All rights reserved.\n"
"License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE\n\n"
, BGFX_GEOMETRYC_VERSION_MAJOR
, BGFX_GEOMETRYC_VERSION_MINOR
, BGFX_API_VERSION
);
bx::printf(
"Usage: geometryc -f <in> -o <out>\n"
"\n"
"Supported input file types:\n"
" *.obj Wavefront\n"
" *.gltf,*.glb glTF 2.0\n"
"\n"
"Options:\n"
" -h, --help Display this help and exit.\n"
" -v, --version Output version information and exit.\n"
" -f <file path> Input's file path.\n"
" -o <file path> Output's file path.\n"
" -s, --scale <num> Scale factor.\n"
" --ccw Front face is counter-clockwise winding order.\n"
" --flipv Flip texture coordinate V.\n"
" --obb <num> Number of steps for calculating oriented bounding box.\n"
" Defaults to 17.\n"
" Less steps = less precise OBB.\n"
" More steps = slower calculation.\n"
" --packnormal <num> Normal packing.\n"
" 0 - unpacked 12 bytes. (default)\n"
" 1 - packed 4 bytes.\n"
" --packuv <num> Texture coordinate packing.\n"
" 0 - unpacked 8 bytes. (default)\n"
" 1 - packed 4 bytes.\n"
" --tangent Calculate tangent vectors. (packing mode is the same as normal)\n"
" --barycentric Adds barycentric vertex attribute. (Packed in bgfx::Attrib::Color1)\n"
" -c, --compress Compress indices.\n"
" --[l/r]h-up+[y/z] Coordinate system. Defaults to '--lh-up+y' — Left-Handed +Y is up.\n"
"\n"
"For additional information, see https://github.com/bkaradzic/bgfx\n"
);
}
int main(int _argc, const char* _argv[])
{
bx::CommandLine cmdLine(_argc, _argv);
if (cmdLine.hasArg('v', "version") )
{
bx::printf(
"geometryc, bgfx geometry compiler tool, version %d.%d.%d.\n"
, BGFX_GEOMETRYC_VERSION_MAJOR
, BGFX_GEOMETRYC_VERSION_MINOR
, BGFX_API_VERSION
);
return bx::kExitSuccess;
}
if (cmdLine.hasArg('h', "help") )
{
help();
return bx::kExitFailure;
}
const char* filePath = cmdLine.findOption('f');
if (NULL == filePath)
{
help("Input file name must be specified.");
return bx::kExitFailure;
}
const char* outFilePath = cmdLine.findOption('o');
if (NULL == outFilePath)
{
help("Output file name must be specified.");
return bx::kExitFailure;
}
float scale = 1.0f;
const char* scaleArg = cmdLine.findOption('s', "scale");
if (NULL != scaleArg)
{
if (!bx::fromString(&scale, scaleArg) )
{
scale = 1.0f;
}
}
bool compress = cmdLine.hasArg('c', "compress");
cmdLine.hasArg(s_obbSteps, '\0', "obb");
s_obbSteps = bx::uint32_min(bx::uint32_max(s_obbSteps, 1), 90);
uint32_t packNormal = 0;
cmdLine.hasArg(packNormal, '\0', "packnormal");
uint32_t packUv = 0;
cmdLine.hasArg(packUv, '\0', "packuv");
bool ccw = cmdLine.hasArg("ccw");
bool flipV = cmdLine.hasArg("flipv");
bool hasTangent = cmdLine.hasArg("tangent");
bool hasBc = cmdLine.hasArg("barycentric");
CoordinateSystem outputCoordinateSystem;
outputCoordinateSystem.m_handedness = bx::Handedness::Left;
outputCoordinateSystem.m_forward = Axis::PositiveZ;
outputCoordinateSystem.m_up = Axis::PositiveY;
for (uint32_t ii = 0; ii < BX_COUNTOF(s_coordinateSystemMappings); ++ii)
{
if (cmdLine.hasArg(s_coordinateSystemMappings[ii].m_param) )
{
