bgfx/src/bgfx_p.h
2012-06-27 20:49:45 -07:00

3015 lines
74 KiB
C++

/*
* Copyright 2011-2012 Branimir Karadzic. All rights reserved.
* License: http://www.opensource.org/licenses/BSD-2-Clause
*/
#ifndef __BGFX_P_H__
#define __BGFX_P_H__
#include "bgfx.h"
#include <inttypes.h>
#include <stdarg.h> // va_list
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
extern void dbgPrintf(const char* _format, ...);
extern void dbgPrintfData(const void* _data, uint32_t _size, const char* _format, ...);
#ifndef BGFX_CONFIG_DEBUG
# define BGFX_CONFIG_DEBUG 0
#endif // BGFX_CONFIG_DEBUG
#if BGFX_CONFIG_DEBUG
# define BX_TRACE(_format, ...) \
do { \
dbgPrintf(BX_FILE_LINE_LITERAL "BGFX " _format "\n", ##__VA_ARGS__); \
} while(0)
# define BX_CHECK(_condition, _format, ...) \
do { \
if (!(_condition) ) \
{ \
BX_TRACE(BX_FILE_LINE_LITERAL "CHECK " _format, ##__VA_ARGS__); \
bx::debugBreak(); \
} \
} while(0)
#endif // 0
#define BGFX_FATAL(_condition, _err, _format, ...) \
do { \
if (!(_condition) ) \
{ \
fatal(_err, _format, ##__VA_ARGS__); \
} \
} while(0)
#define BX_NAMESPACE 1
#include <bx/bx.h>
#include <bx/countof.h>
#include <bx/debug.h>
#include <bx/blockalloc.h>
#include <bx/handlealloc.h>
#include <bx/hash.h>
#include <bx/ringbuffer.h>
#include <bx/uint32_t.h>
#include <bx/radixsort.h>
#if BX_PLATFORM_WINDOWS
# include <windows.h>
extern HWND g_bgfxHwnd;
#elif BX_PLATFORM_XBOX360
# include <malloc.h>
# include <xtl.h>
#elif BX_PLATFORM_POSIX
# include <pthread.h>
#endif // BX_PLATFORM_*
#ifndef MAKEFOURCC
# define MAKEFOURCC(_a, _b, _c, _d) (0 \
| ( (uint32_t)(_a) \
| ( (uint32_t)(_b) << 8) \
| ( (uint32_t)(_c) << 16) \
| ( (uint32_t)(_d) << 24) \
) )
#endif // MAKEFOURCC
#include "dds.h"
#define BGFX_MAGIC MAKEFOURCC('B','G','F','X')
#if BGFX_CONFIG_USE_TINYSTL
namespace tinystl
{
struct allocator
{
static void* static_allocate(size_t _bytes);
static void static_deallocate(void* _ptr, size_t /*_bytes*/);
};
} // namespace tinystl
# define TINYSTL_ALLOCATOR_H
# include <TINYSTL/string.h>
# include <TINYSTL/unordered_map.h>
namespace stl = tinystl;
#else
namespace std { namespace tr1 {} using namespace tr1; } // namespace std
# include <string>
# include <unordered_map>
namespace stl = std;
#endif // BGFX_CONFIG_USE_TINYSTL
#include <list>
#include <algorithm>
#include "config.h"
#if BGFX_CONFIG_MULTITHREADED
# include <bx/sem.h>
#endif // BGFX_CONFIG_MULTITHREADED
#include <bx/cpu.h>
#include <bx/timer.h>
#define BGFX_DRAW_WHOLE_INDEX_BUFFER 0xffffffff
#define BGFX_DEFAULT_WIDTH 1280
#define BGFX_DEFAULT_HEIGHT 720
#define BGFX_STATE_TEX0 UINT64_C(0x0100000000000000)
#define BGFX_STATE_TEX1 UINT64_C(0x0200000000000000)
#define BGFX_STATE_TEX2 UINT64_C(0x0400000000000000)
#define BGFX_STATE_TEX3 UINT64_C(0x0800000000000000)
#define BGFX_STATE_TEX4 UINT64_C(0x1000000000000000)
#define BGFX_STATE_TEX5 UINT64_C(0x2000000000000000)
#define BGFX_STATE_TEX6 UINT64_C(0x4000000000000000)
#define BGFX_STATE_TEX7 UINT64_C(0x8000000000000000)
#define BGFX_STATE_TEX_MASK UINT64_C(0xff00000000000000)
#define BGFX_STATE_TEX_COUNT 8
#define BGFX_SAMPLER_TEXTURE UINT16_C(0x0000)
#define BGFX_SAMPLER_RENDERTARGET_COLOR UINT16_C(0x0001)
#define BGFX_SAMPLER_RENDERTARGET_DEPTH UINT16_C(0x0002)
#define BGFX_SAMPLER_TYPE_MASK UINT16_C(0x0003)
namespace bgfx
{
extern const uint32_t g_constantTypeSize[ConstantType::Count];
extern fatalFn g_fatal;
extern reallocFn g_realloc;
extern freeFn g_free;
extern cacheFn g_cache;
void fatal(bgfx::Fatal::Enum _code, const char* _format, ...);
void release(Memory* _mem);
void saveTga(const char* _filePath, uint32_t _width, uint32_t _height, uint32_t _srcPitch, const void* _src, bool _grayscale = false, bool _yflip = false);
const char* getAttribName(Attrib::Enum _attr);
bool renderFrame();
inline uint32_t uint16_min(uint16_t _a, uint16_t _b)
{
return _a > _b ? _b : _a;
}
inline uint32_t hash(const void* _data, uint32_t _size)
{
HashMurmur2A murmur;
murmur.begin();
murmur.add(_data, (int)_size);
return murmur.end();
}
inline uint32_t gcd(uint32_t _a, uint32_t _b)
{
do
{
uint32_t tmp = _a % _b;
_a = _b;
_b = tmp;
}
while (_b);
return _a;
}
inline uint32_t lcm(uint32_t _a, uint32_t _b)
{
return _a * (_b / gcd(_a, _b) );
}
inline uint32_t strideAlign(uint32_t _offset, uint32_t _stride)
{
const uint32_t mod = uint32_mod(_offset, _stride);
const uint32_t add = uint32_sub(_stride, mod);
const uint32_t mask = uint32_cmpeq(mod, 0);
const uint32_t tmp = uint32_selb(mask, 0, add);
const uint32_t result = uint32_add(_offset, tmp);
return result;
}
inline uint32_t strideAlign16(uint32_t _offset, uint32_t _stride)
{
uint32_t align = lcm(16, _stride);
return _offset+align-(_offset%align);
}
inline uint32_t strideAlign256(uint32_t _offset, uint32_t _stride)
{
uint32_t align = lcm(256, _stride);
return _offset+align-(_offset%align);
}
BX_FORCE_INLINE uint32_t castfu(float _value)
{
union { float fl; uint32_t ui; } un;
un.fl = _value;
return un.ui;
}
void dump(const VertexDecl& _decl);
struct TextVideoMem
{
TextVideoMem()
: m_mem(NULL)
, m_size(0)
, m_width(0)
, m_height(0)
, m_small(false)
{
resize();
clear();
}
~TextVideoMem()
{
g_free(m_mem);
}
void resize(bool _small = false, uint16_t _width = BGFX_DEFAULT_WIDTH, uint16_t _height = BGFX_DEFAULT_HEIGHT)
{
uint32_t width = uint32_max(1, _width/8);
uint32_t height = uint32_max(1, _height/(_small ? 8 : 16) );
if (NULL == m_mem
|| m_width != width
|| m_height != height
|| m_small != _small)
{
m_small = _small;
m_width = (uint16_t)width;
m_height = (uint16_t)height;
m_size = m_width * m_height * 2;
m_mem = (uint8_t*)g_realloc(m_mem, m_size);
}
}
void clear(uint8_t _attr = 0)
{
uint8_t* mem = m_mem;
for (uint32_t ii = 0, num = m_size/2; ii < num; ++ii)
{
mem[0] = 0;
mem[1] = _attr;
mem += 2;
}
}
void printfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList)
{
if (_x < m_width && _y < m_height)
{
char* temp = (char*)alloca(m_width);
uint32_t num = vsnprintf(temp, m_width, _format, _argList);
uint8_t* mem = &m_mem[(_y*m_width+_x)*2];
for (uint32_t ii = 0, xx = _x; ii < num && xx < m_width; ++ii, ++xx)
{
mem[0] = temp[ii];
mem[1] = _attr;
mem += 2;
}
}
}
void printf(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, ...)
{
va_list argList;
va_start(argList, _format);
printfVargs(_x, _y, _attr, _format, argList);
va_end(argList);
}
uint8_t* m_mem;
uint32_t m_size;
uint16_t m_width;
uint16_t m_height;
bool m_small;
};
struct TextVideoMemBlitter
{
void init();
void blit(const TextVideoMem* _mem)
{
blit(*_mem);
}
void blit(const TextVideoMem& _mem);
void setup();
void render(uint32_t _numIndices);
bgfx::TextureHandle m_texture;
TransientVertexBuffer* m_vb;
TransientIndexBuffer* m_ib;
bgfx::VertexDecl m_decl;
bgfx::MaterialHandle m_material;
};
struct PredefinedUniform
{
enum Enum
{
ViewRect,
ViewTexel,
View,
ViewProj,
ViewProjX,
Model,
ModelViewProj,
ModelViewProjX,
AlphaRef,
Count
};
uint8_t m_type;
uint16_t m_loc;
uint16_t m_count;
};
PredefinedUniform::Enum nameToPredefinedUniformEnum(const char* _name);
class StreamRead
{
public:
StreamRead(const void* _data, uint32_t _size)
: m_data( (uint8_t*)_data)
, m_size(_size)
, m_pos(0)
{
}
~StreamRead()
{
}
void skip(uint32_t _size)
{
BX_CHECK(m_size-m_pos >= _size, "Available %d, requested %d.", m_size-m_pos, _size);
m_pos += _size;
}
void read(void* _data, uint32_t _size)
{
BX_CHECK(m_size-m_pos >= _size, "Available %d, requested %d.", m_size-m_pos, _size);
memcpy(_data, &m_data[m_pos], _size);
m_pos += _size;
}
template<typename Ty>
void read(Ty& _value)
{
read(&_value, sizeof(Ty) );
}
const uint8_t* getDataPtr() const
{
return &m_data[m_pos];
}
uint32_t getPos() const
{
return m_pos;
}
void align(uint16_t _align)
{
m_pos = strideAlign(m_pos, _align);
}
uint32_t remaining() const
{
return m_size-m_pos;
}
private:
const uint8_t* m_data;
uint32_t m_size;
uint32_t m_pos;
};
class StreamWrite
{
public:
StreamWrite(void* _data, uint32_t _size)
: m_data( (uint8_t*)_data)
, m_size(_size)
, m_pos(0)
{
}
~StreamWrite()
{
}
void write(void* _data, uint32_t _size)
{
BX_CHECK(m_size-m_pos >= _size, "Write out of bounds. Available %d, requested %d.", m_size-m_pos, _size);
memcpy(&m_data[m_pos], _data, _size);
m_pos += _size;
}
template<typename Ty>
void write(Ty& _value)
{
write(&_value, sizeof(Ty) );
}
uint8_t* getDataPtr() const
{
return &m_data[m_pos];
}
uint32_t getPos() const
{
return m_pos;
}
void align(uint16_t _align)
{
m_pos = strideAlign(m_pos, _align);
}
private:
uint8_t* m_data;
uint32_t m_size;
uint32_t m_pos;
};
struct CommandBuffer
{
CommandBuffer()
: m_pos(0)
, m_size(BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE)
{
finish();
}
enum Enum
{
RendererInit,
CreateVertexDecl,
CreateIndexBuffer,
CreateVertexBuffer,
CreateDynamicIndexBuffer,
UpdateDynamicIndexBuffer,
CreateDynamicVertexBuffer,
UpdateDynamicVertexBuffer,
CreateVertexShader,
CreateFragmentShader,
CreateMaterial,
CreateTexture,
CreateRenderTarget,
CreateUniform,
End,
RendererShutdown,
DestroyVertexDecl,
DestroyIndexBuffer,
DestroyVertexBuffer,
DestroyDynamicIndexBuffer,
DestroyDynamicVertexBuffer,
DestroyVertexShader,
DestroyFragmentShader,
DestroyMaterial,
DestroyTexture,
DestroyRenderTarget,
DestroyUniform,
SaveScreenShot,
};
void write(const void* _data, uint32_t _size)
{
BX_CHECK(m_pos < m_size, "");
memcpy(&m_buffer[m_pos], _data, _size);
m_pos += _size;
}
template<typename Type>
void write(const Type& _in)
{
write(reinterpret_cast<const uint8_t*>(&_in), sizeof(Type) );
}
void read(void* _data, uint32_t _size)
{
BX_CHECK(m_pos < m_size, "");
memcpy(_data, &m_buffer[m_pos], _size);
m_pos += _size;
}
template<typename Type>
void read(Type& _in)
{
read(reinterpret_cast<uint8_t*>(&_in), sizeof(Type) );
}
void reset()
{
m_pos = 0;
}
void finish()
{
uint8_t cmd = End;
write(cmd);
m_pos = 0;
}
uint32_t m_pos;
uint32_t m_size;
uint8_t m_buffer[BGFX_CONFIG_MAX_COMMAND_BUFFER_SIZE];
private:
CommandBuffer(const CommandBuffer&);
void operator=(const CommandBuffer&);
};
struct SortKey
{
uint64_t encode()
{
// | 3 2 1 0|
// |fedcba9876543210fedcba9876543210fedcba9876543210fedcba9876543210|
// | vvvvvsssssssssssttmmmmmmmmmdddddddddddddddddddddddd|
// | ^ ^ ^ ^ ^|
// | | | | | ||
uint64_t tmp0 = m_depth;
uint64_t tmp1 = uint64_t(m_material)<<0x18;
uint64_t tmp2 = uint64_t(m_trans)<<0x21;
uint64_t tmp3 = uint64_t(m_seq)<<0x23;
uint64_t tmp4 = uint64_t(m_view)<<0x2e;
uint64_t key = tmp0|tmp1|tmp2|tmp3|tmp4;
return key;
}
void decode(uint64_t _key)
{
m_depth = _key&0xffffffff;
m_material = (_key>>0x18)&(BGFX_CONFIG_MAX_MATERIALS-1);
m_trans = (_key>>0x21)&0x3;
m_seq = (_key>>0x23)&0x7ff;
m_view = (_key>>0x2e)&(BGFX_CONFIG_MAX_VIEWS-1);
}
void reset()
{
m_depth = 0;
m_material = 0;
m_seq = 0;
m_view = 0;
m_trans = 0;
}
int32_t m_depth;
uint16_t m_material;
uint16_t m_seq;
uint8_t m_view;
uint8_t m_trans;
};
struct Clear
{
uint32_t m_rgba;
float m_depth;
uint8_t m_stencil;
uint8_t m_flags;
};
struct Rect
{
uint16_t m_x;
uint16_t m_y;
uint16_t m_width;
uint16_t m_height;
};
BX_ALIGN_STRUCT_16(struct) Matrix4
{
float val[16];
void setIdentity()
{
memset(val, 0, sizeof(val) );
val[0] = val[5] = val[10] = val[15] = 1.0f;
}
};
void matrix_mul(float* __restrict _result, const float* __restrict _a, const float* __restrict _b);
void matrix_ortho(float* _result, float _left, float _right, float _bottom, float _top, float _near, float _far);
struct MatrixCache
{
MatrixCache()
: m_num(1)
{
m_cache[0].setIdentity();
}
void reset()
{
m_num = 1;
}
uint32_t add(const void* _mtx, uint16_t _num)
{
if (NULL != _mtx)
{
BX_CHECK(m_num+_num < BGFX_CONFIG_MAX_MATRIX_CACHE, "Matrix cache overflow. %d (max: %d)", m_num+_num, BGFX_CONFIG_MAX_MATRIX_CACHE);
uint32_t num = uint32_min(BGFX_CONFIG_MAX_MATRIX_CACHE-m_num, _num);
uint32_t first = m_num;
memcpy(&m_cache[m_num], _mtx, sizeof(Matrix4)*num);
m_num += num;
return first;
}
return 0;
}
Matrix4 m_cache[BGFX_CONFIG_MAX_MATRIX_CACHE];
uint32_t m_num;
};
struct Sampler
{
uint16_t m_idx;
uint16_t m_flags;
};
struct Constant
{
ConstantType::Enum m_type;
uint16_t m_num;
};
#define CONSTANT_OPCODE_MASK(_bits) ( (1<<_bits)-1)
#define CONSTANT_OPCODE_TYPE_BITS 8
#define CONSTANT_OPCODE_TYPE_MASK CONSTANT_OPCODE_MASK(CONSTANT_OPCODE_TYPE_BITS)
#define CONSTANT_OPCODE_LOC_BITS 10
#define CONSTANT_OPCODE_LOC_MASK CONSTANT_OPCODE_MASK(CONSTANT_OPCODE_LOC_BITS)
#define CONSTANT_OPCODE_NUM_BITS 10
#define CONSTANT_OPCODE_NUM_MASK CONSTANT_OPCODE_MASK(CONSTANT_OPCODE_NUM_BITS)
#define CONSTANT_OPCODE_COPY_BITS 1
#define CONSTANT_OPCODE_COPY_MASK CONSTANT_OPCODE_MASK(CONSTANT_OPCODE_COPY_BITS)
#define BGFX_UNIFORM_FUNCTIONBIT UINT8_C(0x40)
#define BGFX_UNIFORM_FRAGMENTBIT UINT8_C(0x80)
#define BGFX_UNIFORM_TYPEMASK UINT8_C(0x3f)
class ConstantBuffer
{
public:
static ConstantBuffer* create(uint32_t _size)
{
uint32_t size = BX_ALIGN_16(uint32_max(_size, sizeof(ConstantBuffer) ) );
void* data = g_realloc(NULL, size);
return ::new(data) ConstantBuffer(_size);
}
static void destroy(ConstantBuffer* _constantBuffer)
{
_constantBuffer->~ConstantBuffer();
g_free(_constantBuffer);
}
static uint32_t encodeOpcode(ConstantType::Enum _type, uint16_t _loc, uint16_t _num, uint16_t _copy)
{
uint32_t opcode = 0;
opcode <<= CONSTANT_OPCODE_TYPE_BITS;
opcode |= _type&CONSTANT_OPCODE_TYPE_MASK;
opcode <<= CONSTANT_OPCODE_LOC_BITS;
opcode |= _loc&CONSTANT_OPCODE_LOC_MASK;
opcode <<= CONSTANT_OPCODE_NUM_BITS;
opcode |= _num&CONSTANT_OPCODE_NUM_MASK;
opcode <<= CONSTANT_OPCODE_COPY_BITS;
opcode |= _copy&CONSTANT_OPCODE_COPY_MASK;
return opcode;
}
static void decodeOpcode(uint32_t _opcode, ConstantType::Enum& _type, uint16_t& _loc, uint16_t& _num, uint16_t& _copy)
{
uint32_t copy;
uint32_t num;
uint32_t loc;
copy = _opcode&CONSTANT_OPCODE_COPY_MASK;
_opcode >>= CONSTANT_OPCODE_COPY_BITS;
num = _opcode&CONSTANT_OPCODE_NUM_MASK;