outputCoordinateSystem = s_coordinateSystemMappings[ii].m_coordinateSystem;
}
}
bx::FileReader fr;
if (!bx::open(&fr, filePath) )
{
bx::printf("Unable to open input file '%s'.", filePath);
return bx::kExitFailure;
}
int64_t parseElapsed = -bx::getHPCounter();
int64_t triReorderElapsed = 0;
uint32_t size = (uint32_t)bx::getSize(&fr);
char* data = new char[size+1];
size = bx::read(&fr, data, size, bx::ErrorAssert{});
data[size] = '\0';
bx::close(&fr);
Mesh mesh;
bx::StringView ext = bx::FilePath(filePath).getExt();
if (0 == bx::strCmpI(ext, ".obj") )
{
parseObj(data, size, &mesh, hasBc);
}
else if (0 == bx::strCmpI(ext, ".gltf") || 0 == bx::strCmpI(ext, ".glb") )
{
parseGltf(data, size, &mesh, hasBc, bx::FilePath(filePath).getPath() );
}
else
{
bx::printf("Unsupported input file format '%s'.", filePath);
exit(bx::kExitFailure);
}
delete [] data;
int64_t now = bx::getHPCounter();
parseElapsed += now;
int64_t convertElapsed = -now;
std::sort(mesh.m_groups.begin(), mesh.m_groups.end(), GroupSortByMaterial() );
bool changeWinding = ccw;
if (scale != 1.0f)
{
for (Vec3Array::iterator it = mesh.m_positions.begin(), itEnd = mesh.m_positions.end(); it != itEnd; ++it)
{
it->x *= scale;
it->y *= scale;
it->z *= scale;
}
}
{
float meshTransform[16];
mtxCoordinateTransform(meshTransform, mesh.m_coordinateSystem);
float meshInvTranform[16];
bx::mtxTranspose(meshInvTranform, meshTransform);
float outTransform[16];
mtxCoordinateTransform(outTransform, outputCoordinateSystem);
float transform[16];
bx::mtxMul(transform, meshInvTranform, outTransform);
if (mtxDeterminant(transform) < 0.0f )
{
changeWinding = !changeWinding;
}
float identity[16];
bx::mtxIdentity(identity);
if (0 != bx::memCmp(identity, transform, sizeof(transform) ) )
{
for (Vec3Array::iterator it = mesh.m_positions.begin(), itEnd = mesh.m_positions.end(); it != itEnd; ++it)
{
*it = bx::mul(*it, transform);
}
for (Vec3Array::iterator it = mesh.m_normals.begin(), itEnd = mesh.m_normals.end(); it != itEnd; ++it)
{
*it = bx::mul(*it, transform);
}
}
}
bool hasColor = false;
bool hasNormal = false;
bool hasTexcoord = false;
{
for (TriangleArray::iterator it = mesh.m_triangles.begin(), itEnd = mesh.m_triangles.end(); it != itEnd && !hasTexcoord; ++it)
{
for (uint32_t i = 0; i < 3; ++i)
{
hasTexcoord |= -1 != it->m_index[i].m_texcoord;
}
}
for (TriangleArray::iterator it = mesh.m_triangles.begin(), itEnd = mesh.m_triangles.end(); it != itEnd && !hasNormal; ++it)
{
for (uint32_t i = 0; i < 3; ++i)
{
hasNormal |= -1 != it->m_index[i].m_normal;
}
}
if (changeWinding)
{
for (TriangleArray::iterator it = mesh.m_triangles.begin(), itEnd = mesh.m_triangles.end(); it != itEnd; ++it)
{
bx::swap(it->m_index[1], it->m_index[2]);
}
}
}
bgfx::VertexLayout layout;
layout.begin();
layout.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);
if (hasColor)
{
layout.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true);
}
if (hasBc)
{
layout.add(bgfx::Attrib::Color1, 4, bgfx::AttribType::Uint8, true);
}
if (hasTexcoord)
{
switch (packUv)