_opcode >>= CONSTANT_OPCODE_NUM_BITS;
loc = _opcode&CONSTANT_OPCODE_LOC_MASK;
_opcode >>= CONSTANT_OPCODE_LOC_BITS;
_type = (ConstantType::Enum)(_opcode&CONSTANT_OPCODE_TYPE_MASK);
_opcode >>= CONSTANT_OPCODE_TYPE_BITS;
_copy = (uint16_t)copy;
_num = (uint16_t)num;
_loc = (uint16_t)loc;
}
void write(const void* _data, uint32_t _size)
{
BX_CHECK(m_pos + _size < m_size, "Write would go out of bounds. pos %d + size %d > max size: %d).", m_pos, _size, m_size);
if (m_pos + _size < m_size)
{
memcpy(&m_buffer[m_pos], _data, _size);
m_pos += _size;
}
}
void write(uint32_t _value)
{
write(&_value, sizeof(uint32_t) );
}
const char* read(uint32_t _size)
{
BX_CHECK(m_pos < m_size, "Out of bounds %d (size: %d).", m_pos, m_size);
const char* result = &m_buffer[m_pos];
m_pos += _size;
return result;
}
uint32_t read()
{
const char* result = read(sizeof(uint32_t) );
return *( (uint32_t*)result);
}
bool isEmpty() const
{
return 0 == m_pos;
}
uint32_t getPos() const
{
return m_pos;
}
void reset(uint32_t _pos = 0)
{
m_pos = _pos;
}
void finish()
{
write(ConstantType::End);
m_pos = 0;
}
void writeUniform(ConstantType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num = 1);
void writeUniformRef(ConstantType::Enum _type, uint16_t _loc, const void* _value, uint16_t _num = 1);
void commit(bool _force);
private:
ConstantBuffer(uint32_t _size)
: m_size(_size-sizeof(m_buffer) )
, m_pos(0)
{
BX_TRACE("ConstantBuffer %d, %d", _size, m_size);
finish();
}
~ConstantBuffer()
{
}
uint32_t m_size;
uint32_t m_pos;
char m_buffer[8];
};
typedef const void* (*UniformFn)(const void* _data);
struct UniformInfo
{
const void* m_data;
UniformFn m_func;
};
class UniformRegistry
{
public:
UniformRegistry()
{
}
~UniformRegistry()
{
}
const UniformInfo* find(const char* _name) const
{
UniformHashMap::const_iterator it = m_uniforms.find(_name);
if (it != m_uniforms.end() )
{
return &it->second;
}
return NULL;
}
const UniformInfo& reg(const char* _name, const void* _data, UniformFn _func = NULL)
{
UniformHashMap::const_iterator it = m_uniforms.find(_name);
if (it == m_uniforms.end() )
{
UniformInfo info;
info.m_data = _data;
info.m_func = _func;
stl::pair<UniformHashMap::iterator, bool> result = m_uniforms.insert(UniformHashMap::value_type(_name, info) );
return result.first->second;
}
return it->second;
}
private:
typedef stl::unordered_map<stl::string, UniformInfo> UniformHashMap;
UniformHashMap m_uniforms;
};
struct RenderState
{
void reset()
{
m_constEnd = 0;
clear();
}
void clear()
{
m_constBegin = m_constEnd;
m_flags = BGFX_STATE_DEFAULT;
m_matrix = 0;
m_startIndex = BGFX_DRAW_WHOLE_INDEX_BUFFER;
m_numIndices = 0;
m_startVertex = 0;
m_numVertices = UINT32_C(0xffffffff);
m_num = 1;
m_vertexBuffer.idx = bgfx::invalidHandle;
m_vertexDecl.idx = bgfx::invalidHandle;
m_indexBuffer.idx = bgfx::invalidHandle;
for (uint32_t ii = 0; ii < BGFX_STATE_TEX_COUNT; ++ii)
{
m_sampler[ii].m_idx = bgfx::invalidHandle;
m_sampler[ii].m_flags = BGFX_SAMPLER_TEXTURE;
}
}
uint64_t m_flags;
uint32_t m_constBegin;
uint32_t m_constEnd;
uint32_t m_matrix;
uint32_t m_startIndex;
uint32_t m_numIndices;
uint32_t m_startVertex;
uint32_t m_numVertices;
uint16_t m_num;
VertexBufferHandle m_vertexBuffer;
VertexDeclHandle m_vertexDecl;
IndexBufferHandle m_indexBuffer;
Sampler m_sampler[BGFX_STATE_TEX_COUNT];
};
struct Resolution
{
Resolution()
: m_width(BGFX_DEFAULT_WIDTH)
, m_height(BGFX_DEFAULT_HEIGHT)
, m_flags(BGFX_RESET_NONE)
{
}
uint32_t m_width;
uint32_t m_height;
uint32_t m_flags;
};
struct DynamicIndexBuffer
{
IndexBufferHandle m_handle;
uint32_t m_offset;
uint32_t m_size;
};
struct DynamicVertexBuffer
{
VertexBufferHandle m_handle;
uint32_t m_offset;
uint32_t m_size;
uint32_t m_startVertex;
uint32_t m_numVertices;
uint32_t m_stride;
VertexDeclHandle m_decl;
};
struct Frame
{
BX_CACHE_LINE_ALIGN_MARKER();
Frame()
{
}
~Frame()
{
}
void create()
{
m_constantBuffer = ConstantBuffer::create(BGFX_CONFIG_MAX_CONSTANT_BUFFER_SIZE);
reset();
m_textVideoMem = new TextVideoMem;
}
void destroy()
{
ConstantBuffer::destroy(m_constantBuffer);
delete m_textVideoMem;
}
void reset()
{
m_state.reset();
m_matrixCache.reset();
m_key.reset();
m_num = 0;
m_numRenderStates = 0;
m_numDropped = 0;
m_iboffset = 0;
m_vboffset = 0;
m_cmdPre.reset();
m_cmdPost.reset();
m_constantBuffer->reset();
m_discard = false;
resetFreeHandles();
}
void finish()
{
m_cmdPre.finish();
m_cmdPost.finish();
m_constantBuffer->finish();
if (0 < m_numDropped)
{
BX_TRACE("Too many draw calls: %d, dropped %d (max: %d)", m_num+m_numDropped, m_numDropped, BGFX_CONFIG_MAX_DRAW_CALLS);
}
}
void setViewTransform(uint8_t _id, const void* _view, const void* _proj, uint8_t _other)
{
if (BGFX_CONFIG_MAX_VIEWS > _other)
{
m_other[_id] = _other;
}
else
{
m_other[_id] = _id;
}
if (NULL != _view)
{
memcpy(m_view[_id].val, _view, sizeof(Matrix4) );
}
else
{
m_view[_id].setIdentity();
}
if (NULL != _proj)
{
memcpy(m_proj[_id].val, _proj, sizeof(Matrix4) );
}
else
{
m_view[_id].setIdentity();
}
}
void setViewTransformMask(uint32_t _viewMask, const void* _view, const void* _proj, uint8_t _other)
{
for (uint32_t id = 0, viewMask = _viewMask, ntz = uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, id += 1, ntz = uint32_cnttz(viewMask) )
{
viewMask >>= ntz;
id += ntz;
setViewTransform(id, _view, _proj, _other);
}
}
void setState(uint64_t _state)
{
uint8_t blend = ( (_state&BGFX_STATE_BLEND_MASK)>>BGFX_STATE_BLEND_SHIFT)&0xff;
m_key.m_trans = "\x0\x1\x1\x2\x2\x1\x2\x1\x2\x1\x1\x1\x1\x1\x1\x1\x1"[( (blend)&0xf) + (!!blend)];
m_state.m_flags = _state;
}
uint32_t setTransform(const void* _mtx, uint16_t _num)
{
m_state.m_matrix = m_matrixCache.add(_mtx, _num);
m_state.m_num = _num;
return m_state.m_matrix;
}
void setTransform(uint32_t _cache, uint16_t _num)
{
m_state.m_matrix = _cache;
m_state.m_num = _num;
}
void setIndexBuffer(IndexBufferHandle _handle, uint32_t _firstIndex, uint32_t _numIndices)
{
m_state.m_startIndex = _firstIndex;
m_state.m_numIndices = _numIndices;
m_state.m_indexBuffer = _handle;
}
void setIndexBuffer(const TransientIndexBuffer* _ib, uint32_t _numIndices)
{
m_state.m_indexBuffer = _ib->handle;
m_state.m_startIndex = _ib->startIndex;
m_state.m_numIndices = _numIndices;
m_discard = 0 == _numIndices;
g_free(const_cast<TransientIndexBuffer*>(_ib) );
}
void setVertexBuffer(VertexBufferHandle _handle)
{
BX_CHECK(_handle.idx < BGFX_CONFIG_MAX_VERTEX_BUFFERS, "Invalid vertex buffer handle. %d (< %d)", _handle.idx, BGFX_CONFIG_MAX_VERTEX_BUFFERS);
m_state.m_startVertex = 0;
m_state.m_numVertices = UINT32_C(0xffffffff);
m_state.m_vertexBuffer = _handle;
}
void setVertexBuffer(const DynamicVertexBuffer& dvb)
{
m_state.m_startVertex = dvb.m_startVertex;
m_state.m_numVertices = dvb.m_numVertices;
m_state.m_vertexBuffer = dvb.m_handle;
m_state.m_vertexDecl = dvb.m_decl;
}
void setVertexBuffer(const TransientVertexBuffer* _vb)
{
m_state.m_startVertex = _vb->startVertex;
m_state.m_numVertices = _vb->size/_vb->stride;
m_state.m_vertexBuffer = _vb->handle;
m_state.m_vertexDecl = _vb->decl;
g_free(const_cast<TransientVertexBuffer*>(_vb) );
}
void setMaterial(MaterialHandle _handle)
{
BX_CHECK(invalidHandle != _handle.idx, "Can't set material with invalid handle.");
m_key.m_material = _handle.idx;
}
void setTexture(uint8_t _stage, UniformHandle _sampler, TextureHandle _handle)
{
m_flags |= BGFX_STATE_TEX0<<_stage;
Sampler& sampler = m_state.m_sampler[_stage];
sampler.m_idx = _handle.idx;
sampler.m_flags = BGFX_SAMPLER_TEXTURE;
if (bgfx::invalidHandle != _sampler.idx)
{
uint32_t stage = _stage;
setUniform(_sampler, &stage);
}
}