{
default:
case 0:
layout.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
break;
case 1:
layout.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Half);
break;
}
}
if (hasNormal)
{
hasTangent &= hasTexcoord;
switch (packNormal)
{
default:
case 0:
layout.add(bgfx::Attrib::Normal, 3, bgfx::AttribType::Float);
if (hasTangent)
{
layout.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Float);
}
break;
case 1:
layout.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true);
if (hasTangent)
{
layout.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true);
}
break;
}
}
layout.end();
uint32_t stride = layout.getStride();
uint8_t* vertexData = new uint8_t[mesh.m_triangles.size() * 3 * stride];
uint16_t* indexData = new uint16_t[mesh.m_triangles.size() * 3];
int32_t numVertices = 0;
int32_t numIndices = 0;
int32_t writtenPrimitives = 0;
int32_t writtenVertices = 0;
int32_t writtenIndices = 0;
uint8_t* vertices = vertexData;
uint16_t* indices = indexData;
const uint32_t tableSize = 65536 * 2;
const uint32_t hashmod = tableSize - 1;
uint32_t* table = new uint32_t[tableSize];
bx::memSet(table, 0xff, tableSize * sizeof(uint32_t) );
stl::string material = mesh.m_groups.empty() ? "" : mesh.m_groups.begin()->m_material;
PrimitiveArray primitives;
bx::FileWriter writer;
if (!bx::open(&writer, outFilePath) )
{
bx::printf("Unable to open output file '%s'.", outFilePath);
exit(bx::kExitFailure);
}
Primitive prim;
prim.m_startVertex = 0;
prim.m_startIndex = 0;
uint32_t positionOffset = layout.getOffset(bgfx::Attrib::Position);
uint32_t color0Offset = layout.getOffset(bgfx::Attrib::Color0);
Group sentinelGroup;
sentinelGroup.m_startTriangle = 0;
sentinelGroup.m_numTriangles = UINT32_MAX;
mesh.m_groups.push_back(sentinelGroup);
bx::Error err;
uint32_t ii = 0;
for (GroupArray::const_iterator groupIt = mesh.m_groups.begin(); groupIt != mesh.m_groups.end(); ++groupIt, ++ii)
{
const bool sentinel = groupIt->m_startTriangle == 0 && groupIt->m_numTriangles == UINT32_MAX;
for (uint32_t tri = groupIt->m_startTriangle, end = tri + groupIt->m_numTriangles; tri < end; ++tri)
{
if (0 != bx::strCmp(material.c_str(), groupIt->m_material.c_str() )
|| sentinel
|| 65533 <= numVertices)
{
prim.m_numVertices = numVertices - prim.m_startVertex;
prim.m_numIndices = numIndices - prim.m_startIndex;
if (0 < prim.m_numVertices)
{
primitives.push_back(prim);
}
if (hasTangent)
{
calcTangents(vertexData, uint16_t(numVertices), layout, indexData, numIndices);
}
triReorderElapsed -= bx::getHPCounter();
for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt)
{
const Primitive& prim1 = *primIt;
optimizeVertexCache(indexData + prim1.m_startIndex, prim1.m_numIndices, numVertices);
}
numVertices = optimizeVertexFetch(indexData, numIndices, vertexData, numVertices, uint16_t(stride) );
triReorderElapsed += bx::getHPCounter();
if (0 < numVertices
&& 0 < numIndices)
{
write(&writer
, vertexData
, numVertices
, layout
, indexData
, numIndices
, compress
, material
, primitives
, &err
);
}
primitives.clear();