void setTexture(uint8_t _stage, UniformHandle _sampler, RenderTargetHandle _handle, bool _depth)
{
m_flags |= BGFX_STATE_TEX0<<_stage;
Sampler& sampler = m_state.m_sampler[_stage];
sampler.m_idx = _handle.idx;
sampler.m_flags = _depth ? BGFX_SAMPLER_RENDERTARGET_DEPTH : BGFX_SAMPLER_RENDERTARGET_COLOR;
if (bgfx::invalidHandle != _sampler.idx)
{
uint32_t stage = _stage;
setUniform(_sampler, &stage);
}
}
void submit(uint8_t _id);
void submitMask(uint32_t _viewMask);
void sort();
bool checkAvailTransientIndexBuffer(uint16_t _num)
{
uint32_t offset = m_iboffset;
uint32_t iboffset = offset + _num*sizeof(uint16_t);
iboffset = uint32_min(iboffset, BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE);
uint32_t num = (iboffset-offset)/sizeof(uint16_t);
return num == _num;
}
uint32_t allocTransientIndexBuffer(uint16_t& _num)
{
uint32_t offset = m_iboffset;
m_iboffset = offset + _num*sizeof(uint16_t);
m_iboffset = uint32_min(m_iboffset, BGFX_CONFIG_TRANSIENT_INDEX_BUFFER_SIZE);
_num = uint16_t( (m_iboffset-offset)/sizeof(uint16_t) );
return offset;
}
bool checkAvailTransientVertexBuffer(uint16_t _num, uint16_t _stride)
{
uint32_t offset = strideAlign(m_vboffset, _stride);
uint32_t vboffset = offset + _num * _stride;
vboffset = uint32_min(vboffset, BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE);
uint32_t num = (vboffset-offset)/_stride;
return num == _num;
}
uint32_t allocTransientVertexBuffer(uint16_t& _num, uint16_t _stride)
{
uint32_t offset = strideAlign(m_vboffset, _stride);
m_vboffset = offset + _num * _stride;
m_vboffset = uint32_min(m_vboffset, BGFX_CONFIG_TRANSIENT_VERTEX_BUFFER_SIZE);
_num = uint16_t( (m_vboffset-offset)/_stride);
return offset;
}
void writeConstant(ConstantType::Enum _type, UniformHandle _handle, const void* _value, uint16_t _num)
{
m_constantBuffer->writeUniform(_type, _handle.idx, _value, _num);
}
void free(IndexBufferHandle _handle)
{
m_freeIndexBufferHandle[m_numFreeIndexBufferHandles] = _handle;
++m_numFreeIndexBufferHandles;
}
void free(VertexDeclHandle _handle)
{
m_freeVertexDeclHandle[m_numFreeVertexDeclHandles] = _handle;
++m_numFreeVertexDeclHandles;
}
void free(VertexBufferHandle _handle)
{
m_freeVertexBufferHandle[m_numFreeVertexBufferHandles] = _handle;
++m_numFreeVertexBufferHandles;
}
void free(VertexShaderHandle _handle)
{
m_freeVertexShaderHandle[m_numFreeVertexShaderHandles] = _handle;
++m_numFreeVertexShaderHandles;
}
void free(FragmentShaderHandle _handle)
{
m_freeFragmentShaderHandle[m_numFreeFragmentShaderHandles] = _handle;
++m_numFreeFragmentShaderHandles;
}
void free(MaterialHandle _handle)
{
m_freeMaterialHandle[m_numFreeMaterialHandles] = _handle;
++m_numFreeMaterialHandles;
}
void free(TextureHandle _handle)
{
m_freeTextureHandle[m_numFreeTextureHandles] = _handle;
++m_numFreeTextureHandles;
}
void free(RenderTargetHandle _handle)
{
m_freeRenderTargetHandle[m_numFreeRenderTargetHandles] = _handle;
++m_numFreeRenderTargetHandles;
}
void free(UniformHandle _handle)
{
m_freeUniformHandle[m_numFreeUniformHandles] = _handle;
++m_numFreeUniformHandles;
}
void resetFreeHandles()
{
m_numFreeIndexBufferHandles = 0;
m_numFreeVertexDeclHandles = 0;
m_numFreeVertexBufferHandles = 0;
m_numFreeVertexShaderHandles = 0;
m_numFreeFragmentShaderHandles = 0;
m_numFreeFragmentShaderHandles = 0;
m_numFreeMaterialHandles = 0;
m_numFreeTextureHandles = 0;
m_numFreeRenderTargetHandles = 0;
m_numFreeUniformHandles = 0;
}
SortKey m_key;
RenderTargetHandle m_rt[BGFX_CONFIG_MAX_VIEWS];
Clear m_clear[BGFX_CONFIG_MAX_VIEWS];
Rect m_rect[BGFX_CONFIG_MAX_VIEWS];
Matrix4 m_view[BGFX_CONFIG_MAX_VIEWS];
Matrix4 m_proj[BGFX_CONFIG_MAX_VIEWS];
uint8_t m_other[BGFX_CONFIG_MAX_VIEWS];
uint64_t m_sortKeys[BGFX_CONFIG_MAX_DRAW_CALLS];
uint16_t m_sortValues[BGFX_CONFIG_MAX_DRAW_CALLS];
RenderState m_renderState[BGFX_CONFIG_MAX_DRAW_CALLS];
RenderState m_state;
uint64_t m_flags;
ConstantBuffer* m_constantBuffer;
uint16_t m_num;
uint16_t m_numRenderStates;
uint16_t m_numDropped;
MatrixCache m_matrixCache;
uint32_t m_iboffset;
uint32_t m_vboffset;
TransientIndexBuffer* m_transientIb;
TransientVertexBuffer* m_transientVb;
Resolution m_resolution;
uint32_t m_debug;
CommandBuffer m_cmdPre;
CommandBuffer m_cmdPost;
uint16_t m_numFreeIndexBufferHandles;
uint16_t m_numFreeVertexDeclHandles;
uint16_t m_numFreeVertexBufferHandles;
uint16_t m_numFreeVertexShaderHandles;
uint16_t m_numFreeFragmentShaderHandles;
uint16_t m_numFreeMaterialHandles;
uint16_t m_numFreeTextureHandles;
uint16_t m_numFreeRenderTargetHandles;
uint16_t m_numFreeUniformHandles;
IndexBufferHandle m_freeIndexBufferHandle[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexDeclHandle m_freeVertexDeclHandle[BGFX_CONFIG_MAX_VERTEX_DECLS];
VertexBufferHandle m_freeVertexBufferHandle[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
VertexShaderHandle m_freeVertexShaderHandle[BGFX_CONFIG_MAX_VERTEX_SHADERS];
FragmentShaderHandle m_freeFragmentShaderHandle[BGFX_CONFIG_MAX_FRAGMENT_SHADERS];
MaterialHandle m_freeMaterialHandle[BGFX_CONFIG_MAX_MATERIALS];
TextureHandle m_freeTextureHandle[BGFX_CONFIG_MAX_TEXTURES];
RenderTargetHandle m_freeRenderTargetHandle[BGFX_CONFIG_MAX_RENDER_TARGETS];
UniformHandle m_freeUniformHandle[BGFX_CONFIG_MAX_UNIFORMS];
TextVideoMem* m_textVideoMem;
int64_t m_waitSubmit;
int64_t m_waitRender;
bool m_discard;
};
struct MaterialRef
{
MaterialRef()
{
}
MaterialHandle find(uint32_t _hash)
{
MaterialMap::const_iterator it = m_materialMap.find(_hash);
if (it != m_materialMap.end() )
{
return it->second;
}
MaterialHandle result = BGFX_INVALID_HANDLE;
return result;
}
void add(MaterialHandle _handle, uint32_t _hash)
{
m_materialMap.insert(stl::make_pair(_hash, _handle) );
}
typedef stl::unordered_map<uint32_t, MaterialHandle> MaterialMap;
MaterialMap m_materialMap;
};
struct VertexDeclRef
{
VertexDeclRef()
{
memset(m_vertexDeclRef, 0, sizeof(m_vertexDeclRef) );
memset(m_vertexBufferRef, 0xff, sizeof(m_vertexBufferRef) );
}
VertexDeclHandle find(uint32_t _hash)
{
VertexDeclMap::const_iterator it = m_vertexDeclMap.find(_hash);
if (it != m_vertexDeclMap.end() )
{
return it->second;
}
VertexDeclHandle result = BGFX_INVALID_HANDLE;
return result;
}
void add(VertexBufferHandle _handle, VertexDeclHandle _declHandle, uint32_t _hash)
{
m_vertexBufferRef[_handle.idx] = _declHandle;
m_vertexDeclRef[_declHandle.idx]++;
m_vertexDeclMap.insert(stl::make_pair(_hash, _declHandle) );
}
VertexDeclHandle release(VertexBufferHandle _handle)
{
VertexDeclHandle declHandle = m_vertexBufferRef[_handle.idx];
m_vertexDeclRef[declHandle.idx]--;
if (0 != m_vertexDeclRef[declHandle.idx])
{
VertexDeclHandle invalid = BGFX_INVALID_HANDLE;
return invalid;
}
return declHandle;
}
typedef stl::unordered_map<uint32_t, VertexDeclHandle> VertexDeclMap;
VertexDeclMap m_vertexDeclMap;
uint16_t m_vertexDeclRef[BGFX_CONFIG_MAX_VERTEX_DECLS];
VertexDeclHandle m_vertexBufferRef[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
};
// First-fit non-local allocator.
class NonLocalAllocator
{
public:
static const uint64_t invalidBlock = UINT64_MAX;
NonLocalAllocator()
{
}
~NonLocalAllocator()
{
}
void reset()
{
m_free.clear();
m_used.clear();
}
void add(uint64_t _ptr, uint32_t _size)
{
m_free.push_back(Free(_ptr, _size) );
}
uint64_t alloc(uint32_t _size)
{
for (FreeList::iterator it = m_free.begin(), itEnd = m_free.end(); it != itEnd; ++it)
{
if (it->m_size >= _size)
{
uint64_t ptr = it->m_ptr;
m_used.insert(stl::make_pair(ptr, _size) );
if (it->m_size != _size)
{
it->m_size -= _size;
it->m_ptr += _size;
}
else
{
m_free.erase(it);
}
return ptr;
}
}
// there is no block large enough.