bx::memSet(table, 0xff, tableSize * sizeof(uint32_t) );
++writtenPrimitives;
writtenVertices += numVertices;
writtenIndices += numIndices;
vertices = vertexData;
indices = indexData;
numVertices = 0;
numIndices = 0;
prim.m_startVertex = 0;
prim.m_startIndex = 0;
material = groupIt->m_material;
if (sentinel)
{
break;
}
}
TriIndices& triangle = mesh.m_triangles[tri];
for (uint32_t edge = 0; edge < 3; ++edge)
{
Index3& index = triangle.m_index[edge];
float* position = (float*)(vertices + positionOffset);
bx::memCopy(position, &mesh.m_positions[index.m_position], 3*sizeof(float) );
if (hasColor)
{
uint32_t* color0 = (uint32_t*)(vertices + color0Offset);
*color0 = rgbaToAbgr(numVertices%255, numIndices%255, 0, 0xff);
}
if (hasBc)
{
const float bc[4] =
{
(index.m_vbc == 0) ? 1.0f : 0.0f,
(index.m_vbc == 1) ? 1.0f : 0.0f,
(index.m_vbc == 2) ? 1.0f : 0.0f,
0.0f
};
bgfx::vertexPack(bc, true, bgfx::Attrib::Color1, layout, vertices);
}
if (hasTexcoord)
{
float uv[2];
bx::memCopy(uv, &mesh.m_texcoords[index.m_texcoord == -1 ? 0 : index.m_texcoord], 2*sizeof(float) );
if (flipV)
{
uv[1] = -uv[1];
}
bgfx::vertexPack(uv, true, bgfx::Attrib::TexCoord0, layout, vertices);
}
if (hasNormal)
{
float normal[4];
bx::store(normal, bx::normalize(bx::load<bx::Vec3>(&mesh.m_normals[index.m_normal == -1 ? 0 : index.m_normal]) ) );
normal[3] = 0.0f;
bgfx::vertexPack(normal, true, bgfx::Attrib::Normal, layout, vertices);
}
uint32_t hash = bx::hash<bx::HashMurmur2A>(vertices, stride);
size_t bucket = hash & hashmod;
uint32_t vertexIndex = UINT32_MAX;
for (size_t probe = 0; probe <= hashmod; ++probe)
{
uint32_t& item = table[bucket];
if (item == ~0u)
{
vertices += stride;
item = numVertices++;
vertexIndex = item;
break;
}
if (0 == bx::memCmp(vertexData + item * stride, vertices, stride) )
{
vertexIndex = item;
break;
}
bucket = (bucket + probe + 1) & hashmod;
}
if ( vertexIndex == UINT32_MAX )
{
bx::printf("hash table insert failed");
exit(bx::kExitFailure);
}
*indices++ = (uint16_t)vertexIndex;
++numIndices;
}
}
prim.m_numVertices = numVertices - prim.m_startVertex;
if (0 < prim.m_numVertices)
{
prim.m_numIndices = numIndices - prim.m_startIndex;
prim.m_name = groupIt->m_name;
primitives.push_back(prim);
prim.m_startVertex = numVertices;
prim.m_startIndex = numIndices;
}
BX_TRACE("%3d: s %5d, n %5d, %s\n"
, ii
, groupIt->m_startTriangle
, groupIt->m_numTriangles
, groupIt->m_material.c_str()
);
}
BX_ASSERT(0 == primitives.size(), "Not all primitives are written");
bx::printf("size: %d\n", uint32_t(bx::seek(&writer) ) );
bx::close(&writer);
delete [] table;
delete [] indexData;
delete [] vertexData;
now = bx::getHPCounter();
convertElapsed += now;
bx::printf("parse %f [s]\ntri reorder %f [s]\nconvert %f [s]\ng %d, p %d, v %d, i %d\n"
, double(parseElapsed)/bx::getHPFrequency()
, double(triReorderElapsed)/bx::getHPFrequency()
, double(convertElapsed)/bx::getHPFrequency()
, uint32_t(mesh.m_groups.size()-1)
, writtenPrimitives
, writtenVertices
, writtenIndices
);
return bx::kExitSuccess;
}