return invalidBlock;
}
void free(uint64_t _block)
{
UsedList::iterator it = m_used.find(_block);
if (it != m_used.end() )
{
m_free.push_front(Free(it->first, it->second) );
m_used.erase(it);
}
}
void compact()
{
m_free.sort();
for (FreeList::iterator it = m_free.begin(), next = it, itEnd = m_free.end(); next != itEnd;)
{
if ( (it->m_ptr + it->m_size) == next->m_ptr)
{
it->m_size += next->m_size;
next = m_free.erase(next);
}
else
{
it = next;
++next;
}
}
}
private:
struct Free
{
Free(uint64_t _ptr, uint32_t _size)
: m_ptr(_ptr)
, m_size(_size)
{
}
bool operator<(const Free& rhs) const
{
return m_ptr < rhs.m_ptr;
}
uint64_t m_ptr;
uint32_t m_size;
};
typedef std::list<Free> FreeList;
FreeList m_free;
typedef stl::unordered_map<uint64_t, uint32_t> UsedList;
UsedList m_used;
};
#if BX_PLATFORM_WINDOWS || BX_PLATFORM_XBOX360
DWORD WINAPI renderThread(LPVOID _arg);
#elif BX_PLATFORM_LINUX
void* renderThread(void*);
#endif // BX_PLATFORM_
struct Context
{
Context()
: m_render(&m_frame[0])
, m_submit(&m_frame[1])
, m_dynamicIndexBufferHandle(BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS)
, m_dynamicVertexBufferHandle(BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS)
, m_indexBufferHandle(BGFX_CONFIG_MAX_INDEX_BUFFERS)
, m_vertexDeclHandle(BGFX_CONFIG_MAX_VERTEX_DECLS)
, m_vertexBufferHandle(BGFX_CONFIG_MAX_VERTEX_BUFFERS)
, m_vertexShaderHandle(BGFX_CONFIG_MAX_VERTEX_SHADERS)
, m_fragmentShaderHandle(BGFX_CONFIG_MAX_FRAGMENT_SHADERS)
, m_materialHandle(BGFX_CONFIG_MAX_MATERIALS)
, m_textureHandle(BGFX_CONFIG_MAX_TEXTURES)
, m_renderTargetHandle(BGFX_CONFIG_MAX_RENDER_TARGETS)
, m_uniformHandle(BGFX_CONFIG_MAX_UNIFORMS)
, m_frames(0)
, m_debug(BGFX_DEBUG_NONE)
, m_rendererInitialized(false)
, m_exit(false)
{
}
~Context()
{
}
// game thread
void init(bool _createRenderThread);
void shutdown();
void frame()
{
#if BX_PLATFORM_WINDOWS
m_window.update();
#endif // BX_PLATFORM_WINDOWS
// wait for render thread to finish
renderSemWait();
swap();
// release render thread
gameSemPost();
#if !BGFX_CONFIG_MULTITHREADED
renderFrame();
#endif // BGFX_CONFIG_MULTITHREADED
}
CommandBuffer& getCommandBuffer(CommandBuffer::Enum _cmd)
{
CommandBuffer& cmdbuf = _cmd < CommandBuffer::End ? m_submit->m_cmdPre : m_submit->m_cmdPost;
uint8_t cmd = (uint8_t)_cmd;
cmdbuf.write(cmd);
return cmdbuf;
}
void reset(uint32_t _width, uint32_t _height, uint32_t _flags)
{
m_resolution.m_width = _width;
m_resolution.m_height = _height;
m_resolution.m_flags = _flags&(~BGFX_RESET_FULLSCREEN_FAKE);
memset(m_rt, 0xff, sizeof(m_rt) );
#if BX_PLATFORM_WINDOWS
uint32_t fullscreen = (_flags&BGFX_RESET_FULLSCREEN_MASK)>>BGFX_RESET_FULLSCREEN_SHIFT;
m_window.adjust(_width, _height, BGFX_RESET_FULLSCREEN_FAKE != fullscreen);
#endif // BX_PLATFORM_WINDOWS
}
void dbgTextClear(uint8_t _attr, bool _small)
{
m_submit->m_textVideoMem->resize(_small, m_resolution.m_width, m_resolution.m_height);
m_submit->m_textVideoMem->clear(_attr);
}
void dbgTextPrintfVargs(uint16_t _x, uint16_t _y, uint8_t _attr, const char* _format, va_list _argList)
{
m_submit->m_textVideoMem->printfVargs(_x, _y, _attr, _format, _argList);
}
IndexBufferHandle createIndexBuffer(const Memory* _mem)
{
IndexBufferHandle handle = { m_indexBufferHandle.alloc() };
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateIndexBuffer);
cmdbuf.write(handle);
cmdbuf.write(_mem);
return handle;
}
void destroyIndexBuffer(IndexBufferHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyIndexBuffer);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
VertexDeclHandle findVertexDecl(const VertexDecl& _decl)
{
VertexDeclHandle declHandle = m_declRef.find(_decl.m_hash);
if (bgfx::invalidHandle == declHandle.idx)
{
VertexDeclHandle temp = { m_vertexDeclHandle.alloc() };
declHandle = temp;
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexDecl);
cmdbuf.write(declHandle);
cmdbuf.write(_decl);
}
return declHandle;
}
VertexBufferHandle createVertexBuffer(const Memory* _mem, const VertexDecl& _decl)
{
VertexBufferHandle handle = { m_vertexBufferHandle.alloc() };
VertexDeclHandle declHandle = findVertexDecl(_decl);
m_declRef.add(handle, declHandle, _decl.m_hash);
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexBuffer);
cmdbuf.write(handle);
cmdbuf.write(_mem);
cmdbuf.write(declHandle);
return handle;
}
void destroyVertexBuffer(VertexBufferHandle _handle)
{
VertexDeclHandle declHandle = m_declRef.release(_handle);
if (bgfx::invalidHandle != declHandle.idx)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexDecl);
cmdbuf.write(declHandle);
}
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexBuffer);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
DynamicIndexBufferHandle createDynamicIndexBuffer(uint16_t _num)
{
DynamicIndexBufferHandle handle = BGFX_INVALID_HANDLE;
uint32_t size = BX_ALIGN_16(uint32_t(_num*2) );
uint64_t ptr = m_dynamicIndexBufferAllocator.alloc(size);
if (ptr == NonLocalAllocator::invalidBlock)
{
IndexBufferHandle indexBufferHandle = { m_indexBufferHandle.alloc() };
if (indexBufferHandle.idx == invalidHandle)
{
return handle;
}
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer);
cmdbuf.write(indexBufferHandle);
cmdbuf.write(BGFX_CONFIG_DYNAMIC_INDEX_BUFFER_SIZE);
m_dynamicIndexBufferAllocator.add(uint64_t(indexBufferHandle.idx)<<32, BGFX_CONFIG_DYNAMIC_INDEX_BUFFER_SIZE);
ptr = m_dynamicIndexBufferAllocator.alloc(size);
}
handle.idx = m_dynamicIndexBufferHandle.alloc();
DynamicIndexBuffer& dib = m_dynamicIndexBuffers[handle.idx];
dib.m_handle.idx = uint16_t(ptr>>32);
dib.m_offset = uint32_t(ptr);
dib.m_size = size;
return handle;
}
DynamicIndexBufferHandle createDynamicIndexBuffer(const Memory* _mem)
{
DynamicIndexBufferHandle handle = createDynamicIndexBuffer(_mem->size/2);
updateDynamicIndexBuffer(handle, _mem);
return handle;
}
void updateDynamicIndexBuffer(DynamicIndexBufferHandle _handle, const Memory* _mem)
{
DynamicIndexBuffer& dib = m_dynamicIndexBuffers[_handle.idx];
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateDynamicIndexBuffer);
cmdbuf.write(dib.m_handle);
cmdbuf.write(dib.m_offset);
cmdbuf.write(dib.m_size);
cmdbuf.write(_mem);
}
void destroyDynamicIndexBuffer(DynamicIndexBufferHandle _handle)
{
m_freeDynamicIndexBufferHandle[m_numFreeDynamicIndexBufferHandles++] = _handle;
}
void destroyDynamicIndexBufferInternal(DynamicIndexBufferHandle _handle)
{
DynamicIndexBuffer& dib = m_dynamicIndexBuffers[_handle.idx];
m_dynamicIndexBufferAllocator.free(uint64_t(dib.m_handle.idx)<<32 | dib.m_offset);
m_dynamicIndexBufferHandle.free(_handle.idx);
}
DynamicVertexBufferHandle createDynamicVertexBuffer(uint16_t _num, const VertexDecl& _decl)
{
DynamicVertexBufferHandle handle = BGFX_INVALID_HANDLE;
uint32_t size = strideAlign16(_num*_decl.m_stride, _decl.m_stride);
uint64_t ptr = m_dynamicVertexBufferAllocator.alloc(size);
if (ptr == NonLocalAllocator::invalidBlock)
{
VertexBufferHandle vertexBufferHandle = { m_vertexBufferHandle.alloc() };
if (vertexBufferHandle.idx == invalidHandle)
{
return handle;
}
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer);
cmdbuf.write(vertexBufferHandle);
cmdbuf.write(BGFX_CONFIG_DYNAMIC_VERTEX_BUFFER_SIZE);
m_dynamicVertexBufferAllocator.add(uint64_t(vertexBufferHandle.idx)<<32, BGFX_CONFIG_DYNAMIC_VERTEX_BUFFER_SIZE);
ptr = m_dynamicVertexBufferAllocator.alloc(size);
}
VertexDeclHandle declHandle = findVertexDecl(_decl);
handle.idx = m_dynamicVertexBufferHandle.alloc();
DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[handle.idx];
dvb.m_handle.idx = uint16_t(ptr>>32);
dvb.m_offset = uint32_t(ptr);
dvb.m_size = size;
dvb.m_startVertex = dvb.m_offset/_decl.m_stride;
dvb.m_numVertices = dvb.m_size/_decl.m_stride;
dvb.m_decl = declHandle;
m_declRef.add(dvb.m_handle, declHandle, _decl.m_hash);
return handle;
}
DynamicVertexBufferHandle createDynamicVertexBuffer(const Memory* _mem, const VertexDecl& _decl)
{
DynamicVertexBufferHandle handle = createDynamicVertexBuffer(_mem->size/_decl.m_stride, _decl);
updateDynamicVertexBuffer(handle, _mem);
return handle;
}
void updateDynamicVertexBuffer(DynamicVertexBufferHandle _handle, const Memory* _mem)
{
DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[_handle.idx];
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::UpdateDynamicVertexBuffer);
cmdbuf.write(dvb.m_handle);
cmdbuf.write(dvb.m_offset);
cmdbuf.write(dvb.m_size);
cmdbuf.write(_mem);
}
void destroyDynamicVertexBuffer(DynamicVertexBufferHandle _handle)
{
m_freeDynamicVertexBufferHandle[m_numFreeDynamicVertexBufferHandles++] = _handle;
}
void destroyDynamicVertexBufferInternal(DynamicVertexBufferHandle _handle)
{
DynamicVertexBuffer& dvb = m_dynamicVertexBuffers[_handle.idx];
VertexDeclHandle declHandle = m_declRef.release(dvb.m_handle);
if (bgfx::invalidHandle != declHandle.idx)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexDecl);
cmdbuf.write(declHandle);
}
m_dynamicVertexBufferAllocator.free(uint64_t(dvb.m_handle.idx)<<32 | dvb.m_offset);
m_dynamicVertexBufferHandle.free(_handle.idx);
}
TransientIndexBuffer* createTransientIndexBuffer(uint32_t _size)
{
IndexBufferHandle handle = { m_indexBufferHandle.alloc() };
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicIndexBuffer);
cmdbuf.write(handle);
cmdbuf.write(_size);
TransientIndexBuffer* ib = (TransientIndexBuffer*)g_realloc(NULL, sizeof(TransientIndexBuffer)+_size);
ib->data = (uint8_t*)&ib[1];
ib->size = _size;
ib->handle = handle;
return ib;
}
void destroyTransientIndexBuffer(TransientIndexBuffer* _ib)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicIndexBuffer);
cmdbuf.write(_ib->handle);
m_submit->free(_ib->handle);
g_free(const_cast<TransientIndexBuffer*>(_ib) );
}
const TransientIndexBuffer* allocTransientIndexBuffer(uint16_t _num)
{
uint32_t offset = m_submit->allocTransientIndexBuffer(_num);
TransientIndexBuffer& dib = *m_submit->m_transientIb;
TransientIndexBuffer* ib = (TransientIndexBuffer*)g_realloc(NULL, sizeof(TransientIndexBuffer) );
ib->data = &dib.data[offset];
ib->size = _num * sizeof(uint16_t);
ib->handle = dib.handle;
ib->startIndex = offset/sizeof(uint16_t);
return ib;
}
TransientVertexBuffer* createTransientVertexBuffer(uint32_t _size, const VertexDecl* _decl = NULL)
{
VertexBufferHandle handle = { m_vertexBufferHandle.alloc() };
uint16_t stride = 0;
VertexDeclHandle declHandle = BGFX_INVALID_HANDLE;
if (NULL != _decl)
{
declHandle = findVertexDecl(*_decl);
m_declRef.add(handle, declHandle, _decl->m_hash);
stride = _decl->m_stride;
}
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateDynamicVertexBuffer);
cmdbuf.write(handle);
cmdbuf.write(_size);
TransientVertexBuffer* vb = (TransientVertexBuffer*)g_realloc(NULL, sizeof(TransientVertexBuffer)+_size);
vb->data = (uint8_t*)&vb[1];
vb->size = _size;
vb->startVertex = 0;
vb->stride = stride;
vb->handle = handle;
vb->decl = declHandle;
return vb;
}
void destroyTransientVertexBuffer(TransientVertexBuffer* _vb)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyDynamicVertexBuffer);
cmdbuf.write(_vb->handle);
m_submit->free(_vb->handle);
g_free(const_cast<TransientVertexBuffer*>(_vb) );
}
const TransientVertexBuffer* allocTransientVertexBuffer(uint16_t _num, const VertexDecl& _decl)
{
VertexDeclHandle declHandle = m_declRef.find(_decl.m_hash);
TransientVertexBuffer& dvb = *m_submit->m_transientVb;
if (bgfx::invalidHandle == declHandle.idx)
{
VertexDeclHandle temp = { m_vertexDeclHandle.alloc() };
declHandle = temp;
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexDecl);
cmdbuf.write(declHandle);
cmdbuf.write(_decl);
m_declRef.add(dvb.handle, declHandle, _decl.m_hash);
}
uint32_t offset = m_submit->allocTransientVertexBuffer(_num, _decl.m_stride);
TransientVertexBuffer* vb = (TransientVertexBuffer*)g_realloc(NULL, sizeof(TransientVertexBuffer) );
vb->data = &dvb.data[offset];
vb->size = _num * _decl.m_stride;
vb->startVertex = offset/_decl.m_stride;
vb->stride = _decl.m_stride;
vb->handle = dvb.handle;
vb->decl = declHandle;
return vb;
}
VertexShaderHandle createVertexShader(const Memory* _mem)
{
VertexShaderHandle handle = { m_vertexShaderHandle.alloc() };
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateVertexShader);
cmdbuf.write(handle);
cmdbuf.write(_mem);
return handle;
}
void destroyVertexShader(VertexShaderHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyVertexShader);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
FragmentShaderHandle createFragmentShader(const Memory* _mem)
{
FragmentShaderHandle handle = { m_fragmentShaderHandle.alloc() };
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateFragmentShader);
cmdbuf.write(handle);
cmdbuf.write(_mem);
return handle;
}
void destroyFragmentShader(FragmentShaderHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyFragmentShader);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
MaterialHandle createMaterial(VertexShaderHandle _vsh, FragmentShaderHandle _fsh)
{
MaterialHandle handle;
// uint32_t hash = _vsh.idx<<16 | _fsh.idx;
//
// MaterialHandle handle = m_materialRef.find(hash);
//
// if (bgfx::invalidHandle != handle.idx)
// {
// return handle;
// }
//
handle.idx = m_materialHandle.alloc();
// m_materialRef.add(handle, hash);
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateMaterial);
cmdbuf.write(handle);
cmdbuf.write(_vsh);
cmdbuf.write(_fsh);
return handle;
}
void destroyMaterial(MaterialHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyMaterial);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
TextureHandle createTexture(const Memory* _mem, uint32_t _flags, uint16_t* _width, uint16_t* _height)
{
if (NULL != _width
|| NULL != _height)
{
int width = 0;
int height = 0;
Dds dds;
if (parseDds(dds, _mem) )
{
width = dds.m_width;
height = dds.m_height;
}
if (NULL != _width)
{
*_width = (uint16_t)width;
}
if (NULL != _height)
{
*_height = (uint16_t)height;
}
}
TextureHandle handle = { m_textureHandle.alloc() };
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateTexture);
cmdbuf.write(handle);
cmdbuf.write(_mem);
cmdbuf.write(_flags);
return handle;
}
void destroyTexture(TextureHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyTexture);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
RenderTargetHandle createRenderTarget(uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags)
{
RenderTargetHandle handle = { m_renderTargetHandle.alloc() };
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateRenderTarget);
cmdbuf.write(handle);
cmdbuf.write(_width);
cmdbuf.write(_height);
cmdbuf.write(_flags);
cmdbuf.write(_textureFlags);
return handle;
}
void destroyRenderTarget(RenderTargetHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyRenderTarget);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
UniformHandle createUniform(const char* _name, ConstantType::Enum _type, uint16_t _num)
{
BX_CHECK(PredefinedUniform::Count == nameToPredefinedUniformEnum(_name), "%s is predefined uniform name.", _name);
UniformHandle handle = { m_uniformHandle.alloc() };
Constant& constant = m_constant[handle.idx];
constant.m_type = _type;
constant.m_num = _num;
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::CreateUniform);
cmdbuf.write(handle);
cmdbuf.write(_type);
cmdbuf.write(_num);
uint8_t len = (uint8_t)strlen(_name);
cmdbuf.write(len);
cmdbuf.write(_name, len);
return handle;
}
void destroyUniform(UniformHandle _handle)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::DestroyUniform);
cmdbuf.write(_handle);
m_submit->free(_handle);
}
void saveScreenShot(const Memory* _mem)
{
CommandBuffer& cmdbuf = getCommandBuffer(CommandBuffer::SaveScreenShot);
cmdbuf.write(_mem);
}
void setUniform(UniformHandle _handle, const void* _value, uint16_t _num)
{
Constant& constant = m_constant[_handle.idx];
BX_CHECK(constant.m_num >= _num, "Truncated uniform update. %d (max: %d)", _num, constant.m_num);
m_submit->writeConstant(constant.m_type, _handle, _value, uint16_min(constant.m_num, _num) );
}
void setUniform(MaterialHandle _material, UniformHandle _handle, const void* _value)
{
BX_CHECK(false, "NOT IMPLEMENTED!");
}
void setViewRect(uint8_t _id, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height)
{
Rect& rect = m_rect[_id];
rect.m_x = _x;
rect.m_y = _y;
rect.m_width = _width;
rect.m_height = _height;
}
void setViewRectMask(uint32_t _viewMask, uint16_t _x, uint16_t _y, uint16_t _width, uint16_t _height)
{
for (uint32_t id = 0, viewMask = _viewMask, ntz = uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, id += 1, ntz = uint32_cnttz(viewMask) )
{
viewMask >>= ntz;
id += ntz;
setViewRect(id, _x, _y, _width, _height);
}
}
void setViewClear(uint8_t _id, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil)
{
Clear& clear = m_clear[_id];
clear.m_flags = _flags;
clear.m_rgba = _rgba;
clear.m_depth = _depth;
clear.m_stencil = _stencil;
}
void setViewClearMask(uint32_t _viewMask, uint8_t _flags, uint32_t _rgba, float _depth, uint8_t _stencil)
{
for (uint32_t id = 0, viewMask = _viewMask, ntz = uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, id += 1, ntz = uint32_cnttz(viewMask) )
{
viewMask >>= ntz;
id += ntz;
setViewClear(id, _flags, _rgba, _depth, _stencil);
}
}
void setViewSeq(uint8_t _id, bool _enabled)
{
m_seqMask[_id] = _enabled ? 0xffff : 0x0;
}
void setViewSeqMask(uint32_t _viewMask, bool _enabled)
{
uint16_t mask = _enabled ? 0xffff : 0x0;
for (uint32_t id = 0, viewMask = _viewMask, ntz = uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, id += 1, ntz = uint32_cnttz(viewMask) )
{
viewMask >>= ntz;
id += ntz;
m_seqMask[id] = mask;
}
}
void setViewRenderTarget(uint8_t _id, RenderTargetHandle _handle)
{
m_rt[_id] = _handle;
}
void setViewRenderTargetMask(uint32_t _viewMask, RenderTargetHandle _handle)
{
for (uint32_t id = 0, viewMask = _viewMask, ntz = uint32_cnttz(_viewMask); 0 != viewMask; viewMask >>= 1, id += 1, ntz = uint32_cnttz(viewMask) )
{
viewMask >>= ntz;
id += ntz;
m_rt[id] = _handle;
}
}
void dumpViewStats()
{
#if 0 // BGFX_CONFIG_DEBUG
for (uint8_t view = 0; view < BGFX_CONFIG_MAX_VIEWS; ++view)
{
if (0 < m_seq[view])
{
BX_TRACE("%d: %d", view, m_seq[view]);
}
}
#endif // BGFX_CONFIG_DEBUG
}
void freeDynamicBuffers()
{
for (uint16_t ii = 0, num = m_numFreeDynamicIndexBufferHandles; ii < num; ++ii)
{
destroyDynamicIndexBufferInternal(m_freeDynamicIndexBufferHandle[ii]);
}
m_numFreeDynamicIndexBufferHandles = 0;
for (uint16_t ii = 0, num = m_numFreeDynamicVertexBufferHandles; ii < num; ++ii)
{
destroyDynamicVertexBufferInternal(m_freeDynamicVertexBufferHandle[ii]);
}
m_numFreeDynamicVertexBufferHandles = 0;
}
void freeAllHandles(Frame* _frame)
{
for (uint16_t ii = 0, num = _frame->m_numFreeIndexBufferHandles; ii < num; ++ii)
{
m_indexBufferHandle.free(_frame->m_freeIndexBufferHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeVertexDeclHandles; ii < num; ++ii)
{
m_vertexDeclHandle.free(_frame->m_freeVertexDeclHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeVertexBufferHandles; ii < num; ++ii)
{
m_vertexBufferHandle.free(_frame->m_freeVertexBufferHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeVertexShaderHandles; ii < num; ++ii)
{
m_vertexShaderHandle.free(_frame->m_freeVertexShaderHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeFragmentShaderHandles; ii < num; ++ii)
{
m_fragmentShaderHandle.free(_frame->m_freeFragmentShaderHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeMaterialHandles; ii < num; ++ii)
{
m_materialHandle.free(_frame->m_freeMaterialHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeTextureHandles; ii < num; ++ii)
{
m_textureHandle.free(_frame->m_freeTextureHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeRenderTargetHandles; ii < num; ++ii)
{
m_renderTargetHandle.free(_frame->m_freeRenderTargetHandle[ii].idx);
}
for (uint16_t ii = 0, num = _frame->m_numFreeUniformHandles; ii < num; ++ii)
{
m_uniformHandle.free(_frame->m_freeUniformHandle[ii].idx);
}
}
void swap()
{
freeDynamicBuffers();
m_submit->m_resolution = m_resolution;
m_submit->m_debug = m_debug;
memcpy(m_submit->m_rt, m_rt, sizeof(m_rt) );
memcpy(m_submit->m_clear, m_clear, sizeof(m_clear) );
memcpy(m_submit->m_rect, m_rect, sizeof(m_rect) );
m_submit->finish();
dumpViewStats();
freeAllHandles(m_render);
memset(m_seq, 0, sizeof(m_seq) );
Frame* temp = m_render;
m_render = m_submit;
m_submit = temp;
m_frames++;
m_submit->reset();
m_submit->m_textVideoMem->resize(m_render->m_textVideoMem->m_small, m_resolution.m_width, m_resolution.m_height);
}
void flip();
// render thread
bool renderFrame()
{
flip();
gameSemWait();
rendererExecCommands(m_render->m_cmdPre);
if (m_rendererInitialized)
{
rendererSubmit();
}
rendererExecCommands(m_render->m_cmdPost);
renderSemPost();
return m_exit;
}
void rendererInit();
void rendererShutdown();
void rendererCreateIndexBuffer(IndexBufferHandle _handle, Memory* _mem);
void rendererDestroyIndexBuffer(IndexBufferHandle _handle);
void rendererCreateVertexBuffer(VertexBufferHandle _handle, Memory* _mem, VertexDeclHandle _declHandle);
void rendererDestroyVertexBuffer(VertexBufferHandle _handle);
void rendererCreateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size);
void rendererUpdateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem);
void rendererDestroyDynamicIndexBuffer(IndexBufferHandle _handle);
void rendererCreateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size);
void rendererUpdateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, Memory* _mem);
void rendererDestroyDynamicVertexBuffer(VertexBufferHandle _handle);
void rendererCreateVertexDecl(VertexDeclHandle _handle, const VertexDecl& _decl);
void rendererDestroyVertexDecl(VertexDeclHandle _handle);
void rendererCreateVertexShader(VertexShaderHandle _handle, Memory* _mem);
void rendererDestroyVertexShader(VertexShaderHandle _handle);
void rendererCreateFragmentShader(FragmentShaderHandle _handle, Memory* _mem);
void rendererDestroyFragmentShader(FragmentShaderHandle _handle);
void rendererCreateMaterial(MaterialHandle _handle, VertexShaderHandle _vsh, FragmentShaderHandle _fsh);
void rendererDestroyMaterial(FragmentShaderHandle _handle);
void rendererCreateTexture(TextureHandle _handle, Memory* _mem, uint32_t _flags);
void rendererDestroyTexture(TextureHandle _handle);
void rendererCreateRenderTarget(RenderTargetHandle _handle, uint16_t _width, uint16_t _height, uint32_t _flags, uint32_t _textureFlags);
void rendererDestroyRenderTarget(RenderTargetHandle _handle);
void rendererCreateUniform(UniformHandle _handle, ConstantType::Enum _type, uint16_t _num, const char* _name);
void rendererDestroyUniform(UniformHandle _handle);
void rendererSaveScreenShot(Memory* _mem);
void rendererUpdateUniform(uint16_t _loc, const void* _data, uint32_t _size);
void rendererUpdateUniforms(ConstantBuffer* _constantBuffer, uint32_t _begin, uint32_t _end)
{
_constantBuffer->reset(_begin);
while (_constantBuffer->getPos() < _end)
{
uint32_t opcode = _constantBuffer->read();
if (ConstantType::End == opcode)
{
break;
}
ConstantType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
ConstantBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
uint32_t size = g_constantTypeSize[type]*num;
data = _constantBuffer->read(size);
rendererUpdateUniform(loc, data, size);
}
}
void rendererExecCommands(CommandBuffer& _cmdbuf)
{
_cmdbuf.reset();
bool end = false;
do
{
uint8_t command;
_cmdbuf.read(command);
switch (command)
{
case CommandBuffer::RendererInit:
{
rendererInit();
m_rendererInitialized = true;
}
break;
case CommandBuffer::RendererShutdown:
{
rendererShutdown();
m_rendererInitialized = false;
m_exit = true;
}
break;
case CommandBuffer::CreateIndexBuffer:
{
IndexBufferHandle handle;
_cmdbuf.read(handle);
Memory* mem;
_cmdbuf.read(mem);
rendererCreateIndexBuffer(handle, mem);
release(mem);
}
break;
case CommandBuffer::DestroyIndexBuffer:
{
IndexBufferHandle handle;
_cmdbuf.read(handle);
rendererDestroyIndexBuffer(handle);
}
break;
case CommandBuffer::CreateVertexDecl:
{
VertexDeclHandle handle;
_cmdbuf.read(handle);
VertexDecl decl;
_cmdbuf.read(decl);
rendererCreateVertexDecl(handle, decl);
}
break;
case CommandBuffer::DestroyVertexDecl:
{
VertexDeclHandle handle;
_cmdbuf.read(handle);
rendererDestroyVertexDecl(handle);
}
break;
case CommandBuffer::CreateVertexBuffer:
{
VertexBufferHandle handle;
_cmdbuf.read(handle);
Memory* mem;
_cmdbuf.read(mem);
VertexDeclHandle declHandle;
_cmdbuf.read(declHandle);
rendererCreateVertexBuffer(handle, mem, declHandle);
release(mem);
}
break;
case CommandBuffer::DestroyVertexBuffer:
{
VertexBufferHandle handle;
_cmdbuf.read(handle);
rendererDestroyVertexBuffer(handle);
}
break;
case CommandBuffer::CreateDynamicIndexBuffer:
{
IndexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t size;
_cmdbuf.read(size);
rendererCreateDynamicIndexBuffer(handle, size);
}
break;
case CommandBuffer::UpdateDynamicIndexBuffer:
{
IndexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t offset;
_cmdbuf.read(offset);
uint32_t size;
_cmdbuf.read(size);
Memory* mem;
_cmdbuf.read(mem);
rendererUpdateDynamicIndexBuffer(handle, offset, size, mem);
release(mem);
}
break;
case CommandBuffer::DestroyDynamicIndexBuffer:
{
IndexBufferHandle handle;
_cmdbuf.read(handle);
rendererDestroyDynamicIndexBuffer(handle);
}
break;
case CommandBuffer::CreateDynamicVertexBuffer:
{
VertexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t size;
_cmdbuf.read(size);
rendererCreateDynamicVertexBuffer(handle, size);
}
break;
case CommandBuffer::UpdateDynamicVertexBuffer:
{
VertexBufferHandle handle;
_cmdbuf.read(handle);
uint32_t offset;
_cmdbuf.read(offset);
uint32_t size;
_cmdbuf.read(size);
Memory* mem;
_cmdbuf.read(mem);
rendererUpdateDynamicVertexBuffer(handle, offset, size, mem);
release(mem);
}
break;
case CommandBuffer::DestroyDynamicVertexBuffer:
{
VertexBufferHandle handle;
_cmdbuf.read(handle);
rendererDestroyDynamicVertexBuffer(handle);
}
break;
case CommandBuffer::CreateVertexShader:
{
VertexShaderHandle handle;
_cmdbuf.read(handle);
Memory* mem;
_cmdbuf.read(mem);
rendererCreateVertexShader(handle, mem);
release(mem);
}
break;
case CommandBuffer::DestroyVertexShader:
{
VertexShaderHandle handle;
_cmdbuf.read(handle);
rendererDestroyVertexShader(handle);
}
break;
case CommandBuffer::CreateFragmentShader:
{
FragmentShaderHandle handle;
_cmdbuf.read(handle);
Memory* mem;
_cmdbuf.read(mem);
rendererCreateFragmentShader(handle, mem);
release(mem);
}
break;
case CommandBuffer::DestroyFragmentShader:
{
FragmentShaderHandle handle;
_cmdbuf.read(handle);
rendererDestroyFragmentShader(handle);
}
break;
case CommandBuffer::CreateMaterial:
{
MaterialHandle handle;
_cmdbuf.read(handle);
VertexShaderHandle vsh;
_cmdbuf.read(vsh);
FragmentShaderHandle fsh;
_cmdbuf.read(fsh);
rendererCreateMaterial(handle, vsh, fsh);
}
break;
case CommandBuffer::DestroyMaterial:
{
FragmentShaderHandle handle;
_cmdbuf.read(handle);
rendererDestroyMaterial(handle);
}
break;
case CommandBuffer::CreateTexture:
{
TextureHandle handle;
_cmdbuf.read(handle);
Memory* mem;
_cmdbuf.read(mem);
uint32_t flags;
_cmdbuf.read(flags);
rendererCreateTexture(handle, mem, flags);
release(mem);
}
break;
case CommandBuffer::DestroyTexture:
{
TextureHandle handle;
_cmdbuf.read(handle);
rendererDestroyTexture(handle);
}
break;
case CommandBuffer::CreateRenderTarget:
{
RenderTargetHandle handle;
_cmdbuf.read(handle);
uint16_t width;
_cmdbuf.read(width);
uint16_t height;
_cmdbuf.read(height);
uint32_t flags;
_cmdbuf.read(flags);
uint32_t textureFlags;
_cmdbuf.read(textureFlags);
rendererCreateRenderTarget(handle, width, height, flags, textureFlags);
}
break;
case CommandBuffer::DestroyRenderTarget:
{
RenderTargetHandle handle;
_cmdbuf.read(handle);
rendererDestroyRenderTarget(handle);
}
break;
case CommandBuffer::CreateUniform:
{
UniformHandle handle;
_cmdbuf.read(handle);
ConstantType::Enum type;
_cmdbuf.read(type);
uint16_t num;
_cmdbuf.read(num);
uint8_t len;
_cmdbuf.read(len);
char name[256];
_cmdbuf.read(name, len);
name[len] = '\0';
rendererCreateUniform(handle, type, num, name);
}
break;
case CommandBuffer::DestroyUniform:
{
UniformHandle handle;
_cmdbuf.read(handle);
rendererDestroyUniform(handle);
}
break;
case CommandBuffer::SaveScreenShot:
{
Memory* mem;
_cmdbuf.read(mem);
rendererSaveScreenShot(mem);
release(mem);
}
break;
case CommandBuffer::End:
end = true;
break;
default:
BX_CHECK(false, "WTF!");
break;
}
} while (!end);
}
void rendererSubmit();
#if BGFX_CONFIG_MULTITHREADED
void gameSemPost()
{
// BX_TRACE("game post");
m_gameSem.post();
}
void gameSemWait()
{
// BX_TRACE("game wait");
int64_t start = bx::getHPCounter();
m_gameSem.wait();
m_render->m_waitSubmit = bx::getHPCounter()-start;
}
void renderSemPost()
{
// BX_TRACE("render post");
m_renderSem.post();
}
void renderSemWait()
{
// BX_TRACE("render wait");
int64_t start = bx::getHPCounter();
m_renderSem.wait();
m_submit->m_waitRender = bx::getHPCounter() - start;
}
Semaphore m_renderSem;
Semaphore m_gameSem;
# if BX_PLATFORM_WINDOWS|BX_PLATFORM_XBOX360
HANDLE m_renderThread;
# else
pthread_t m_renderThread;
# endif // BX_PLATFORM_WINDOWS|BX_PLATFORM_XBOX360
#else
void gameSemPost()
{
}
void gameSemWait()
{
}
void renderSemPost()
{
}
void renderSemWait()
{
}
#endif // BGFX_CONFIG_MULTITHREADED
Frame m_frame[2];
Frame* m_render;
Frame* m_submit;
uint64_t m_tempKeys[BGFX_CONFIG_MAX_DRAW_CALLS];
uint16_t m_tempValues[BGFX_CONFIG_MAX_DRAW_CALLS];
DynamicIndexBuffer m_dynamicIndexBuffers[BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS];
DynamicVertexBuffer m_dynamicVertexBuffers[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS];
uint16_t m_numFreeDynamicIndexBufferHandles;
uint16_t m_numFreeDynamicVertexBufferHandles;
DynamicIndexBufferHandle m_freeDynamicIndexBufferHandle[BGFX_CONFIG_MAX_DYNAMIC_INDEX_BUFFERS];
DynamicVertexBufferHandle m_freeDynamicVertexBufferHandle[BGFX_CONFIG_MAX_DYNAMIC_VERTEX_BUFFERS];
NonLocalAllocator m_dynamicIndexBufferAllocator;
HandleAlloc m_dynamicIndexBufferHandle;
NonLocalAllocator m_dynamicVertexBufferAllocator;
HandleAlloc m_dynamicVertexBufferHandle;
HandleAlloc m_indexBufferHandle;
HandleAlloc m_vertexDeclHandle;
HandleAlloc m_vertexBufferHandle;
HandleAlloc m_vertexShaderHandle;
HandleAlloc m_fragmentShaderHandle;
HandleAlloc m_materialHandle;
HandleAlloc m_textureHandle;
HandleAlloc m_renderTargetHandle;
HandleAlloc m_uniformHandle;
MaterialRef m_materialRef;
VertexDeclRef m_declRef;
RenderTargetHandle m_rt[BGFX_CONFIG_MAX_VIEWS];
Clear m_clear[BGFX_CONFIG_MAX_VIEWS];
Rect m_rect[BGFX_CONFIG_MAX_VIEWS];
Constant m_constant[BGFX_CONFIG_MAX_UNIFORMS];
uint16_t m_seq[BGFX_CONFIG_MAX_VIEWS];
uint16_t m_seqMask[BGFX_CONFIG_MAX_VIEWS];
Resolution m_resolution;
uint32_t m_frames;
uint32_t m_debug;
TextVideoMemBlitter m_textVideoMemBlitter;
#if BX_PLATFORM_WINDOWS
struct Window
{
Window()
: m_frame(true)
, m_update(false)
{
}
void init()
{
if (NULL == g_bgfxHwnd)
{
HINSTANCE instance = (HINSTANCE)GetModuleHandle(NULL);
WNDCLASSEX wnd;
memset(&wnd, 0, sizeof(wnd) );
wnd.cbSize = sizeof(wnd);
wnd.lpfnWndProc = DefWindowProc;
wnd.hInstance = instance;
wnd.hIcon = LoadIcon(instance, IDI_APPLICATION);
wnd.hCursor = LoadCursor(instance, IDC_ARROW);
wnd.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wnd.lpszClassName = "bgfx_letterbox";
wnd.hIconSm = LoadIcon(instance, IDI_APPLICATION);
RegisterClassExA(&wnd);
memset(&wnd, 0, sizeof(wnd) );
wnd.cbSize = sizeof(wnd);
wnd.style = CS_HREDRAW | CS_VREDRAW;
wnd.lpfnWndProc = wndProc;
wnd.hInstance = instance;
wnd.hIcon = LoadIcon(instance, IDI_APPLICATION);
wnd.hCursor = LoadCursor(instance, IDC_ARROW);
wnd.lpszClassName = "bgfx";
wnd.hIconSm = LoadIcon(instance, IDI_APPLICATION);
RegisterClassExA(&wnd);
HWND hwnd = CreateWindowA("bgfx_letterbox"
, "BGFX"
, WS_POPUP|WS_SYSMENU
, -32000
, -32000
, 0
, 0
, NULL
, NULL
, instance
, 0
);
g_bgfxHwnd = CreateWindowA("bgfx"
, "BGFX"
, WS_OVERLAPPEDWINDOW|WS_VISIBLE
, 0
, 0
, BGFX_DEFAULT_WIDTH
, BGFX_DEFAULT_HEIGHT
, hwnd
, NULL
, instance
, 0
);
m_update = true;
}
}
LRESULT process(HWND _hwnd, UINT _id, WPARAM _wparam, LPARAM _lparam)
{
switch (_id)
{
case WM_CLOSE:
TerminateProcess(GetCurrentProcess(), 0);
break;
case WM_SIZING:
{
RECT clientRect;
GetClientRect(_hwnd, &clientRect);
uint32_t width = clientRect.right-clientRect.left;
uint32_t height = clientRect.bottom-clientRect.top;
RECT& rect = *(RECT*)_lparam;
uint32_t frameWidth = rect.right-rect.left - width;
uint32_t frameHeight = rect.bottom-rect.top - height;
switch (_wparam)
{
case WMSZ_LEFT:
case WMSZ_RIGHT:
{
float aspectRatio = 1.0f/m_aspectRatio;
width = bx::uint32_max(BGFX_DEFAULT_WIDTH/4, width);
height = uint32_t(float(width)*aspectRatio);
}
break;
default:
{
float aspectRatio = m_aspectRatio;
height = bx::uint32_max(BGFX_DEFAULT_HEIGHT/4, height);
width = uint32_t(float(height)*aspectRatio);
}
break;
}
rect.right = rect.left + width + frameWidth;
rect.bottom = rect.top + height + frameHeight;
SetWindowPos(_hwnd
, HWND_TOP
, rect.left
, rect.top
, (rect.right-rect.left)
, (rect.bottom-rect.top)
, SWP_SHOWWINDOW
);
}
return 0;
case WM_SYSCOMMAND:
switch (_wparam)
{
case SC_MINIMIZE:
case SC_RESTORE:
{
HWND parent = GetWindow(_hwnd, GW_OWNER);
if (NULL != parent)
{
PostMessage(parent, _id, _wparam, _lparam);
}
}
}
break;
default:
break;
}
return DefWindowProc(_hwnd, _id, _wparam, _lparam);
}
void update()
{
if (m_update)
{
MSG msg;
msg.message = WM_NULL;
if (0 != PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE) )
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
}
void adjust(uint32_t _width, uint32_t _height, bool _windowFrame)
{
m_aspectRatio = float(_width)/float(_height);
ShowWindow(g_bgfxHwnd, SW_SHOWNORMAL);
RECT rect;
RECT newrect = {0, 0, (LONG)_width, (LONG)_height};
DWORD style = WS_POPUP|WS_SYSMENU;
if (m_frame)
{
GetWindowRect(g_bgfxHwnd, &m_rect);
m_style = GetWindowLong(g_bgfxHwnd, GWL_STYLE);
}
if (_windowFrame)
{
rect = m_rect;
style = m_style;
}
else
{
#if defined(__MINGW32__)
rect = m_rect;
style = m_style;
#else
HMONITOR monitor = MonitorFromWindow(g_bgfxHwnd, MONITOR_DEFAULTTONEAREST);
MONITORINFO mi;
mi.cbSize = sizeof(mi);
GetMonitorInfo(monitor, &mi);
newrect = mi.rcMonitor;
rect = mi.rcMonitor;
#endif // !defined(__MINGW__)
}
SetWindowLong(g_bgfxHwnd, GWL_STYLE, style);
AdjustWindowRect(&newrect, style, FALSE);
UpdateWindow(g_bgfxHwnd);
if (rect.left == -32000
|| rect.top == -32000)
{
rect.left = 0;
rect.top = 0;
}
int32_t left = rect.left;
int32_t top = rect.top;
int32_t width = (newrect.right-newrect.left);
int32_t height = (newrect.bottom-newrect.top);
if (!_windowFrame)
{
float aspectRatio = 1.0f/m_aspectRatio;
width = bx::uint32_max(BGFX_DEFAULT_WIDTH/4, width);
height = uint32_t(float(width)*aspectRatio);
left = newrect.left+(newrect.right-newrect.left-width)/2;
top = newrect.top+(newrect.bottom-newrect.top-height)/2;
}
HWND parent = GetWindow(g_bgfxHwnd, GW_OWNER);
if (NULL != parent)
{
if (_windowFrame)
{
SetWindowPos(parent
, HWND_TOP
, -32000
, -32000
, 0
, 0
, SWP_SHOWWINDOW
);
}
else
{
SetWindowPos(parent
, HWND_TOP
, newrect.left
, newrect.top
, newrect.right-newrect.left
, newrect.bottom-newrect.top
, SWP_SHOWWINDOW
);
}
}
SetWindowPos(g_bgfxHwnd
, HWND_TOP
, left
, top
, width
, height
, SWP_SHOWWINDOW
);
ShowWindow(g_bgfxHwnd, SW_RESTORE);
m_frame = _windowFrame;
}
private:
static LRESULT CALLBACK wndProc(HWND _hwnd, UINT _id, WPARAM _wparam, LPARAM _lparam);
RECT m_rect;
DWORD m_style;
float m_aspectRatio;
bool m_frame;
bool m_update;
};
Window m_window;
#endif // BX_PLATFORM_WINDOWS
bool m_rendererInitialized;
bool m_exit;
};
} // namespace bgfx
#endif // __BGFX_P_H__